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Abstract

:

We conducted a systematic review of the current status of machine learning (ML) algorithms’ ability to identify multiple brain diseases, and we evaluated their applicability for improving existing scan acquisition and interpretation workflows. PubMed Medline, Ovid Embase, Scopus, Web of Science, and IEEE Xplore literature databases were searched for relevant studies published between January 2017 and February 2022. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. The applicability of ML algorithms for successful workflow improvement was qualitatively assessed based on the satisfaction of three clinical requirements. A total of 19 studies were included for qualitative synthesis. The included studies performed classification tasks (n = 12) and segmentation tasks (n = 7). For classification algorithms, the area under the receiver operating characteristic curve (AUC) ranged from 0.765 to 0.997, while accuracy, sensitivity, and specificity ranged from 80% to 100%, 72% to 100%, and 65% to 100%, respectively. For segmentation algorithms, the Dice coefficient ranged from 0.300 to 0.912. No studies satisfied all clinical requirements for successful workflow improvements due to key limitations pertaining to the study’s design, study data, reference standards, and performance reporting. Standardized reporting guidelines tailored for ML in radiology, prospective study designs, and multi-site testing could help alleviate this.
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1. Introduction


Brain magnetic resonance imaging (MRI) is recognized as the imaging modality that produces the best images of brain tissues, body fluids, and fat [1]. It remains the most appropriate modality for diagnosing patients with symptoms of multiple brain diseases including inflammatory diseases, dementia, neurodegenerative disease, cerebrovascular disease, and brain tumors [2,3,4,5]; hence, it plays an important role in multiple clinical scenarios ranging from acute diagnostics to routine follow-ups.



A brain MRI scan typically consists of several scan sequences, the most commonly included being T1-weighted (T1) and T2-weighted (T2) sequences, a diffusion-weighted imaging (DWI) sequence, a fluid attenuated inversion-recovery (FLAIR) sequence, and a bleeding sensitive sequence, e.g., T2* gradient-recall-echo (T2*-GRE) [6]. Selecting the appropriate sequences a priori can be challenging, because many brain diseases often present with the same symptoms [7] while requiring different combinations of sequences for correct diagnosis. Inefficient MR sequence selection can increase the risk of inconclusive scans, scan recalls, and inappropriate usage of gadolinium contrast agents [8]. It can also cause the redundant scanning of patients and result in increased patient inconvenience [8], higher risks of radiologist burnout due to increased workload [9], and prolonged reporting time of potentially time-sensitive diseases [10].



In recent years, machine learning (ML) has been increasingly applied in neuroimaging to alleviate some of these challenges using automated workflow improvements [11]. A potential application of ML algorithms could be to automate scan-sequence acquisition alterations based on real-time image analysis while the patient is still in the scanner [12]. Another application could be to improve scan interpretation efficiencies by prioritizing the reading list of essential and acute/critical findings [11]. However, to improve any existing workflows, ML algorithms require the satisfaction of at least three essential requirements. First, the ML algorithms must be developed and tested in a scenario that reflects clinical practice [13,14]. For improving scan acquisition and interpretation workflows, this means ML algorithms capable of automatically identifying or differentiating between multiple brain diseases with the identification of brain infarcts, hemorrhages, and tumors, being a must due to their frequent and time-critical nature [15,16]. This also requires consecutive datasets not prone to spectrum biases and ground-truth labels unaffected by selection bias [13]. Secondly, tests of the ML algorithm should be performed on an out-of-distribution dataset to account for potential overfitting [13,17]. This could for instance be achieved by testing the algorithms on an external dataset sourced from a different point in time or geographical location compared to the training dataset. Finally, if ML algorithms are to gain widespread trust and usage, their technical performance results should be acceptable with respect to balancing increased workloads from false-positive findings and risk of missing important findings from false-negative results [18]. One method of assessing whether an ML algorithm performs a certain task acceptably could be to compare its performance to that of domain experts performing similar tasks.



Many studies about ML algorithms used within neuroradiology exist [19]. However, few of them address the important question of whether these algorithms could bring actual benefits to clinicians and patients if they were deployed today. To address this knowledge gap, we conducted a systematic review on how well the most recent ML algorithms could identify multiple brain diseases with the aim of evaluating their applicability for improving existing scan acquisition and interpretation workflows based on the satisfaction of the aforementioned requirements.




2. Materials and Methods


This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [20]. The study protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO) under number CRD42022329801 during the research process.



