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Abstract: Ulcerative colitis (UC) is an intractable disease associated with high morbidity and health-
care costs. Metabolites and gut microbes are areas of interest for mainstream and complementary and
alternative medicine. We, therefore, aimed to contribute to the discovery of an integrative medicine
for UC by comparing and analyzing gut microbes and metabolites in patients with UC and in healthy
individuals. This was an observational case-control study. Blood and stool samples were collected
from the participants, and metabolite and gut microbial studies were performed. Among metabolites,
formate, glycolate, trimethylamine, valine, and pyruvate levels were significantly different between
the two groups. Among gut microbes, the abundance of Bacteroidetes at the phylum level; Bacteroidia
at the class level; Bacteroidales and Actinomycetales at the order level; Prevotellaceae, Acidaminococcaceae,
and Leptotrichiaceae at the family level; and Prevotella, Roseburia, Paraprevotella, Phascolarctobacterium,
Ruminococcus, Coprococcus, Clostridium_XIVB, Atopobium, and Leptotrichia at the genus level was also
significantly different. Most of the metabolites and gut microbes significantly different between the
two groups were involved in energy metabolism and inflammatory processes, respectively. The re-
sults of this study could be helpful for the identification of targets for integrative medicine approaches
for UC.

Keywords: gut microbes; metabolites; ulcerative colitis; integrative medicine

1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) characterized by
inflammation localized in the mucosa or submucosal layer of the colon. The exact cause of
this condition is unknown; however, it is thought to be caused by a complex interaction of
elements, including the immune system, host genotype, and environment, especially the
enteric commensal microbiota [1].

UC is an intractable disease that leads to high morbidity and healthcare costs [1].
Interest in the treatment of this intractable disease in both personalized and integrative
medicine has been growing [2,3]. Genes are often mentioned in personalized medicine [4].
However, although genes can be useful for predicting disease potential, treatment targeted
at changing the inherited gene itself is difficult for several reasons [5]. Therefore, gut
microbes and metabolites may be better targets for personalized medicine. One study
reported that even if the genes are the same, disease expression may differ depending on
the gut microbes [6]. In addition, for integrative medicine, there must be a common field
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of communication among the various medical approaches, such as Western medicine and
complementary and alternative medicine. Metabolites and gut microbes could be good
candidates because various medical approaches have focused on them [7–9].

Clinical evidence suggests that metabolites and gut microbes play a role in the patho-
genesis of IBD, including UC. For example, Lavelle et al. reported that metabolites derived
from gut microbes are key actors in IBD [10], and Zitomerskty et al. reported that patients
with IBD who undergo surgical diversion of the fecal stream recover their uninflamed
healthy intestines, but the inflammation recurs when re-exposed to the microbial laden
fecal stream [11]. Another study reported that antibiotics targeting anaerobic gut microbes
have shown efficacy in treating IBD [12].

Whether metabolites and gut microbes cause or result from IBD remains controversial.
However, considering the existing studies, it is clear that the regulation of gut microbes
and metabolites could be a new target for integrative medicine treatment [13].

The purpose of this study was to attempt to discover new targets for personalized
and integrative medicine approaches to UC by comparing and analyzing gut microbes
and metabolites in patients with UC and healthy individuals. Although the number of
participants was small, we report our findings because we obtained significant results.

2. Materials and Methods
2.1. Study Design

This was an observational study with a case-control design.

2.2. Subjects
2.2.1. Sample Size Calculation

As this was a pilot study and we were unable to find previous data that indicated the
sample size required to produce significant findings, we relied on the recommendation
made by Kieser and Wassmer that a sample size of 20–40 people be included in the pilot
study [14]. From 10 December 2018 to 9 June 2020, posters in communities and hospitals
were used to recruit the healthy control (HC) and UC groups. The HC group was age- and
gender-matched with the UC group.

2.2.2. Inclusion and Exclusion Criteria for the UC Group

The inclusion criteria for the UC group were as follows: patients diagnosed with UC
who were taking UC-related drugs (e.g., anti-inflammatory drugs) agreed to participate in
this study, voluntarily signed informed consent, and consumed traditional Korean dishes,
such as rice and seasoned vegetables.

