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Abstract: The detection and classification of cystic lesions of the jaw is of high clinical relevance
and represents a topic of interest in medical artificial intelligence research. The human clinical
diagnostic reasoning process uses contextual information, including the spatial relation of the detected
lesion to other anatomical structures, to establish a preliminary classification. Here, we aimed to
emulate clinical diagnostic reasoning step by step by using a combined object detection and image
segmentation approach on panoramic radiographs (OPGs). We used a multicenter training dataset of
855 OPGs (all positives) and an evaluation set of 384 OPGs (240 negatives). We further compared our
models to an international human control group of ten dental professionals from seven countries.
The object detection model achieved an average precision of 0.42 (intersection over union (IoU): 0.50,
maximal detections: 100) and an average recall of 0.394 (IoU: 0.50–0.95, maximal detections: 100). The
classification model achieved a sensitivity of 0.84 for odontogenic cysts and 0.56 for non-odontogenic
cysts as well as a specificity of 0.59 for odontogenic cysts and 0.84 for non-odontogenic cysts (IoU:
0.30). The human control group achieved a sensitivity of 0.70 for odontogenic cysts, 0.44 for non-
odontogenic cysts, and 0.56 for OPGs without cysts as well as a specificity of 0.62 for odontogenic
cysts, 0.95 for non-odontogenic cysts, and 0.76 for OPGs without cysts. Taken together, our results
show that a combined object detection and image segmentation approach is feasible in emulating the
human clinical diagnostic reasoning process in classifying cystic lesions of the jaw.

Diagnostics 2022, 12, 1968. https://doi.org/10.3390/diagnostics12081968 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12081968
https://doi.org/10.3390/diagnostics12081968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-4386-6237
https://orcid.org/0000-0001-9744-9856
https://orcid.org/0000-0003-1223-1669
https://orcid.org/0000-0002-2679-3841
https://orcid.org/0000-0001-7198-7832
https://orcid.org/0000-0002-8356-9512
https://orcid.org/0000-0003-4318-480X
https://orcid.org/0000-0001-9061-7220
https://orcid.org/0000-0002-4971-5926
https://orcid.org/0000-0001-9265-2724
https://orcid.org/0000-0002-3735-4465
https://orcid.org/0000-0003-0684-2025
https://orcid.org/0000-0002-6010-8940
https://doi.org/10.3390/diagnostics12081968
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12081968?type=check_update&version=1


Diagnostics 2022, 12, 1968 2 of 14

Keywords: artificial intelligence; machine learning; surgery, oral; radiography; cysts; diagnosis

1. Introduction

Jaw cysts are highly prevalent [1] yet frequently asymptomatic; thus, they often remain
undiagnosed until their dimensions require radical surgery [2,3]. At such a late stage, the
extent of the defect can present a risk for neighboring anatomical structures, including teeth,
alveolar bone, and nerves [4]. Furthermore, the time required for complete postoperative
osseous regeneration is exponentially proportional to the preoperative volume of the
defect [5]. Consequently, timely diagnosis ensures a smaller osseous defect and a shorter
regeneration time, thus an overall better prognosis.

While jaw cysts are identifiable at an early stage on panoramic radiographs (i.e.,
orthopantomograms, OPGs) [1], in practice, they are usually incidental findings [6]. Sup-
porting the radiological diagnosis of jaw cysts has thus been a focus of artificial intelli-
gence research in oral medicine [7–9]. Specifically, previous work has applied both object
detection [10] and classification [11] methods to oral cyst diagnostics using OPGs. Notwith-
standing, the explainability of existing methods remains a concern [1,12,13], and no pre-
vious work has focused on a machine learning approach that purposefully emulates the
explainable human thought process in a clinical setting.

Clinically, experience from past encounters as well as contextual knowledge, including
the spatial relation of the cystic lesion to neighboring anatomical structures (e.g., proximity
of a tooth apex to a radicular cyst) is frequently used to establish a preliminary diagnosis
until further imaging is performed [14,15] or a definitive histopathological diagnosis is
made. This thought process is well-described in medical research and education as clinical
diagnostic reasoning [16–18].

