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Abstract: Purpose: We assessed whether a CXR AI algorithm was able to detect missed or misla-
beled chest radiograph (CXR) findings in radiology reports. Methods: We queried a multi-institu-
tional radiology reports search database of 13 million reports to identify all CXR reports with ad-
dendums from 1999–2021. Of the 3469 CXR reports with an addendum, a thoracic radiologist ex-
cluded reports where addenda were created for typographic errors, wrong report template, missing 
sections, or uninterpreted signoffs. The remaining reports contained addenda (279 patients) with 
errors related to side-discrepancies or missed findings such as pulmonary nodules, consolidation, 
pleural effusions, pneumothorax, and rib fractures. All CXRs were processed with an AI algorithm. 
Descriptive statistics were performed to determine the sensitivity, specificity, and accuracy of the 
AI in detecting missed or mislabeled findings. Results: The AI had high sensitivity (96%), specificity 
(100%), and accuracy (96%) for detecting all missed and mislabeled CXR findings. The correspond-
ing finding-specific statistics for the AI were nodules (96%, 100%, 96%), pneumothorax (84%, 100%, 
85%), pleural effusion (100%, 17%, 67%), consolidation (98%, 100%, 98%), and rib fractures (87%, 
100%, 94%). Conclusion: The CXR AI could accurately detect mislabeled and missed findings. Clin-
ical Relevance: The CXR AI can reduce the frequency of errors in detection and side-labeling of 
radiographic findings. 

Keywords: chest X-ray; artificial intelligence; missed findings; mislabeled; radiology 
 

1. Introduction 
Chest radiography (CXR) is the most common imaging test, representing up to 20% 

of all types of imaging procedures [1]. Studies have reported that 236 CXRs are performed 
per 1000 patients per year, representing up to 25% of annual diagnostic imaging proce-
dures [2]. In 2010 alone, of the 183 million radiographic procedures in the United States 
on 15,900 radiologic units, CXRs represented almost half of all radiographic images (44%) 
[3]. Easy accessibility, portability, familiarity, and affordability (relative to other imaging 
tests) are all factors leading to its widespread use in medical practice for various cardio-
thoracic ailments [4,5]. Despite their common use, CXRs are difficult to read, and are sub-
ject to substantial inter- and intra-reader variations. 

To the best of our knowledge, there are no prior publications on the impact of an AI 
algorithm on addended mislabeled or misinterpreted CXR reports in routine clinical prac-
tice. Therefore, we investigated whether a CXR AI algorithm is able to detect missed or 
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mislabeled CXR findings in radiology reports. Sections 2–5 present, in order, the materials 
and methods, results, discussions, and conclusions of our study. 

Related Work 
A prior retrospective study documented that inter-radiologist and physician con-

cordance were 78% for CXRs [6]. Other studies have reported disagreements between ra-
diologists on CXR findings [7]. CXRs have a high misinterpretation rate, reportedly as 
high as 30% [8]. The impact of missed radiographic findings is non-trivial. A 1999 study 
reported that 19% of lung cancers which presented as pulmonary nodules on CXRs were 
missed [9]. Such missed findings can be catastrophic for both patients and reporting phy-
sicians. The Institute of Medicine (IOM) states that 44,000–98,000 patients die in the United 
States every year because of preventable errors [10]. 

With the increasing use and availability of approved (for instance, by the US Food 
and Drug Administration) artificial intelligence (AI) algorithms for several CXR findings 
[11] (Table 1), we hypothesize that AI could help reduce the frequency of mislabeled or 
misinterpreted CXRs. Apart from improved interpretation efficiency, several studies have 
reported improved accuracy of interpretation of several CXR findings [12–14]. There are 
an increasing number of AI algorithms for triaging and detecting different CXR findings, 
including pneumonia, pneumothorax, pleural effusion, and pulmonary nodules [12,13]. 

Table 1. Summary of recent studies on use of AI for CXRs and chest CT support, expanding appli-
cations, and growing evidence for its use in clinical practice. 