The exclusion criteria were as follows: those diagnosed with diseases that could have
affected the results of this study, such as diabetes mellitus and autoimmune diseases other
than UC, those who had taken antibiotics or steroids within 6 months, those who were
taking probiotics, those who regularly consumed alcohol and smoked, those from whom
blood or stool samples could not be obtained, and those who were deemed inappropriate
for participation in this study by the medical staff.

2.2.3. Inclusion and Exclusion Criteria for the HC Group

The inclusion criteria were as follows: those who consented to participate in this
study freely signed informed consent, had no underlying disease, and were not taking any
drugs. Those deemed inappropriate for participation in this study by the medical staff
were excluded.

2.3. Variables

The variables were the metabolites extracted from the collected blood samples and
gut microbes extracted from the collected stool samples.
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2.3.1. Metabolite Analysis
Blood Collection Method

After 5 mL of blood was collected using the injection needle included in the blood
collection kit, the blood was separated into 3.0- and 2.0-mL samples and placed in separate
serum tubes and nonautologous-pooled human plasma containers, respectively. The serum
and plasma were separated.

Metabolite Analysis Method

A total of 250 µL of serum was combined with 500 µL of saline solution (10% D2O for
lock signal, NaCl 0.9%, 500 mM sodium phosphate buffer in D2O containing
0.05 trimethylsilylpropanoic acid [TSP] 0.05% for chemical shift calibration, and concen-
tration reference, pH 7.0). After centrifuging the samples at 12,000× g for 10 min, 600 µL
aliquots of the supernatant were transferred to 5-mm nuclear magnetic resonance (NMR)
tubes for analysis. An ASCEND 800-MHz AVANCE III HD Bruker spectrometer was used,
outfitted with a 5-mm CPTIC 1H-13C/15N/DZ-GRD Z1194227/0011 cryogenic probe.
The NMR sequence (Carr-Purcell-Meiboom-Gill [CPMG] condition: total T2 relaxation
time of 60, 4 K data points, 128 scans, four dummy scans, 8-s delay time) used was a
CPMG spin-echo pulse. The Chenomx program performed baseline correction on the 1D
data obtained from the NMR analysis. Binning was then performed in units of 0.05 ppm,
followed by spectral alignment using the COW algorithm in MATLAB. SIMCA −P++ was
used for the multivariate analysis of the data organized using MATLAB.

TSP was used as an internal standard for quality control. The TSP peak was used as a
reference to correct for chemical shifts and quantify the metabolites.

Metabolite Pattern Analysis

The signal intensity of the spectrum was normalized concerning the TSP signal and
then converted into an ASCII file. An orthogonal partial least-squares discriminant analysis
(OPLS-DA) was performed on the UV scale to assess differences in metabolic patterns
between the HC and UC groups.

2.3.2. Gut Microbe Analysis
Meal Adjustment Guide

The day before stool collection, participants were instructed not to drink alcohol or eat
extremely fatty foods.

Stool Collection and Specimen Delivery

A stool (4 mg) was placed in the stool collection kit. The outside of the kit was labeled
to help distinguish specimens. The specimens were then frozen at −20 ◦C and transferred
to the laboratory for analysis.

Gut Microbe Analysis

A library was designed to enable Illumina sequencing by constructing a hybrid primer
that selectively amplified the V3–V4 region of the 16S rRNA gene (the standard for iden-
tifying bacteria), and an adaptor sequence was recognized by the Illumina sequencer.
According to Illumina’s MisSeq platform guide, the complete sequencing library mixture
was sequenced using 300-bp paired-end sequencing. The bacteria were identified using
quantitative insights into the microbial ecology pipeline after trimming the sequencing
data. Greengenes was used as the bacterial identification library. A total of 20 samples
that passed quality control were used in the analysis. Alpha diversity, which examines the
diversity distribution of gut microbes, was compared, and a non-metric multidimensional
scaling (NMDS) was performed using the Bray-Curtis distance for pattern analysis.
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2.3.3. Statistical Analysis

Data collected from participants were coded and analyzed using the SPSS for Windows
(version 20.0) statistical software program. The Shapiro-Wilk test was used for continuous
variables to check the normality of the data. An independent t-test or Mann-Whitney
U-test was used to compare the levels of blood metabolites and gut microbes in the stool
between the UC and HC groups. To control for confounding factors, independent t-tests or
Mann-Whitney U-tests were performed for both the sex and age groups. p values < 0.05
were considered statistically significant.