We hypothesized that clinical diagnostic reasoning can be emulated by using machine
learning to individually replicate each step: first detecting a cystic lesion, then recognizing
neighboring anatomical structures and their proximity to or overlap with the lesion, and
finally using these as contextual information to establish a preliminary classification. Thus,
the aim of our study was to purposefully emulate the human clinical diagnostic reasoning
process step by step through the implementation of a combined object detection and image
segmentation approach for the detection and preliminary classification of cystic lesions
on OPGs.

2. Materials and Methods
2.1. Image Data
2.1.1. Data Collection

We collected OPGs with cystic lesions of the jaw at the University Clinic of Dentistry
of the Medical University of Vienna between 2000 and 2020 as well as at the Radboud
University Nijmegen Medical Centre between 2012 and 2019. To be included in the training
dataset, the cystic lesions on the OPGs had to have a confirmed histopathological diagnosis.
We further randomly collected negative (i.e., no cystic lesions of the jaw) OPGs from the
same period to achieve a clinically representative positive–negative ratio in the test set.
We aimed to achieve a comparable patient age and sex distribution between positive and
negative OPGs (Table 1).
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Table 1. Dataset characteristics.

Vienna Nijmegen Total

Demographics
Age, median (IQR), years 50 (39–60) 57 (45-66) 53.5 (41–63)

Female, n (% of total) 391 (43) 115 (35) 506 (41)
Male, n (% of total) 519 (57) 214 (65) 733 (59)

Diagnosis
Cysts, n.f.s., n (%) 215 (23.6) 0 (0) 215 (17.3)

Odontogenic cysts, n (%) 485 (53.3) 102 (31) 587 (47.3)
Non-odontogenic cysts, n (%) 90 (9.9) 139 (42.2) 229 (18.5)

Negative controls, n (%) 120 (13.2) 88 (26.7) 208 (16.8)

IQR, interquartile range.

2.1.2. Data Preparation

OPGs at the Medical University of Vienna were taken with an Ortophos SL or an
Orthophos XG Plus device (Dentsply Sirona, York, PA, USA) at 70 kV and 15 mA. OPGs
at the Radboud University Nijmegen Medical Centre were taken with a Cranex Novus
e device (Soredex, Helsinki, Finland) at 77 kV and 10 mA, using a CCD sensor. For
data preparation, we downloaded all OPGs as DICOM files from the respective imaging
databases and de-identified them. Next, we labeled ground truth OPGs by recording the
(x, y) coordinates of the upper-left corner as well as the width and height of the rectangle
with the smallest area containing the radiolucent lesion (i.e., ground truth bounding box)
into a separate text file. We then added age, sex, as well as the confirmed histopathological
diagnosis to the file. The training dataset consisted of a total of 855 OPGs containing cysts;
all eligible OPGs within the respective time frames were included in the training dataset,
and no sample size calculation was performed. Negative OPGs were not included in the
training dataset, as those do not contribute to the learning. The test set had 384 OPGs in
total, of which 240 were negative, yielding a prevalence of approximately 38% to measure
the performance of the model on a clinically representative sample.

2.2. Modeling

We employed a combined object detection and image segmentation model for the
detection and preliminary classification of cysts. The overview of the architecture is repre-
sented in Figure 1. It consists of three major elements: object detection model, segmentation
model, and Random Forest classifier. The object detection model detects the location of
the cyst. Simultaneously, multiple segmentation models segment anatomical structures of
relevance. Detection boxes and segmented anatomical structures are then combined, and
their overlaps are computed. Finally, a Random Forest classifier classifies the cysts based
on the overlap values.
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Figure 1. Overview of the diagnostic pipeline. (a) First, the object detection model detects cystic
lesions and marks them with a bounding box. (b) Next, multiple segmentation models are employed
which segment structures of maxilla, mandible, mandibular canal, maxillary sinuses, the complete
dentition, as well as each individual tooth. (c) The overlaps between the marked bounding box and
segmented structures are then calculated. (d) Finally, the Random Forest classifier gives a preliminary
diagnosis based on the computed overlaps for each sample.