2.1. Literature Search


The literature was searched in MEDLINE (accessed through PubMed), Ovid Embase, Elsevier Scopus, Clarivate Web of Science, and IEEE Explore in order to find studies covering both clinical and technical aspects of the review question. The search period ranged between 1 January 2017 and 10 February 2022. This relatively short period was selected due to the nature of deep learning research, with rapid development cycles rendering older studies less relevant for the review question. Structured search terms (MeSH, Emtree), such as “magnetic resonance imaging”, “machine learning”, and “brain diseases”, were combined using Boolean operators and supplemented with free keyword search terms, such as “detection”, “classification”, “triaging”, or “workflow”. Multiple additional keywords describing pathologies of interest, such as “neoplasm”, “stroke”, “intraparenchymal hemorrhage”, “subarachnoid hemorrhages”, and “subdural hemorrhages”, were also included in the search string. The full search string can be found in Appendix A.




2.2. Study Selection


Records that developed ML algorithms for the automated identification of normal and abnormal brain diseases were screened. Main inclusion and exclusion criteria are listed in Table 1.



Two medical doctors (K.S. and C.M.O.) served as reviewers. They independently screened all records based on title and abstract. This was followed by the extraction of relevant reports for full-text screening and final study inclusion. For the process of record and report screening, Covidence (Melbourne, Australia) was used. Discussions between both reviewers were held to resolve any conflicts, but if a consensus was not reached, a third reviewer (J.F.C.) was consulted.




2.3. Data Extraction and Analysis


The reviewers independently extracted data from the included studies according to a pre-defined datasheet. Study and algorithm characteristics were extracted and comprised of the following: (a) study information, (b) population/dataset characteristics including number of patients or images, pathology in the dataset, and MR sequences available, (c) aim of algorithms, (d) type of algorithm, and (e) training and testing strategies including how data-splits were performed. Reported performance metrics together with confidence intervals were also extracted, including accuracy, sensitivity, specificity, F1-score, negative predictive value (NPV), positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). Furthermore, the Dice score coefficient (DSC), which is one of the most common evaluation metrics used in medical segmentation tasks [21], was extracted where applicable in brain segmentation studies. Performance numbers were summarized using descriptive statistics. If multiple results were reported for different variations of the same algorithm, only the best performance result was extracted unless otherwise stated. When available, performance results were extracted from external test datasets. Included studies were divided by tasks of the included algorithms. The analysis of data was primarily conducted using pivot tables and the in-built analysis tools of Microsoft Excel.




2.4. Quality Assessment of Included Studies


The two reviewers independently assessed the quality of the included studies by using the tailored questionnaire Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) [22] with signaling questions covering risk of bias and concern for applicability in the domains of patient selection, index test, reference test, and flow and timing. For each study, the respective domains were graded as high-, unclear-, or low risk of bias/concern for applicability. Discordance between the reviewers was resolved through discussion.




2.5. Evaluation of Applicability for Workflow Improvements


The applicability of each included ML algorithm for improving scan acquisition and interpretation workflows was qualitatively assessed based on three essential requirements previously mentioned in the Introduction (Section 1): (A) reflection of clinical practice, (B) testing on an external out-of-distribution dataset, and (C) acceptable performance results. Each requirement was indicated as being ‘Satisfied’ (S) or ‘Not Satisfied’ (NS). The first requirement (A) was satisfied if the patient population was consecutively sampled, if the disease distribution was well reported, and if the study was assessed as having low risk of bias/concern for applicability for the review question. The second requirement (B) was satisfied if external test datasets with data from a different time-period and geographical location were used to produce performance results. Lastly, the third requirement (C) was graded satisfied if a majority of the abovementioned result metrics exceeded a pre-defined threshold of 85% of the maximum attainable value. This threshold for acceptable performance was selected because it reflected the performance levels of a neuroradiologist when performing similar disease identification tasks [23].





3. Results


3.1. Study Selection and Data Extraction


The search of electronic databases returned 5688 records. The removal of duplicates resulted in 3542 records. Screening record titles and abstracts resulted in 81 reports selected for full-text eligibility assessments, of which 19 studies were included for qualitative review. The study inclusion process is illustrated in Figure 1.