Authors (Year) Sample Size and Approach  Results 

Lan et al. (2022) 
[15] 

60 Chest CTs assessed both manually 
and with AI assistance  

Unaided false positive (FP) rate was 0.617–0.650/CT and sen-
sitivity was 59.2–67.0%; with AI assistance, the FP was 0.067–
0.2/CT and the sensitivity was 59.2–77.3%  

Zhang et al. 
(2022) [16] 

860 chest CT screenings assessed by 14 
residents and 15 radiologists; in addi-
tion, one radiologist and one resident 
re-evaluated CTs with AI assistance.  

The accuracy and sensitivity of radiologists for solid nodules 
were 86% and 52%, compared to 99.1% and 98.8% with AI-as-
sistance.  

Rudolph et al. 
(2022) [17] 

 563 CXRs retrospectively assessed by 
multiple radiologists and compared 
with an AI system. 

AI-assisted interpretation mimicked the most sensitive unas-
sisted interpretation, with AUCs of 0.837 (pneumothorax), 
0.823 (pleural effusion), and 0.747 (lung lesions)  

Nguyen et al. 
(2022) [18] 

6285 CXRs for abnormality detection 
with an AI algorithm 

AI had 79.6% accuracy, 68.6% sensitivity, and 83.9% specific-
ity;  AI algorithms can help with interpretation of the CXRs 
as a second reader. 

Ajmera et al. 
(2022) [19] 

1012 posteroanterior CXRs for diagnosis 
of cardiomegaly 

An AI algorithm improved sensitivity for identifying cardio-
megaly from 40.5% to 88.4%.  

Homayounieh 
et al. (2021) [20] 

100 posteroanterior CXRs; detection of 
pulmonary nodules  

Mean detection accuracy of pulmonary nodules increased by 
6.4% with AI assistance for different levels of detection diffi-
culty and reader experience.  

2. Materials and Methods 
2.1. Approval and Disclosures 

The institutional review board at Massachusetts General Brigham approved our ret-
rospective study (IRB protocol number: 2020P003950) with a waiver of informed consent. 
A study co-investigator (SRD) received a research grant from Qure.AI but did not partic-
ipate in data collection, study evaluation or statistical analysis. Another study co-investi-
gator (MKK) received research grants for unrelated projects from Siemens Healthineers 
(Erlangen, Germany), Riverain Tech (Miamisburg, OH, USA), and Coreline Inc. (Santa 
Clara, CA, USA). The remaining co-authors have no financial disclosures. All study au-
thors had equal and unrestricted access to the study data. 
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2.2. Chest Radiographs 
We queried multi-institutional radiology search databases totaling 13 million reports 

to identify all CXRs reports with addenda from 1999–2021. We used the following key-
words for search criteria: chest radiograph and addendum. The identified CXRs reports 
included both portable and posteroanterior upright CXRs. The two search engines used 
in our study were mPower (Nuance Inc., Burlington, MA, USA) and Render (proprietary 
institutional search engine). Duplicate CXR reports were excluded when they had the 
same medical record and accession numbers. The search identified a total of 3469 unique 
CXR reports between January 2015 to March 2021, as the patients’ medical information 
was not recorded electronically in our database before 2015. The inclusion criteria were: 
availability of DICOM CXR images from seven hospitals in our healthcare enterprise 
(Massachusetts General Hospital (MGH), Brigham Women Hospital (BWH), Faulkner 
Health Center (FH), Martha’s Vineyard Hospital (MVH), Salem Hospital (NSMC), New-
ton-Wellesley Hospital (NWH), and Spaulding Rehabilitation Hospital (SRH)) and an ad-
dendum with either a missed or side-mislabeled finding. To protect institutional identity 
(as a higher number of addenda was linked to a greater volume of reported CXRs and not 
to the quality of reporting), we blinded the names of individual sites before analysis. 
Missed findings in CXR reports were defined as those reports where there was a missed 
radiographic finding in the original CXR report which was subsequently corrected with 
an addendum. Mislabeled findings included wrong side labels of CXR findings in the in-
itial CXR reports which were corrected with addenda.  