2.2.1. Object Detection Modeling

Here, we used RetinaNet as our object detection model. RetinaNet is a single-stage
algorithm that combines Feature Pyramid Networks to address the problem of scale
invariance [19] with a loss function (i.e., Focal loss [20]) to address the imbalance be-
tween foreground and background in the set of candidate object locations. We used a
ResNet50 [21] pretrained on the ImageNet dataset as the backbone. The output of the
model is a set of bounding boxes together with labels and confidence scores.

For model training, OPGs were kept at their original size and resolution. As OPGs
are grayscale images, to feed them to the model, we converted them into RGB images by
triplicating the single channel. We trained the model for a maximum of 20 epochs. The
batch size was set to 8, and the Adam optimizer with a learning rate of 0.001 was used for
training, as it adapts individual learning rates for each network parameter. Given the small
size of our dataset, we decided to apply early stopping during training to avoid overfitting.
We monitored the validation loss and stopped training if this loss did not improve after
five epochs.

After training, we evaluated the model on the evaluation set. We compared the output
of the model against our annotations using typical object detection metrics (e.g., mean
average precision, recall). These metrics are calculated for different ranges of intersection
over union (IoU) values, which show the level of overlap between the predicted and ground
truth bounding boxes. In a second step, we translated the output of the model and the
evaluation set into binary classes. We performed the evaluation for several threshold
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values for the confidence values of the predictions of the model, using accuracy, precision,
sensitivity, specificity, and F1-score as metrics.

2.2.2. Segmentation Models

Segmentation models, which perform a classification task at the pixel level, were
used to segment relevant anatomical structures on the OPGs. We trained one model each
for the maxilla, mandible, mandibular canal, maxillary sinuses, dentition, and individual
teeth. For the sake of simplicity, each task was solved with the same U-Net++ model
architecture, which was initialized with pretrained weights from ImageNet [22]. The basic
model architecture was extended by the specialized layers of a VGG19 [23], which showed
good performance for dental radiographic image analysis [24]. Training was performed
over 200 epochs with the Adam optimizer with a learning rate of 0.0001 and a batch size of 8.
The loss was constructed through the unweighted sum of Dice loss and Focal loss [20]. The
data were split into train, validation, and test data with a proportion of 80%, 10% and 10%,
respectively. The 80–10–10 split is a widely used selection, as it balances a good tradeoff
for large datasets by providing enough data for training to achieve an accurate model
while keeping enough data aside to compute a representative test performance. Training
images were augmented with random Gaussian noise (p = 0.3) and random shifts in image
intensity (p = 0.3). For the sake of simplicity, we kept hyperparameters consistent over all
tasks and did not perform an extensive hyperparameter search for each task individually.
All models were trained on one Quadro RTX 8000 with 48 GB of VRAM (Nvidia, Santa
Clara, CA, USA).

2.2.3. Mask Overlap

As discussed above, the overlay of cystic lesions with anatomical structures (e.g., teeth)
may improve diagnostic performance. Hence, the masks generated from the different
segmentation models were overlapped with the bounding box with the highest confidence
returned by the object detection model. This results in a value between 0 and 1, which
states the share of the bounding box that is covered by the specific segmentation mask.
Overlay values were computed for segmentation masks of maxilla, mandible, mandibular
canals, maxillary sinuses, dentition and one value each for individual teeth. The resulting
values for each sample were used as input features for the next processing step.

2.2.4. Random Forest Classifier

Random Forests are an ensemble machine learning model that uses a multitude of
decision trees for training. The algorithm combines the idea of “bagging”, where random
samples are repeatedly drawn with replacement with random feature selection of the
training set [25]. This prevents overfitting and makes Random Forest models quite robust
across different applications. As input features of the algorithm, we used the overlap
ratio of a bounding box containing the cysts with the masks that show the individual
anatomic structures (maxilla, mandible, mandibular canals, maxillary sinuses, dentition,
and individual teeth). The model is trained to predict two classes: odontogenic and
non-odontogenic cysts (Figure 1).