Details about the study’s characteristics are summarized in Table 2. All 19 studies included were of retrospective design. Study populations varied with regard to source and size. Twelve out of nineteen studies (63%) used public datasets for development and testing of their algorithms. These datasets included The Whole Brain Atlas from Harvard Medical School (HMS) [24], The Cancer Imaging Archive (TCIA) [25], the Brain Tumor Segmentation (BRATS) challenge dataset [26], and the Ischemic Stroke Lesion Segmentation (ISLES) challenge set [27]. Study populations varied between 100 and 500 patients with one study (5%) having a population of less than 100 patients and five studies (26%) having a population larger than 1000 patients. All large study populations were private, i.e., part of a local in-house dataset not publicly available to researchers outside of the research institution in question. Six studies (31%) only reported on data size as the number of 2D images ranging from 200 images to 4600 images. Training, validation, and testing of algorithms were on average performed using 69%, 3%, and 28% of all available data, respectively. Validation was performed only in six (31%) studies. Testing was mostly performed on data split out from the same data source; however, an external dataset with data from a different time-period and geographical location was used in three (15%) studies.



All studies developed algorithms focusing on brain disease identification using either classification or segmentation tasks. Seven studies (37%) focused on a binary classification of images into either normal/abnormal or differentiation between two diseases, five studies (26%) focused on a multiclass classification of images into specific disease categories, and seven studies (37%) focused on a multiclass segmentation of specific diseases. Most algorithmic tasks employed deep discriminative models, with 14 (74%) studies using convolutional neural networks (CNN). Three (16%) studies employed deep generative models, with two (11%) studies using variational autoencoders (VAE) and one (5%) study using generative adversarial networks (GANs). Reference tests were mostly labels and delineations made by neuroradiologists. Exceptions were found in the study by Wood et al. [46] where reference labels were generated using natural language processing (NLP) of radiological reports and in the study by Ahmadi et al. [28], where reference delineations were constructed using principal component analysis (PCA). Details about the test setup and performance metrics for binary classification, multiclass classification, and segmentation algorithms are summarized in Table 3 and Table 4, respectively.



Different performance measures were reported for each study. For classification studies, the most frequently reported performance metrics were AUC, accuracy, sensitivity, and specificity. AUC ranged from 0.765 to 0.997 while accuracy, sensitivity, and specificity ranged from 80% to 100%, 72% to 100%, and 65% to 100%, respectively. Positive predictive and negative predictive values were reported in nine studies (47%) and ranged from 12% to 94% and 48% to 99%, respectively. The higher performance values were predominantly observed in binary classification studies with a smaller study population, while the lower values were seen when identifying brain tumors. For segmentation studies, the Dice Score Coefficient was the most reported measure ranging from 0.300 for infarct segmentations to 0.912 for glioma and multiple-sclerosis segmentations. Sensitivity and specificity were observed to range from 13% to 99.9% and 87% to 99.8%, respectively, with the lower sensitivity values attributed to brain infarct segmentations.




3.2. Applicability to Workflow Improvement


The applicability of the included ML algorithms for improvements in scan acquisition and interpretation workflows was evaluated based on the satisfaction of the three requirements of (A) testing environments reflecting clinical practice, (B) test on external out-of-distribution datasets, and (C) acceptable algorithm performance results; see Section 2. Evaluation results for each requirement are summarized in Table 3 and Table 4 as well. Ten (53%) of nineteen studies were assessed as having acceptable performance; however, only one (5%) satisfied the requirement of being tested in a clinical environment reflecting clinical practice and three (15%) satisfied the requirement of testing on an external out-of-distribution dataset. Three studies (15%) satisfied two main requirements. These studies used privately acquired datasets. No studies satisfied all three main requirements for successful workflow integrations.




3.3. Quality Assessment


The Quality Assessment of Diagnostic Accuracy Studies 2 tool was applied to all included studies in this review. The results of the risk of bias/concern for applicability analysis are presented in Table 5 and summarized in Figure 2.



Significant risks of bias and concern for applicability were seen in the domain of patient selection, index test, and reference. Reasons for these include a lack of consecutive patient populations in eighteen studies, arbitrary classification of equivocal diseases in two studies, large threshold values and the exclusion of smaller lesions in two studies, and automatically generated reference labels in two studies. Only two studies were assessed with low or unclear risk of bias and concern for applicability in all domains.



No meta-analysis was conducted due to inherent heterogeneities in study tasks, population characteristics, and performance metrics.