3. Results
3.1. Subject Characteristics

Ten patients with UC and 10 healthy individuals were recruited between 10 December
2018 and 26 February 2020. There were no significant differences in demographic character-
istics, such as sex and age, between the two groups (see Table 1 for more information).

Table 1. Demographic characteristics and medical history of enrolled subjects.

Classification UC Group HC Group p Value

Total 10 10

Sex
Male 5 5

p > 0.05
Female 5 5

Age (years)

Minimum 33 33

p > 0.05Maximum 77 72

Average 59.4 53.9

Disease duration
(years)

Minimum 2 -

Maximum 18 -

Average 9.4

Comorbidities

Hypertension 5 -

Dyslipidemia 1 -

Prostatic hypertrophy 1 -

None 5 10

Active ingredients
in the medications
taken

Mesalazine 8 -

Sulfasalazine 2 -

Rebamipide 6 -

Pinaverium bromide 4 -

Itopride hydrochloride 3 -

Mosapride citrate hydrate 1 -

Telmisartan 1 -

Amlodipine besylate 2 -

Losartan potassium 2 -

Carvedilol 1 -

Olmesartan medoxomil 1 -

Atorvastatin calcium
trihydrate 1 -

Finasteride 1

None 0 10
UC, ulcerative colitis; HC, healthy control.
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3.2. Metabolite Analysis

Metabolites in the UC and HC groups were clearly differentiated using principal
component analysis (R2X = 0.563, Q2 = 0.378, Figure 1) and OPLS-DA (R2Y = 0.551,
Q2 = 0.266, Figure 2). According to cross-validation with a 100-permutation test, the
established model was considered reliable (Figure 3). Green R2 values and blue Q2 values
to the left were lower than the original points to the right, and the regression line of the Q2

points intersected the vertical axis below zero (R2 = 0.377, Q2 = −0.157). The corresponding
regression coefficients for the included metabolites sorted by their variable importance in
the OPLS-DA model are shown in Figure 4. Among the metabolites analyzed, the levels
of formate, glycolate, trimethylamine, valine, and pyruvate were significantly different
between the two groups (p < 0.05). Formate, glycolate, trimethylamine, and valine levels
were significantly lower, while pyruvate levels were significantly higher in the UC group
than in the HC group (Figure 5).
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Figure 1. PCA score plot derived from the 1H-NMR spectra of serum from the ulcerative colitis (UC)
patient group (n = 10) and healthy control (HC) group (n = 10). PCA, principal component analysis;
NMR, nuclear magnetic resonance; A2, ulcerative colitis group; C2, healthy control group.
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Figure 2. OPLS-DA score plot derived from the 1H-NMR spectra of serum from the ulcerative colitis
(UC) patient group (n = 10) and healthy control (HC) group (n = 10). OPLS-DA, orthogonal partial
least-squares discriminant analysis; NMR, nuclear magnetic resonance; A2, ulcerative colitis patient
group; C2, healthy control group.
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Figure 5. Box and whisker plot of (a) formate, (b) glycolate, (c) trimethylamine, (d) valine, and
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3.3. Gut Microbe Analysis

The alpha diversity comparison between the two groups revealed that the UC group
had significantly lower Chao1 levels, indicating lower diversity of gut microbes in this
group than in the HC group (p = 0.013) (Figure 6).
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The NMDS based on the Bray-Curtis distance revealed that the two groups had
different gut microbial patterns, but no discernable patterns were evident (Figure 7).