The data were split into 80% training and 20% test data. Training and testing were
performed on input features of the overlaps of annotated bounding boxes and the generated
segmentation masks. The hyperparameter tuning of the Random Forest was performed
with a grid search, which exhaustively considers all parameter combinations defined. As a
result, the Random Forest was trained with 1,000 random decision trees, which performed
decision splits based on the gini impurity as information gain. The trained Random
Forest model is later used to predict the two classes, odontogenic and non-odontogenic
cysts, for the overlaps of bounding boxes detected by the object detection model with the
segmentation masks of the individual anatomic structures. Naturally, the test set used
to evaluate the performance of the model consists of the same samples as used within
this final prediction. This inference is performed multiple times to consider the variable
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threshold of the object detection model. Note that with higher thresholds, the number
of remaining samples may shrink, as samples without a reported bounding box with a
confidence above the threshold were removed.

2.3. Human Control Group

In order to evaluate the performance of our models in emulating the human clinical
diagnostic reasoning process, we compared it to an international control group which
consisted of ten dental professionals from seven different countries. The median experience
of the human control group was 15 years (interquartile range (IQR): 8–27). Two members of
the human control group (20%) were trained in oral and maxillofacial radiology. The human
control group reviewed a batch of 301 randomly selected OPGs and determined whether
the radiographs contained cystic lesions. Furthermore, upon the diagnosis of a cystic lesion,
the human control group determined whether the cyst showed signs of odontogenic or
non-odontogenic pathogenesis. Cystic lesions with an odontogenic pathogenesis had to
show clear radiological signs associated with an underlying dental pathology (e.g., an
apex protruding into a radicular cyst). Cystic lesions with a non-odontogenic pathogenesis
had to show no radiologically discernible signs of an underlying dental pathology in their
close proximity. Importantly, this only included causative dental factors, not symptoms
potentially resulting from cystic growth (e.g., tooth displacement or resorption). Sample
OPGs for odontogenic as well as non-odontogenic cysts are shown in Figure A1.

For analysis, we made the OPGs available to the human control group through an
online platform (Mono, dentalXrai, Berlin, Germany) that allowed them to dynamically
adjust brightness and contrast as well as to revise OPGs they already reviewed once. The
human control group was trained on the definitions of the diagnoses as well as the usage
of the platform before conducting their analysis. The inter-rater agreement is assessed
using Fleiss’ Kappa [26], whereas the diagnostic performance of the individual dental
professionals is assessed via sensitivity, specificity, precision (positive predictive value),
negative predictive value, and the F1-score.

3. Results
3.1. Dataset Characteristics

In total, we included 1239 OPGs in this study. The Vienna subset included 790 positive
OPGs (median patient age: 50 years, IQR: 39–60, 43% female, 57% male) and 120 negative
OPGs (median patient age: 51 years, IQR: 43–55, 43% female, 57% male). The Nijmegen
subset included 241 positive OPGs (median patient age: 57 years, IQR: 45–66, 35% female,
65% male) and 88 negative OPGs (median patient age: 51 years, IQR: 42–57, 36% female,
64% male). Complete characteristics of the dataset are shown in Table 1.

3.2. Detection and Segmentation Performance

The object detection model achieved an average precision of 0.42 (IoU: 0.50, maximal
detections: 100) and an average recall of 0.39 (IoU: 0.50–0.95, maximal detections: 100).
Complete metrics for the detection performance are shown in Table A1.

The segmentation models reached Dice scores of 0.945 (dentition), 0.794 (mandibular
canal), 0.644 (maxillary sinus), 0.465 (maxilla), 0.978 (mandible) and 0.870 (individual tooth)
on their unseen test sets.

3.3. Random Forest Classifier

The performances reached by the Random Forest classifiers are reported in Table 2.
First, we report results from the Random Forest classifiers based on predicted cysts via
object detection with an IoU over 0.3. The threshold was selected through a performance
analysis over different thresholds as represented in Figure A2. For comparison, we also
report results from the Random Forest classifiers based on the original annotations.
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Table 2. Classification performance.