Two study coinvestigators (MKK, with fourteen years of experience as a thoracic ra-
diologist and PK, with two years of post-doctoral research in radiology) excluded CXR 
reports with addenda documenting typographical errors (n = 782), wrong report tem-
plates (n = 341), missing section signoffs (n = 289), and communication errors (n = 1174). 
Duplicate reports of the same exam and patient were excluded as well (n = 302). Other 
exclusion criteria were addenda concerning findings that could not be assessed with the 
AI algorithm, such as cardiac calcification (n = 27), diaphragmatic hernia (n = 81), clavicle 
(n = 29) or humeral (n = 34) fractures or dislocations, lines (n = 94), and devices (n = 37). 
The final sample size after the application of inclusion and exclusion criteria was 279 CXRs 
with addenda belonging to 279 patients; the patient demographics are summarized in the 
results section. Figure 1 summarizes the distribution of missed and mislabeled CXR find-
ings included in our study. 

The study co-investigators noted the organization name for addended CXR reports 
and the specific missed finding name, such as pneumothorax, nodule, atelectasis, rib frac-
tures, and pleural effusion. A chest radiologist (MKK) reviewed all CXRs with missed 
findings/labeled nodules and assessed their size and clinical importance on a three-point 
scale (1: not significant, the nodule is definitely benign such as granuloma; 2: indetermi-
nate clinical importance; 3: definitely of clinical importance). Information on request for 
further imaging or follow-up evaluation was recorded from the reports.  
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Figure 1. Flow diagram summarizing the study methods and distribution of specific missed and 
mislabeled findings at different sites and CXR types (PA—posteroanterior CXR; port—portable 
CXR). 

2.3. AI Algorithm 
All 279 frontal CXRs were deidentified, exported as DICOM images, and processed 

with an offline AI algorithm (qXR, Qure.AI, Mumbai, India) installed on a personal com-
puter within our institutional firewall to protect patient privacy. Although approved in 
several countries in Asia, Africa, and Europe, the AI algorithm used in our study is not 
cleared by the US FDA. The algorithm was trained on over 3.7 million CXRs and radiology 
reports from various healthcare sites from different parts of the world. The algorithm uses 
a series of convolutional neural networks (CNNs) trained to identify different abnormal-
ities on frontal CXRs. The algorithm first resizes and normalizes CXRs to decrease varia-
tions in the acquisition process, then applies modifications in either densenet or resnet 
network architectures to separate CXRs from radiographs of other anatomies. Subse-
quently, multiple networks, including densenets and resnets, are applied for individual 
CXR findings. Further technical details of the algorithm have been described in prior pub-
lications [15]. The algorithm was validated on a separate dataset of over 93,000 CXRs from 
multiple sites in India. Neither training nor validation datasets included CXRs from any 
test sites. The image algorithms (qXR v3) were trained and tuned on a training set of 3.7 
million chest X-rays with the corresponding reports. Optimal thresholds were selected 
using a proprietary method developed at Qure.ai, along with standard methods such as 
Youden’s Index. These thresholds were additionally validated on a test set of over 93,000 
CXRs which was not used during training. The algorithm is an ensemble of more than 
fifty models, each used for detection of specific abnormalities or features in CXRs. Multi-
ple architectures are selected for use during training, each with a different number of lay-
ers/parameters. The algorithms use different architectures, including Efficientnet-b5/6/7, 
Resnet 50/101d, and ResneXt101. In general, the models have parameter counts ranging 
from 20–50 million. The common optimizers include SGD and ADAM, and models are 
trained for around 200 epochs. The learning rate schedulers vary from model to model. 
The process used has been previously described in work done at Qure.ai with qXR, which 
can be found at: https://arxiv.org/abs/1807.07455 (accessed on 19 July 2018). The threshold 
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values used were part of the commercial version of qXR and were frozen before the start 
of the study. The algorithm takes less than 10 s to process each CXR. 