4. Discussion


In this systematic review, we found that the included algorithms varied considerably in terms of tasks, data requirements, and applicability to workflow improvement. With respect to patient selection, index tests, and reference tests, a significant risk of bias was seen. Most (63%) surveyed algorithms were developed using public datasets derived from ML development challenges. This largely explains the following observed patterns: data size restricted to a few hundred patients, specific disease distribution in multiple datasets, and algorithm inference capabilities based on a limited amount of MR scan sequences. T2 and T2-FLAIR were the most frequently used sequences for disease identification of multiple brain diseases. However, this observation might be confounded by the usage of public datasets. Deep neural networks and derivatives thereof were the most frequently applied ML algorithms, which might be due to their proven high performance and robust feature input methods [47]. All studies published in clinical journals used private datasets with larger patient populations. All studies that satisfied more than one workflow applicability requirement likewise used private datasets. This observed pattern of private dataset usage fits into the general trend, where promising ML algorithms are validated and regulatorily approved for clinical usage based on retrospective, unpublished, and often proprietary data from a single institution [48].



Performance results varied considerably as well. About half of the algorithms exceeded the pre-defined threshold of 85% of their respective performance metrics. Disease segmentation performance was generally lower due to the complexity of this task. These results are corroborated by similar reviews performed by Zhang et al. [49] and van Kempen et al. [50] focusing on ischemic stroke and glioma segmentation, respectively. Similar performance levels in relation to triaging performance were also observed across other imaging modalities. Hickman et al. for instance demonstrated pooled AUC, sensitivity, and specificity of 0.89, 75.4%, and 90.6%, respectively, for screening and triaging mammography using machine learning techniques [51], which are in line with what is observed in this review. Hence, consistent performance results are reported across multiple imaging modalities when using similar methods. [19,52]. However, large performance gaps were seen across clinical settings and study designs, partially owing to the well-documented effect of domain shift [53]. For example, Gauriau et al. [33] tested an algorithm with moderately low sensitivity and specificity of 77% and 65%, respectively. These results were, however, attained on a large out-of-distribution dataset with a comprehensive representation of almost all diseases seen in everyday clinical practice. On the other hand, the algorithm developed by Lu, Lu et Zhang [40] achieved a binary classification accuracy, sensitivity, and specificity of 100%, but this was achieved on a very small subset of 87 2D MR-slices split out from the same data source as the training data and not reflecting clinical practice. These findings support the approach of considering multiple requirements for study design, study population, testing strategies, and performance when assessing benefits and limitations of applying ML algorithms into existing workflows.



4.1. Potential Benefits of Integrating ML into Existing Scan- and Interpretation Workflows


ML algorithms for clinical workflow integrations have been studied extensively in the past years with multiple authors suggesting different applications [11,12,52,54,55]. Olthof et al. suggest that radiologist workflows could be supported, extended, or replaced by ML functionalities [56].



Based on the findings in this review, scan acquisitions workflows could be supported by multiclass classification and segmentation algorithms. These algorithms, using only a few scan sequences acquired at the beginning of the scan acquisition process, could help classify initial scan images into different disease categories while the patient is still in the scanner and subsequently direct further scan acquisition based on real-time findings. This could prevent the excessive scanning of patients with no significant findings while ensuring fast scan acquisition for stroke patients and appropriate scan acquisition for tumor patients. The fact that 42% of the ML algorithms included in this review could successfully perform multiclass classification and segmentation based on a single MR sequence supports the feasibility of this concept.



Scan interpretation workflows, on the other hand, could be supported by all algorithms in this review. In fact, some of the surveyed binary classification studies aimed explicitly to support interpretation workflows by doing worklist prioritization of critical findings [33,41,45] and, hence, ensure faster reporting times and improved patient outcomes. Multi-class classification and segmentation algorithms could extend this further by offering potential automated diagnosis reporting, biomarker quantification, and even disease progression predictions. None of the surveyed algorithms, however, satisfied all requirements for successful workflow improvements due to key limitations.