Significant differences in the distribution of the gut microbiota composition between
the two groups were observed in Bacteroidetes at the phylum level; Bacteroidia at the class
level; Bacteroidales and Actinomycetales at the order level; Prevotellaceae, Acidaminococcaceae,



Diagnostics 2022, 12, 1969 11 of 18

and Leptotrichiaceae at the family level; and Prevotella, Roseburia, Paraprevotella, Phascolarcto-
bacterium, Ruminococcus, Coprococcus, Clostridium_XIVB, Atopobium, and Leptotrichia at the
genus level (Table 2). Gut microbiota compositions at the phylum and genus levels for the
UC and HC groups are shown in Figures 8 and 9, respectively.
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Table 2. Gut microbiota compositions according to taxonomic level in UC and HC groups.

Classification Gut Microbes
UC Group vs. HC Group

↑/↓ § Significance
(p < 0.05)

Stool Phylum level Bacteroidetes ↓ 0.022
Class level Bacteroidia ↓ 0.023
Order level Bacteroidales ↓ 0.023

Actinomycetales ↑ 0.044
Family level Prevotellaceae ↓ 0.020

Acidaminococcaceae ↓ 0.015
Leptotrichiaceae ↑ 0.025

Genus level Prevotella ↓ 0.049
Roseburia ↓ 0.016
Paraprevotella ↓ 0.011
Phascolarctobacterium ↓ 0.016
Ruminococcus ↓ 0.015
Coprococcus ↓ 0.028
Clostridium_XIVB ↓ 0.049
Atopobium ↓ 0.015
Leptotrichia ↑ 0.038

UC, ulcerative colitis; HC, healthy control. § Arrows (↑ and ↓) indicate a decrease or increase in microorganism
levels in patients with UC compared with healthy individuals.
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colitis; HC, healthy control.
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Figure 9. Gut microbiota composition at the genus level in UC and HC groups. UC, ulcerative colitis;
HC, healthy control.

4. Discussion

We compared metabolites and gut microbiota between 10 patients with UC and
10 healthy individuals. The extracted metabolite mixture was analyzed via NMR spec-
troscopy. Afterward, a Fourier transform on the NMR data was done. The phase was
adjusted to obtain a spectrum and perform baseline correction. The signal intensity of the
spectrum was normalized concerning the TSP signal and then converted into an ASCII
file. The converted values were analyzed using multivariate analysis. Among metabolites,
univariate analysis showed formate, glycolate, trimethylamine, valine, and pyruvate levels
were significantly different between the two groups. In the multivariate analysis, there
were also significant differences in acetate and τ-methylhistidine between groups. Among
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gut microbes, the abundance of Bacteroidetes at the phylum level; Bacteroidia at the class
level; Bacteroidales and Actinomycetales at the order level; Prevotellaceae, Acidaminococcaceae,
and Leptotrichiaceae at the family level; and Prevotella, Roseburia, Paraprevotella, Phascolarc-
tobacterium, Ruminococcus, Coprococcus, Clostridium_XIVB, Atopobium, and Leptotrichia at
the genus level was also significantly different. The roles that these metabolites and gut
microbes play are listed in Table 3.

Table 3. Description of metabolites and gut microbes that significantly differed between UC and
HC groups.

Classification Description

Metabolites Formate
Formate is associated with glucose-lactate metabolism. Immunologically, it
is related to the decline of naïve T cells [15]. Formate also plays a role in
producing energy through anaerobic respiration as an electron donor [16].

Glycolate
Glycolate is a major precursor to oxalate [17], which is closely related to
stone disease [18], and according to a report by Caudarella et al., stone
disease occurs more commonly in patients with IBD [19].

Trimethylamine

Trimethylamine is caused by the intestinal degradation of dietary
constituents such as choline and carnitine by microbial enzymes [20].
Trimethylamine is also a precursor to trimethylamine-N-oxide, which is
associated with the risk of athero-thrombogenesis [20]. According to a
study by Alfredo et al., IBD is closely associated with the risk of thrombotic
complications [21].
Marchesi et al. also analyzed the metabolites of patients with IBD through
fecal samples and found a decrease in trimethylamine, which is consistent
with our study [12].

Valine

Valine is a minor substrate of brain energy metabolism. During
glutamatergic signaling, valine metabolism appears to be particularly
crucial in the process of glutamate translocation between astrocytes and
neurons [22]. Valine is an essential amino acid in animals, including
humans, and must be ingested into the diet [23].