Odontogenic Cyst Non-odontogenic Cyst

With predictions via object detection (IoU ≥ 0.30)
Sensitivity (Recall) 0.84 0.56

Specificity 0.56 0.84
PPV (Precision) 0.89 0.45

NPV 0.45 0.89
F1-score 0.86 0.50

With original annotations
Sensitivity (Recall) 0.91 0.51

Specificity 0.51 0.91
PPV (Precision) 0.83 0.68

NPV 0.68 0.83
F1-score 0.87 0.58

IoU, intersection over union; NPV, negative predictive value, PPV, positive predictive value.

3.4. Human Diagnostic Performance

Finally, we compared the performance of our models against ten dental professionals
who evaluated a dataset of 301 OPGs. This human control group had to determine whether
an OPG contained a cystic lesion and if yes, whether the lesion was odontogenic or non-
odontogenic in nature. Regarding odontogenic cysts, the human control group showed a
sensitivity of 0.70 and a specificity of 0.62. Regarding non-odontogenic cysts, the human
control group showed a sensitivity of 0.44 and a specificity of 0.95. Regarding healthy (i.e.,
no cystic lesions) patients, the human control group showed a sensitivity of 0.56 and a
specificity of 0.76. The inter-rater agreement within the human control group was κ = 0.28
(95% confidence interval: 0.27–0.29). A summary of the human diagnostic performance
is shown in Table 3, and a breakdown of each individual human reviewer is shown in
Table A2. A comparison of diagnostic performance between human controls and classifica-
tion models is shown in Figure 2.

Figure 2. Diagnostic performance. (a) Human controls in increasing order of mean F1-score. The
black line represents the mean F1-score of the entire human control group, the dashed lines represent
plus or minus one standard deviation, respectively. (b) Classification models in increasing order of
mean F1-score.
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Table 3. Human diagnostic performance.

Odontogenic Cyst Non-odontogenic Cyst No Cyst

Sensitivity (Recall) 0.70 0.44 0.56
Specificity 0.62 0.95 0.76

PPV (Precision) 0.53 0.58 0.78
NPV 0.83 0.94 0.62

F1-score 0.56 0.45 0.61

NPV, negative predictive value, PPV, positive predictive value.

4. Discussion

In this study, we aimed to apply a combined object detection and image segmentation
approach to emulate clinical diagnostic reasoning in the detection and classification of
cystic lesions on OPGs. Our object detection model achieved an average precision of 0.42
(IoU: 0.50, maximal detections: 100) and an average recall of 0.394 (IoU: 0.50–0.95, maximal
detections: 100). Our classification model achieved a sensitivity of 0.84 for odontogenic
cysts and 0.56 for non-odontogenic cysts as well as a specificity of 0.59 for odontogenic cysts
and 0.84 for non-odontogenic cysts (IoU: 0.30). Comparing our results to an international
human control group of ten dental professionals, we found that the human control group
achieved a sensitivity of 0.70 for odontogenic cysts, 0.44 for non-odontogenic cysts, and
0.56 for OPGs without cysts as well as a specificity of 0.62 for odontogenic cysts, 0.95 for
non-odontogenic cysts, and 0.76 for OPGs without cysts. Notwithstanding the variability
inside the human control group, these results are largely comparable to the results from our
classification model. Taken together, the results support the plausibility of our approach in
emulating clinical diagnostic reasoning in detecting and classifying jaw cysts.

The novelty of our study lies in its aim as well as its use of both multicenter datasets
and international human controls. As opposed to developing models with the highest
detection accuracy, we specifically aimed to replicate the multi-step thought process of
human clinical reasoning in the radiographic diagnosis of jaw cysts. While the simultaneous
detection and classification of jaw cysts and tumors has previously been published with
good results [27], to our knowledge, our combined object detection and image segmentation
approach is the first that is deliberately analogous to the way a clinician makes a preliminary
diagnosis. Furthermore, to mitigate location bias, we used a multicenter dataset to train our
models and then compared them to an international human control group which consisted
of dental professionals from seven different countries with different dental backgrounds
and education levels. The size of our datasets is largely comparable to the most recent
work in this field [10,11]. Notably, one recent study used more than eleven times as
many negatives as positives for pretraining, resulting in a massive overall dataset from a
single center [1]. Nonetheless, the number of positives is comparable to our multicenter
dataset. In contrast to our work, this previous study also applied segmentation masks to
the lesions themselves. While segmentation masks can be more accurate than bounding
boxes, cystic lesions do not always present as sharply defined radiolucencies on OPGs,
hence our decision to use bounding boxes.