2.4. Statistical Analyses 
Statistical analysis was performed with Microsoft EXCEL (Microsoft Inc., Redmond, 

WA, USA). To assess the performance of the AI algorithm, we predefined true positive 
(i.e., the specific missed finding is identical in addendum and AI output; for example, both 
the addendum and AI output document pneumothorax), true negative (addendum and 
AI output agree on the absence of specific findings; for example, both addendum and AI 
agree on the absence of pneumothorax), false positive (addendum or the original radiol-
ogy report did not document a finding identified by the AI algorithm; for example, the AI 
identified pneumothorax which was not present in the radiology report or the CXR), and 
false negative (the addendum described a missed finding did not correspond to that de-
tected by the AI; for example, the addendum documented the presence of pneumothorax 
which the AI did not detect) The sensitivity, specificity, accuracy, and receiver operating 
characteristics (ROC) with the area under the curve (AUC) were calculated using Mi-
crosoft Excel 16 (Microsoft Inc., Redmond, WA, USA) and SPSS version 26 (IBM Inc., Chi-
cago, IL, USA). 

3. Results 
Of the 279 CXRs with addenda performed in 279 patients (mean age 59 ± 20 years), 

143 belonged to male patients and 136 to female patients. There were 230 PA CXRs and 
49 portable CXRs in the dataset. As the algorithm labeled both pneumonia and atelectasis 
as consolidation, we reported the sum of these two findings as consolidation. Table 2 sum-
marizes the distribution of missed and mislabeled CXR findings in our study according 
to CXR types (posteroanterior or portable). Regardless of the sites, most missed and mis-
labeled findings in the addenda were present in reports of posteroanterior CXRs as com-
pared to portable CXRs (p < 0.001). Documentation of missed findings greatly outnum-
bered mislabeled findings. The most common missed findings included pneumothoraces 
(100/279; 35.8%), consolidation (62/279; 22.2%), pulmonary nodules (54/279; 19.4%), rib 
fractures (48/279; 17.2%), and pleural effusions (15/279; 5.4%). 

Table 2. Summary of missed (MS) and mislabeled (ML) findings in posteroanterior (PA) and port-
able CXRs at different sites included in our study. 

 Site A Site B All Remaining Sites 
CXRs PA Portable PA Portable PA Portable 

Findings MS ML MS ML MS ML MS ML MS ML MS ML 
Consolidation  49 3 3 0 4 0 0 0 3 0 0 0 

Pulmonary nodule 28 1 8 1 8 1 3 0 2 0 2 0 
Pneumothorax 68 6 20 1 2 0 0 0 3 0 0 0 
Pleural effusion 10 0 0 1 1 0 0 0 2 0 1 0 

Rib fracture 36 0 9 0 3 0 0 0 0 0 0 0 

The sensitivity, specificity, accuracy, and AUCs of the AI algorithm for different find-
ings are summarized in Table 3. The AI’s highest performance was in the detection of 
pulmonary nodules and consolidation, and was the lowest in pleural effusion (low speci-
ficity). Table 4 illustrates the frequency of true positive, true negative, false positive, and 
false negative results for each finding. 
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Table 3. Summary statistics of AI performance detecting missed findings on CXRs. The numbers in 
parentheses represent 95% confidence interval for the area under the curve (AUC). 

Findings  Sensitivity Specificity Accuracy AUC 
Pulmonary nodule 96 100 96 0.98 (0.94–1.00) 

Consolidation 98 100 98 0.99 (0.97–1.00) 
Rib fracture 87 100 94 0.94 (0.85–1.00) 

Pleural effusion 100 17 67 0.82 (0.54–1.00) 
Pneumothorax 84 100 85 0.92 (0.86–0.98) 

Table 4. Summary frequencies of true positive, true negative, false positive, and false negative re-
sults of each finding. 

Findings  True Positive True Negative False Positive False Negative 
Pulmonary nodule 51 1 0 2 

Consolidation 62 62 0 1 
Rib fracture 20 25 0 3 

Pleural effusion 9 1 0 5 
Pneumothorax 80 5 0 15 

Figure 2 summarizes the AUCs of the algorithm for different radiographic findings. 
There was no significant difference in the performance of the AI on CXRs from sites A and 
B or between the portable and posteroanterior CXRs (p > 0.5). Data from the remaining 
sites were not compared due to low sample sizes (<5 data points per finding) for missed 
and mislabeled findings. The AI algorithm had a moderate to high AUC for all missed 
findings. For true positives, the AI annotated heat map showed the lesion as being on the 
correct side, instead of the mislabeled findings reported in the addended radiology re-
ports. Figure 3 displays different missed findings which were correctly detected (true pos-
itive) by the AI algorithm. 