Pyruvate

Pyruvate is the end-product of glycolysis. Abnormal pyruvate metabolism
plays an especially prominent role in cancer, heart failure, and
neurodegeneration. It is also associated with chronic obstructive pulmonary
disease, obesity, diabetes, and aging [24].

Acetate

Acetate is a short-chain fatty acid (SCFA) produced by gut microbes, which
regulates inflammation in inflammatory and metabolic diseases [25].
Deleu et al. reported that SCFAs, including acetate, are closely related to
IBD [26].

τ-Methylhistidine
τ-Methylhistidine is associated with the degradation of intestinal proteins
[27]. Wang et al. suggested that τ-methylhistidine is one of the potential
biomarkers for ulcerative colitis [28].

Gut microbes Phylum level Bacteroidetes

Bacteroidetes are known to produce anti-inflammatory metabolites such as
SCFAs [29]. Our research team has previously confirmed that Bacteroidetes
levels are lower in patients with Parkinson’s disease than in healthy
individuals, which is related to neuroinflammation [30].

Class level Bacteroidia

Bacteroidia dominate microbial communities inhabiting the anaerobic
environment of the lower gastrointestinal tract. Metabolic end products
generated by Bacteroidia change the nutritional environment for both the
host and other intestinal microbes. Formate, which was significant in the
results of this study, is also a metabolic end product of Bacteroidia [16].

Order level Bacteroidales

Bacteroidales have been found to modulate host immunological and
intestinal activities such as mucosal barrier fortification, intestinal immune
maturation, and angiogenesis by occupying a vital niche at the mucosal
surface of the intestine. Bacteroidales species can have positive or harmful
effects on their hosts, depending on their genetic content. In patients with
IBD, more severe inflammation has been correlated with lower Bacteroidales
diversity [31].
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Table 3. Cont.

Classification Description

Actinomycetales

Many Actinomycetales found in natural substrates can prevent bacteria and
other microbes from growing [32]. In one study, Actinomycetales were higher
in patients with irritable bowel syndrome than in normal subjects [33].
Based on these studies, the decreased intestinal microbial diversity in
patients with IBD may be related to the abundance of Actinomycetales.

Family level Prevotellaceae

The Prevotellaceae family is associated with antibiotic biosynthesis and the
transport of secondary metabolites [34]. Generally, Prevotellaceae produce
SCFAs through the fermentation of dairy products. Reduced SCFAs cause
increased gut permeability, which exposes the intestine to bacterial
endotoxins [35]. In another study, the number of Prevotellaceae and Prevotella
was significantly lower in patients with UC than in controls [36].

Acidaminococcaceae

The family Acidaminococcaceae is now called Veillonellaceae. The
Veillonellaceae family is implicated in regulating systemic inflammation [37]
and is therefore presumed to be closely related to immune-mediated
inflammatory disease, including IBD [38]. In one study, it was suggested
that Veillonellaceae might be a gut microbe closely related to IBD [39].

Leptotrichiaceae

Leptotrichiaceae generally inhabit mucous membranes, but when introduced
into different tissue or host sites, they can shift their pathogenic potential
and produce severe and even life-threatening disease, according to their
phylotypes [40].

Genus level Prevotella
Prevotella is thought to be closely related to chronic inflammation [41], with
one study reporting a reduction in Prevotella in pediatric patients with
Crohn’s disease [42].

Roseburia

Roseburia, one of the most common gut microbes, is decreased in patients
with IBD. It helps to protect the mucosa of the colon from inflammation and
subsequent IBD. Therefore, Roseburia could be a candidate for IBD
treatment [43].

Paraprevotella
The primary fermentation products of Paraprevotella are succinic acid and
acetic acid, which are associated with inflammation. Acetic acid is
especially known to alleviate inflammation [44,45].

Phascolarctobacterium
Phascolarctobacterium is already known to be associated with IBD. These
bacteria are presumed to produce propionate, which has been found to
have anti-inflammatory properties [46,47].