Regarding the individual models in our study, it is apparent that the classification
model performs better than the object detection model. In fact, the difference in F1-score
between the classification models based on predicted and ground truth bounding boxes
was only 0.01 for odontogenic cysts and 0.08 for non-odontogenic cysts (IoU: 0.30). This
implies a good differentiability of odontogenic and non-odontogenic cysts based on their
spatial relations to neighboring anatomical structures. Importantly, this differentiability
does not seem to suffer from imperfect detection of the lesions themselves. A further
performance difference can be observed between the classification of odontogenic and
non-odontogenic cysts. A plausible explanation is the lower heterogeneity with which
odontogenic cysts appear on OPGs. Odontogenic cysts present as periapical radiolucen-
cies; thus, any detected odontogenic cyst shows a high overlap with the segmentation
model for individual teeth. Such strict anatomical requirements are not applicable for non-
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odontogenic cysts, which might explain the lower classification performance of our models.
It should also be noted that our maxillary segmentation model reached a lower Dice score
(0.465) compared with our other segmentation models (0.644–0.978). One possible expla-
nation is the extensive overlap of the maxilla with other anatomical structures in OPGs.
The upper dentition, particularly in the posterior, nearly completely overlaps the maxilla
itself, rendering recognition potentially difficult. The maxilla further does not feature any
large, distinct, overlap-free area. In comparison, the mandibular rami are substantial, easily
recognizable areas with almost no overlap at all except for the mandibular foramen.

Our study is limited by the low number of study centers which potentially com-
promised the generalizability of the results. We further did not differentiate between
histopathological diagnoses other than odontogenic and non-odontogenic cysts. While
this was a deliberate decision to lower class imbalance and increase the number of OPGs
per diagnosis, a more granular differentiation would have allowed the development of a
classifier with higher clinical applicability. To do so, a larger sample size would have been
needed, especially for histopathological diagnoses with lower prevalence (e.g., ameloblas-
toma). This would also enable screening for lesions with aggressive growth and potential
malignant transformations (e.g., keratocyst) [28]. A limitation with regard to the human
control group is that while its members were trained on the definitions of the diagnoses
as well as the usage of the online platform before conducting their analysis, no further
calibration was performed. This, along with their varying experience levels, represents a
potential source of bias in the results of the human control group.

The clinical implications of our results are twofold. First, our models could be utilized
to aid diagnostics as well as the surgical decision-making process. Several deep learning
tools are already applied in clinical practice [29,30], yet to our knowledge, this is the
first study augmenting the object detection of cystic lesions with an image segmentation
approach of neighboring anatomical structures to predict the pathogenesis of the lesion.
This methodology mimics the human clinical decision-making process in everyday practice.
In combination with a clinical examination, our classifier can be used to determine whether
a dental pathology is involved, which further influences the treatment. The necessity
of a thorough clinical examination should be emphasized, as our models do not provide
information with regard to the vitality, mobility, and discoloration of affected or neighboring
teeth. Thus, in clinical practice, our models should only be used in combination with a
clinical examination. Second, our approach could serve as a baseline for further research
into machine learning methods in the diagnosis of cysts and tumors of the jaw. Recent
work has already employed radiomics to identify features characteristic to certain lesions.
This could be combined with our analysis of spatial relations of the lesions to neighboring
anatomical structures to increase diagnostic accuracy potentially further.

5. Conclusions

Within the limitations of the study, our results show that a combined object detection
and image segmentation approach is feasible in emulating clinical diagnostic reasoning to
classify cystic lesions of the jaw.
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Abbreviations
The following abbreviations are used in this manuscript:

CCD charge-coupled device
DICOM digital imaging and communications in medicine
FPN feature pyramid network
IoU intersection over union
IQR interquartile range
OPG panoramic radiograph
R-CNN region-based convolutional neural network
VRAM video random access memory
YOLO you only look once

Appendix A

Table A1. Detection performance.