Among the 279 CXR, 41 CXR addenda requested for additional assessment: rib frac-
tures (n = 4), pneumothoraces (n = 3), and pulmonary nodules (n = 34). All patients with 
missed pneumothoraces had chest tube placement. All 34 CXRs with missed nodules un-
derwent chest CT, three patients underwent lung nodule biopsy (one benign nodule, two 
malignant nodules). The 31 remaining pulmonary nodules remained stable on follow-up 
imaging (CXR and/or CT). Figure 4 illustrates the distribution of missed nodule size and 
further evaluation. 
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Figure 2. Receiver operating characteristic analyses with area under the curve (AUC) for different 
missed findings detected by the AI algorithm. 
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Figure 3. Spectrum of missed CXR findings: pulmonary nodule (A), pneumonia (B), rib fracture (C), 
and pneumothorax (D)) for which radiologists issued addenda to their original radiology reports. 
These findings were detected by the AI algorithm. White ellipses illustrated the location of findings 
annotated by AI algorithms. Red arrows pointed out the finding. 
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Figure 4 Flow diagram illustrating missed nodule distribution based on size and significance. 

4. Discussion 
Here, we report the frequency of different CXR findings which were either missed or 

mislabeled and later corrected with an addendum. The assessed AI algorithm can help to 
identify such findings and errors with high performance (AUC 0.82–0.99). Although prior 
studies have described the comparable performance of AIs either standalone or a second 
reader [21], most studies have evaluated consecutive or selected CXRs without specific 
attention to the clinical significance of detected or missed radiographic findings. 

Prior research publications have investigated the frequency of misdiagnosis of CXR 
findings [22]. In a recent study, Wu et al. described an AI algorithm that reaches and ex-
ceeds the performance of third-year radiology residents for detecting findings on frontal 
chest radiographs, with a mean AUC of 0.772 for the assessed AI algorithm [14]. Such AI 
algorithms can improve accuracy while improving the workflow efficiency of reporting. 
In our institution, addenda are issued for final signed-off radiology reports by the attend-
ing radiologists or a fully licensed trainee such as a clinical fellow. Therefore, high accu-
racy (up to 0.99) of the assessed AI algorithm pertains to findings missed by interpreting 
physicians beyond residency training. 

The high accuracy and AUCs of the AI algorithm for detecting consolidation and 
pulmonary nodules in our study correspond to those reported in recent studies. Behzadi-
Khormouji et al. reported an accuracy of 94.67% for detecting consolidation on CXRs using 
an AI model [21]. Likewise, the performance of our AI algorithm for detecting all-cause 
pulmonary nodules is comparable to the overall performance of another AI algorithm 
(Lunit Inc., Seoul, Korea). Yoo et al. reported a sensitivity of 86.2% and specificity of 85% 
for all-cause nodules, and a higher sensitivity of AI (up to 100%) compared to 94.1% for 
radiologists in detecting malignant nodules on digital CXRs [23]. Similarly, the high sen-
sitivity, specificity, accuracy, and AUC of the AI algorithm for detection of pneumothorax 
compares well with other multicenter studies using other AI algorithms, such as Thian et 
al., who reported an AUC of 0.91–0.97 for detection of pneumothorax detection with their 
AI algorithm [24]. 