Ruminococcus
Ruminococcus has been associated with intestinal inflammation and is less
abundant in patients with IBD [48]. Ruminococcus help their hosts degrade
and convert complex polysaccharides into various nutrients [49].

Coprococcus

The association of Coprococcus with IBD has long been reported.
Agglutinating antibodies for Coprococcus were briefly considered a
biomarker for IBD [50]. In autoimmune diseases, the relative abundance of
Coprococcus is lower, and the guts of patients with an autoimmune disease
have been characterized by a reduction in microbes, which is positively
correlated with heptanoate and hexanoate [51]. Heptanoate and hexanoate
belong to SCFAs and are involved in the inflammation process [52].

Clostridium_XIVB

The genus Clostridium, including Clostridium_XIVB, plays a role in
modulating the biosynthesis and release of serotonin [53]. The majority of
serotonin is produced in the gastrointestinal epithelium, where it is
suggested to act as a prominent regulatory molecule in the IBD [54].

Atopobium
Leptotrichia

Atopobium and Leptotrichia are oral microbes swallowed with saliva into the
digestive tract. The dysbiosis of oral microbes, including Atopobium and
Leptotrichia, can trigger gut microbe dysbiosis, leading to IBD [55].

UC, ulcerative colitis; HC, healthy control.

Van Kessel and El Aidy reported that gut microbial products are metabolites [56], and
Wang et al. reported that inflammation regulates energy metabolism under physiological
and pathological conditions [57]. This is consistent with the results of this study, which
found that most of the metabolites and gut microbes that were significantly different
between the UC and HC groups were related to energy metabolism and inflammatory
processes, respectively.
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Metabolites and gut microbes are areas of interest for both mainstream and comple-
mentary and alternative medicine. For example, studies have shown that herbal medicines
cause metabolite change [7] and interact with gut microbes [8], and studies have shown
that Western medicine also focuses on the relationship between disease and metabolites
and gut microbes [9].

The fact that both mainstream medicine and complementary and alternative medicine
are focusing on metabolites and gut microbes could have vast implications, particularly
since one of the reasons that integrative medicine treatment is difficult to implement is
the lack of common interests [58]. Considering these points and the results of this study,
metabolites and gut microbes could be excellent targets for integrative medicine treatment.

This study had several limitations. First, because this was a pilot study, the number of
participants analyzed was small. Thus, it is difficult to conclude that the results of this study
reflect the characteristics of all patients with UC. However, the reliability of the results is
not considered low because, despite the small number of patients, significant results were
obtained that are consistent with previous research findings. Second, this study did not
compare differences based on detailed information on the subjects’ diets. However, it was
the same for the broad framework of traditional Korean dishes. Therefore, the possibility
that diet affected the results of this study is considered insignificant. Third, this study
did not evaluate the detailed correlations between the metabolites and gut microbes that
showed a significant difference between the two groups. However, it was confirmed that
they are commonly related to energy metabolism and inflammation. Fourth, we could not
determine the names of the gut microbes that showed a significant difference between the
two groups at the species level. However, we were able to confirm the lack of gut microbial
diversity at the species level in the UC group through alpha diversity analysis. Fifth, it
was unclear whether the patients with UC in this study were in the active or remission
stage. However, it is presumed that the patients with UC included in this study were in
the remission stage since those taking antibiotics and steroids, primarily used for active
UC [59], were excluded. Sixth, although feces are closely related to the gut, only serum
metabolites were analyzed in our study. However, considering a study by Seo [60] noted a
significant difference in the metabolites in serum rather than those of the feces between
chronic colitis and normal mouse models, it cannot be said that the analysis of serum
metabolites in this study was incorrect.

To the best of our knowledge, most existing studies have either analyzed metabolites
or gut microbes alone. However, in this study, both metabolites and gut microbes were
collected from the same subjects and compared. Our data confirmed that the metabolites
and gut microbes that significantly differed between the UC and HC groups were mostly
related to energy metabolism and inflammation processes. If significant differences are
confirmed through large-scale studies comparing metabolites and gut microbes before
and after various treatments, such as with herbal medicine or Western medicine, diet, and
fecal transplantation, the results could be used in developing new targets for integrative
medicine approaches for UC.
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