4.2. Limitations of Included Studies and Future Directions


Important limitations pertaining to study design, data source, model development, and testing methodologies were uncovered using an analysis of the risk of bias/concern for applicability and applicability assessment for workflow improvements. First, patient selections were not consecutive and largely based on public datasets that consisted of imaging cases with high signal-to-noise ratios and selection biases. This is especially true for the BRATS challenge dataset, which is known to have handpicked and well-processed representations of brain gliomas that are very characteristic and visually recognizable, thus resulting in many algorithms achieving good performance when being developed and tested on it [57]. This could potentially introduce an overestimation of model performance and limit integration into clinical practices that face more heterogeneous images of brain diseases. Secondly, index tests were limited by insufficient reporting of model thresholds or deliberately large thresholds chosen for favorable performance reporting. Nael et al. [41], for instance, demonstrated that their model performance dropped significantly when detecting a smaller infarction volume of <0.25 mL compared to volumes of 1 mL. Because the accurate delineation of size, location and development of ischemic lesions have great prognostic implications [58], this trend of size-dependent accuracy could pose challenges to performing accurate recovery predictions and, hence, overall stroke management. Thirdly, reference tests similarly introduced critical biases, especially in the included studies that used 2D-image datasets with handpicked 2D-images and labels as ground truth. This selection of representative images could have introduced priors that are easily exploitable by ML algorithms, as has previously been demonstrated in similar datasets [59]. Fourthly, about half of the surveyed ML algorithms had unacceptably low sensitivity and specificity, which could increase scan acquisition workloads and more worryingly decrease patient safety. Finally, only a minor proportion reported on the clinically relevant metrics of positive and negative predictive values. This, combined with the lack of testing on out-of-distribution datasets, might have presented skewed performance impressions not accounting for all relevant conditions in the intended target population [13].



Future studies developing ML algorithms applicable for workflow improvements should ensure the possession of a consecutive patient population reflecting the desired target population, transparent reporting of patient population characteristics and thresholds for index tests, and performance levels reported through metrics that incorporate different aspects of positive and negative findings. Low false-negative rates should be prioritized, thus ensuring adequate patient safety by having the fewest possible missed findings. Disease prevalence must be considered so as to account for positive and negative predictive values. To alleviate some of these limitations, standardized reporting guidelines tailored for AI in radiology [60], prospective study designs with consecutive patient sampling, and multi-site testing with clinical partners must be considered. The challenges of low sensitivity and specificity might be addressed by rethinking existing data acquisition strategies and model architectures. For instance, temporal information from follow-up scans or contrast-enhancement kinetics can be taken into account. Similar strategies are being used on PET-CT scans resulting in improved tumor classification specificity [61].




4.3. Limitations of This Review


This review should be read in view of limitations including publication and reporting bias. We limited our inclusion criteria to studies that could identify multiple brain diseases including brain infarcts, hemorrhages, or tumors, and we further restricted our limitation to studies that have tested their algorithms on data separate from training data. Next, we assessed the applicability of ML algorithms for improving workflows based on a set of requirements not previously validated. All of this might have limited the overview and the impression of this research field. As these criteria were selected based on clinical relevance, the results nonetheless present clinically useful representations of how state-of-the-art ML algorithms could be applied to improve existing scan acquisition and interpretation workflows.





5. Conclusions


The surveyed algorithms could potentially support and extend existing workflows. However, limitations pertaining to study design, study data, reference standards, and performance reporting prevent clinical integration. No study satisfied all requirements for successful workflow integration. Standardized reporting guidelines tailored for ML in radiology, prospective study designs, and multi-site testing could help alleviate this. The findings from this review could aid future researchers and healthcare providers by allowing them to critically assess relevant ML studies for workflow improvements and by enabling them to better design studies that validate the benefits of deploying ML in scan acquisition and interpretation workflows.
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Appendix A


Search strings for databases



MEDLINE (PubMed)



((“magnetic resonance imaging” [MeSH Terms] OR “Multiparametric Magnetic Resonance Imaging” [MeSH Terms] OR “Diffusion Magnetic Resonance Imaging” [MeSH Terms] OR “MRI” [All Fields] OR “MR imag*” [All Fields])



AND



(“Artificial Intelligence” [MeSH Terms] OR “Machine Learning” [MeSH Terms] OR “Deep Learning” [MeSH Terms] OR “Supervised Machine Learning” [MeSH Terms] OR “Artificial Intelligence” [All Fields] OR “Deep Learning” [All Fields] OR “Neural Network” [All Fields] OR “Convolutional Neural Network” [All Fields])