The main implication of our study pertains to the performance and potential use of 
AI when reporting CXRs. In light of the high volume of CXR use in hospital settings, rel-
atively low reimbursement for CXR interpretation, and pressure for rapid and efficient 
reporting, compounded by the highly subjective nature of projectional radiography, re-
porting errors on CXRs are common. In such circumstances, as noted from our study and 
supported by other investigations [12–14], AI algorithms can reduce the frequency of com-
monly missed and mislabeled CXR findings. Furthermore, routine use of CXR AI in 
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interpretation has the potential to avoid common reporting errors, and therefore reduce 
the need to issue addenda to previously reported exams. At the same time, AI algorithms 
can potentially shift the focus from under- or non-reporting of radiographic findings to 
over-reporting of findings due to high false positive outputs. Such challenges can be ad-
dressed with robustly trained AI models and selection of appropriate cut-off values that 
maintain a good balance of sensitivity and specificity across different radiography units 
and radiographic quality. Although we did not compare the AI's performance with other 
models from the literature, the AUCs of our AI algorithm were similar to those reported 
for other models assessed using open access CXR datasets 
(https://nihcc.app.box.com/v/ChestXray-NIHCC/file/220660789610 (accessed on 4 August 
2022)) [25]. Apart from detection of radiographic findings assessed in our study with an 
AI algorithm, other studies have assessed applications of AI for prioritizing interpretation 
of CXRs in order to expedite reporting of abnormal CXRs and specific findings [26]. Bal-
truschat et al. reported the use of AI-based worklist prioritization for a substantial reduc-
tion in reporting turnaround time for critical CXR findings [27]. Similar improvements in 
reporting time with worklist prioritization using AI have been reported for other body 
regions as well, such as head CTs for intracranial hemorrhage [28,29]. Finally, although 
our study highlights how AI could help to reduce missed findings and errors in radiology 
reports, larger studies with greater and more balanced representation of each missed find-
ing are important before generalizing our observations to other sites and practices. This is 
particularly true for CXRs with pulmonary nodules and pleural effusions, due to their 
sparse distribution in our study datasets. 

There are several limitations to our study. Although we queried over 13 million ra-
diology reports from 1999 to March 2021 to identify 3469 CXR reports with addenda, the 
stringent inclusion and exclusion criteria made our sample size small (n = 279 CXRs), 
which is the primary limitation of our study. While a larger dataset for AI algorithm is 
ideal, our study provides a representative snapshot of missed and mislabeled findings on 
consecutive eligible CXRs from multiple sites. While addended radiology reports describ-
ing missed and mislabeled findings pertain to identified or recognized errors in reporting, 
they underestimate the true incidence of missed or mislabeled findings, as most findings 
might not be discovered or corrected in subsequent follow-up CXRs or other imaging tests 
such as CT. The purpose of our study was not to uncover the true incidence of missed 
CXR findings, rather, it was to investigate the performance of the AI algorithm on missed 
or mislabeled findings deemed important by the referring physicians and/or radiologists, 
and thus addressed with addenda. Due to the limited sample size, we were unable to 
determine the performance of the AI for missed rare findings such as mediastinal and 
hilar abnormalities, cavities, and pulmonary fibrosis. In addition, the performance of AIs 
can vary based on the type of findings; therefore, our results may not be generalizable to 
sites with different distributions of CXR findings. 

Another limitation of our study pertains to findings that are currently not detected 
by the AI algorithm, such as placement of lines and devices, which was a significant con-
tributor of excluded portable CXR reports with addenda. Although CXRs included in our 
study belonged to real-world CXRs with addended reports to add missed findings, we 
did not include real-world randomized CXR datasets without addended reports, as prior 
studies have reported on performance (sensitivity, specificity, AUC, and accuracy for in-
dividual CXR findings) of the AI algorithm used in our study on such datasets [24]. We 
did not specifically perform a systematic analysis of the algorithm in order to understand 
domain bias at the study sites. However, the inclusion of different study site types (in-
cluding quaternary, community, cottage, and rehabilitation hospitals), different radio-
graphic equipment, and a large group of interpreting radiologists would have minimized 
such bias in our study. Finally, we did not process the CXRs with other AI algorithms, 
and therefore we cannot comment on the relative performance of different AI algorithms. 
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5. Conclusions and Future Work  
In conclusion, our study demonstrates that AI can help to identify several missed and 

mislabeled findings on CXRs. As a secondary reader, the assessed AI algorithm can help 
radiologists to identify and avoid common mistakes in detection, description, and labeling 
of specific radiographic findings, including consolidation, pulmonary nodules, pneumo-
thorax, rib fractures, and to a lesser extent, pleural effusions. Future studies with a larger 
number of reporting errors can help to assess the effectiveness and relative performance 
of AI algorithms in improving the accuracy of radiology reporting for chest radiographs. 
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