IoU MD Value

Average precision 0.50–0.95 100 0.213
0.50 100 0.424
0.75 100 0.203

Average recall 0.50–0.95 1 0.244
0.50–0.95 10 0.331
0.50–0.95 100 0.394

IoU, intersection over union; MD, maximal detections.

Table A2. Individual human diagnostic performance.

PPV (Precision) Sensitivity (Recall) F1-Score

Human control 1
Odontogenic cyst 0.49 0.92 0.64

Non-odontogenic cyst 0.65 0.69 0.67
No cyst 0.91 0.41 0.56

Accuracy 0.61
Macro average 0.68 0.67 0.62

Weighted average 0.74 0.61 0.60
Human control 2
Odontogenic cyst 0.55 0.64 0.59

Non-odontogenic cyst 0.86 0.38 0.52
No cyst 0.71 0.71 0.71

Accuracy 0.65
Macro average 0.70 0.57 0.61

Weighted average 0.67 0.65 0.65
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Table A2. Cont.

PPV (Precision) Sensitivity (Recall) F1-Score

Human control 3
Odontogenic cyst 0.57 0.80 0.66

Non-odontogenic cyst 0.58 0.22 0.32
No cyst 0.82 0.71 0.76

Accuracy 0.69
Macro average 0.66 0.58 0.58

Weighted average 0.71 0.69 0.68
Human control 4
Odontogenic cyst 0.56 0.62 0.59

Non-odontogenic cyst 0.47 0.69 0.56
No cyst 0.79 0.67 0.72

Accuracy 0.65
Macro average 0.61 0.66 0.62

Weighted average 0.68 0.65 0.66
Human control 5
Odontogenic cyst 0.53 0.73 0.61

Non-odontogenic cyst 0.62 0.47 0.54
No cyst 0.78 0.64 0.70

Accuracy 0.65
Macro average 0.64 0.61 0.62

Weighted average 0.68 0.65 0.65
Human control 6
Odontogenic cyst 0.57 0.50 0.53

Non-odontogenic cyst 0.66 0.59 0.62
No cyst 0.68 0.75 0.71

Accuracy 0.65
Macro average 0.64 0.61 0.62

Weighted average 0.64 0.65 0.64
Human control 7
Odontogenic cyst 0.46 0.67 0.55

Non-odontogenic cyst 0.31 0.34 0.32
No cyst 0.75 0.53 0.62

Accuracy 0.55
Macro average 0.50 0.51 0.50

Weighted average 0.60 0.55 0.56
Human control 8
Odontogenic cyst 0.87 0.13 0.22

Non-odontogenic cyst 0.69 0.34 0.46
No cyst 0.60 0.97 0.74

Accuracy 0.62
Macro average 0.72 0.48 0.47

Weighted average 0.70 0.62 0.54
Human control 9
Odontogenic cyst 0.42 0.97 0.58

Non-odontogenic cyst 0.75 0.09 0.17
No cyst 0.90 0.32 0.47

Accuracy 0.51
Macro average 0.69 0.46 0.41

Weighted average 0.72 0.51 0.48
Human control 10
Odontogenic cyst 0.42 0.89 0.57

Non-odontogenic cyst 0.44 0.81 0.57
No cyst 0.79 0.11 0.20

Accuracy 0.45
Macro average n/a

Weighted average n/a
PPV, positive predictive value.
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Figure A1. Sample panoramic radiographs for odontogenic and non-odontogenic cysts. Top, odonto-
genic (radicular) cyst at the upper right first molar. The radiolucency appears centered around the
roots of the affected tooth, which clearly shows multiple signs of pathology. Bottom, non-odontogenic
(globulomaxillary) cyst between the upper left lateral incisor and canine. There is no sign of primary
pathology of either the incisor or the canine; their displacement is an assumed consequence of cystic
growth.

Figure A2. Performance of Random Forest classifier on test set predictions with increasing thresholds
in terms of F1-score, sensitivity, specificity, and precision. The sample count visualizes that with
higher threshold, the number of samples included in the test set decreases as the Random Forest is
only applicable to samples with detected cysts.
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