AND



(“Central Nervous System Diseases” [MeSH Terms] OR “Brain Diseases” [MeSH Terms] OR (“brain” [All Fields] AND “neoplasm*” [All Fields]) OR (“brain” [All Fields] AND “tumor*” [All Fields]) OR (“brain” [All Fields] AND “hemorrhage” [All Fields]) OR (“intraparenchymal” [All Fields] AND “hemorrhage” [All Fields]) OR (“subdural” [All Fields] AND “hemorrhage” [All Fields]) OR (“subarachnoid” [All Fields] AND “hemorrhage” [All Fields]) OR (“epidural” [All Fields] AND “hemorrhage” [All Fields]) (“brain” [All Fields] AND “infarct”[All Fields]) OR “brain” [All Fields])



AND



(“anomal*” [All Fields] OR “abnormal*” [All Fields] OR “patholog*” [All Fields] OR “multi-class” [All Fields] OR “critical findings” [All Fields] OR “triag*” [All Fields] OR “automat*” [All Fields] OR “classification” [MeSH Terms] OR “detect*” [All Fields]))



EMBASE



exp magnetic resonance imaging/



exp brain disease/



exp machine learning/



exp classification/or detection.mp.



(abnormal or patholog$ or multi-class or critical finding$ or triag$ or automat$).mp. [mp = title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword heading word, floating subheading word, candidate term word]



1 and 2 and 3 and 4 and 5



Scopus



(TITLE-ABS-KEY (“magnetic resonance imaging” OR “Multiparametric Magnetic Resonance Imaging” OR “MRI”)) AND (TITLE-ABS-KEY (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Network” OR “Convolutional neural network”)) AND (TITLE-ABS-KEY (brain AND disease OR brain AND infarct OR brain AND hemorrhage OR brain AND neoplasm* OR brain AND tumor OR brain AND anomal* OR brain AND abnormal* OR brain AND patholog* OR brain “multi-class” OR brain “critical finding*” OR brain AND triag* OR brain AND automat*)) AND (TITLE-ABS-KEY (classification OR detection)) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”))



Web of Science



ALL = ((“magnetic resonance imaging” OR “Multiparametric Magnetic Resonance Imaging” OR “MRI”) AND (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Network” OR “Convolutional neural network”) AND (brain disease OR brain anomal* OR brain abnormal* OR brain patholog* OR brain “multi-class” OR brain “critical finding*” or brain triag* OR brain automat* OR brain infarct OR brain hemorrhage OR “intraparenchymal hemorrhage” OR brain neoplasm OR brain tumor) AND (classification OR detection))



IEEE Xplore



(“magnetic resonance imaging” OR “Multiparametric Magnetic Resonance Imaging” OR “MRI”) AND (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Network” OR “Convolutional neural network”) AND (brain disease OR brain anomaly OR brain abnormality OR brain pathology OR brain “multi-class” OR brain “critical finding*” OR brain triage OR brain infarct OR brain hemorrhage OR brain neoplasm OR brain tumor) AND (classification OR detection)
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Figure 1. PRISMA workflow: 5688 records screened, and 19 studies were included for qualitative review. 
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Figure 2. Summary of risk of bias and concern for the applicability of included studies. 
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Table 1. Inclusion and exclusion criteria.
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	Inclusion Criteria:
	Exclusion Criteria:





	Studies focusing on abnormal brain diseases that included either brain infarct, hemorrhage, or tumor on brain MRI
	Studies focusing on tasks not relevant for identification of brain diseases



	Studies developing algorithms tested on a dataset that was separate from the training dataset
	Studies focusing on identification of a single brain disease only



	Peer-reviewed studies in English
	Studies focusing on development of ML for specialized MR sequences (e.g., MR elastography, functional MRI) or other imaging modalities (e.g., SPECT, PET, CT, US)



	
	Studies with primarily non-adult populations



	
	Editorials, case series, letters, conference proceedings, reviews, and inaccessible papers
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Table 2. Study population and data characteristics.
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	Author
	Data Source
	No. Patients

/Images
	Training Data
	Validation Data
	Testing Data
	Disease Distribution in Data
	MR Sequences

Utilized
	MR Field Strength





	Ahmadi et al., 2021 [28]
	Private +

Harvard Medical School Whole Brain Atlas
	1200 images
	1120
	N/A
	80
	12.5% normals

87.5% abnormal incl. glioma, Huntington’s disease, Meningioma, and Alzheimer
	2D single slice of:

Ax T2
	1.5 T



	Baur et al., 2021 [29]
	Private

WMH

TCIA
	259 patients
	100
	18
	141
	42% normal used for unsupervised training

19% multiple sclerosis

15% glioma & glioblastoma

4% microangiopathy

20% WMH
	Ax T2-FLAIR
	1.5 T

3 T



	Duong et al., 2019 [30]
	Private
	387 patients
	295
	N/A
	92
	Normal and 19 different abnormalities incl. MS, high grade glioma, and vascular (acute or subacute ischemia)
	Ax T2-FLAIR
	1.5 T

3 T



	Fayaz et al., 2021 [31]
	Harvard Medical School Whole Brain Atlas
	4100 images
	2870
	N/A
	1230
	50% normal

50% abnormal incl. glioma, meningioma, and Alzheimer
	2D single slice of:

Ax T2
	1.5 T



	Felipe Fattori Alves et al., 2020 [32]
	Private
	67 patients
	50
	N/A
	17
	45% inflammatory lesion (incl. MS, vasculitis, toxoplasmosis, pyogenic and septic-embolic brain abscess, etc.)

55% brain tumors (incl. Glioblastoma, anaplastic astrocytoma, anaplastic ependymoma)
	Ax T1 & T1 + C

Ax T2

Ax T2-FLAIR

Ax DWI
	1.5 T

3 T



	Gauriau et al., 2021 [33]
	Private
	10,770 patients
	7795
	473
	2502
	Normal and 8+ different abnormalities including infarct, hemorrhage, neoplasm, demyelination, and infections
	Ax T2-FLAIR
	1.5 T

3 T



	Gilanie et al., 2018 [34]
	Harvard Medical School Whole Brain Atlas
	4589 images
	3029
	N/A
	1560
	11% normal

89% abnormal incl. cerebrovascular, neoplasm, neurodegenerative, and inflammatory disease
	2D single slices of:

Ax T1 & T1 + C

Ax T2 & Ax PD

Ax T2-FLAIR
	1.5 T



	Han et al., 2020 [35]
	OASIS-3

Private
	1162 patients
	543
	N/A
	619
	47% normals used for unsupervised training

19% normals used for testing

21% dementia of varying degree

7% brain metastasis

6% various disease incl. small infarct, hemorrhage, and white matter lesions
	Ax T1 & Ax T1 + c
	1.5 T

3 T



	Hu et al., 2020 [36]
	BRATS 2019

ISLES 2017
	459 patients
	317
	N/A
	142
	84% glioma (HGG, LGG)

16% acute & subacute infarct
	Ax T1 & T1 + C

Ax T2

Ax T2-FLAIR

Ax DWI, ADC,

perfusion
	1.5 T

3 T



	Kamnitsas et al., 2017 [37]
	Private

BRATS 2015

ISLES 2015
	509 patients
	348
	N/A
	161
	75% tumor (high grade glioma, low grade glioma)

13% acute & subacute infarct

12% traumatic brain injury
	Ax or Sag T1 & T1 + C

Ax T2 & Ax PD

Ax T2-FLAIR

Ax T2 * GRE

Ax DWI & ADC
	1.5 T

3 T



	Kim et al., 2021 [38]
	BRATS 2019

ISLES 2015
	259 patients
	239
	N/A
	26
	36% normal

60% glioma

4% acute & subacute infarct
	2D slices of

Ax T1 & T1 + C

Ax T2

Ax T2-FLAIR

Ax DWI, ADC,

perfusion
	1.5 T

3 T



	Lu et al., 2021 [39]
	Private
	7134 patients
	* 5002
	1061
	1071
	13% acute/subacute stroke

87% non-stroke abnormalities incl. tumor, hemorrhage and normals
	Axial T2-FLAIR

Axial DWI + ADC


	1.5 T

3 T



	Lu, Lu et Zhang., 2019 [40]
	Harvard Medical School Whole Brain Atlas
	291 images
	204
	N/A
	87
	39% normal

61% abnormal incl. neoplasm, neurodegenerative, and inflammatory disease
	2D single slice of:

Ax T2
	1.5 T





	Nael et al., 2021 [41]
	Private
	13,215 patients
	9845
	1248
	2122
	17% normal

11% acute infarction

5% acute hemorrhage

4% intracranial mass effect

63% other abnormalities including white matter lesions
	Ax or Sag T1 & T1 + C

Ax T2

Ax T2-FLAIR

Ax ADC & DWI

Ax T2 * GRE
	1.5 T

3 T



	Nayak et al., 2020 [42]
	Harvard Medical School Whole Brain Atlas &
	275 images
	165
	N/A
	110
	20% normal

20% stroke

20% neurodegenerative

20% infectious

20% neoplasm
	2D single slice of:

Ax T2
	1.5 T



	Nayak et al., 2020 [43]
	Havard Medical School
	200 images
	120
	N/A
	80
	20% normal

20% stroke

20% neurodegenerative

20% infectious

20% neoplasm
	2D single slice of:

Ax T2
	1.5 T



	Pereira et al., 2019 [44]
	BRATS 2013

BRATS 2017

ISLES 2017
	471 patients
	358
	10
	103
	89% tumor (high grade glioma, low grade glioma)

11% acute & subacute infarct
	Ax T1 & T1 + C

Ax T2

Ax T2-FLAIR

Ax DWI, ADC,

perfusion
	1.5 T

3 T



	Rauschecker et al., 2020 [23]
	Private
	178 patients
	86
	N/A
	92
	19 different abnormalities incl. MS, high grade glioma, and vascular (acute or subacute ischemia)
	Ax T1 + C

Ax T2

Ax T2-FLAIR

Ax T2 * GRE

Ax DWI & ADC
	1.5 T

3 T



	Wood et al., 2022 [45]
	Private
	71,206 patients
	53,409
	9425
	7372
	Normal and 90+ different abnormalities including vascular disease, neoplasms, demyelination, and atrophy
	Ax T2-FLAIR

Ax DWI
	1.5 T

3 T







Abbreviations: WMH = White Matter Hyperintensity Challenge; BRATS = Brain Tumor Segmentation Challenge Data; HGG = High Grade Glioma; LGG = Low Grade Glioma; ISLES = Ischemic Stroke Lesion Segmentation; OASIS-3 = Open Access Series of Imaging Studies; Ax. = axial. Private = local in-house dataset not publicly available. * Train/test distribution only reported for data pertaining subpart of study performing case-level classification of stroke/not stroke. Disease frequencies in the study populations were also varied with diverse samples of cerebrovascular disease, brain tumors, inflammatory disease, neurodegenerative diseases, neuroinfectious diseases, dementia, traumatic brain injury, and various less significant pathologies. All study populations had samples of brain tumors, while 11 (58%) studies had samples of both normal scans, brain infarcts, hemorrhages, and tumors. The brain pathologies were identified on MR sequences found in typical routine acquisitions with T1, T2, and T2-FLAIR being the most prevalent. Eight studies (42%) used only a single scan sequence, either T2 or T2-FLAIR, for disease inference.
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Table 3. (a) Performance results of binary classification algorithms. (b) Performance results of multiclass classification algorithms.
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Author

	
Aim of Algorithm

	
Type of

Algorithm

	
Ground Truth

	
Testing Strategy

	
Performance Results

	
Workflow Applicability




	
AUC

	
Acc (%)

	
Sens (%)

	
Spec (%)

	
F1 (%)

	
PPV (%)

	
NPV (%)






	
(a)




	
Fayaz et al., 2021 [31]

	
Binary classification of normal and abnormal

	
CNN + DWT

	
Expert labels

	
Train-test split

	
0.997

	
N/A

	
99.7

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S

Note: High performance observed on single 2D MR slices




	
Felipe Fattori Alves et al., 2020 [32]

	
Binary classification of inflammatory lesions and brain tumors

	
RF

SVM

k-NN

	
Expert delineation

	
Train-test split

	
* 0.906

	
* 82.7

	
* 91.2

	
N/A

	
* 87.5

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S




	
Gauriau et al., 2021 [33]

	
Binary classification of normal and abnormal

	
CNN

	
Radiological report

	
Train-test split incl. external test set

	
0.800

[0.770;

0.820]

	
N/A

	
77.0

[75; 80]

	
65.0

[61; 69]

	
78.0

[76; 80]

	
N/A

	
N/A

	
(A) Reflecting clinical practice: S

(B) External validation: S

(C) Performance: NS




	
Gilanie et al., 2018 [34]

	
Binary classification of normal and abnormal

	
Gabor filter

SVM

	
Expert labels

	
Train-test split

	
0.970

	
96.5

	
98.0

	
92.0

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S




	
Lu et al., 2021 [39]

	
Binary classification of stroke/non- stroke patients

	
CNN + Gating attention mechanism ranking of multi-contrast MRI

	
Expert labels

	
Train-test split

	
** 0.881

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S




	
Lu, Lu et Zhang., 2019 [40]

	
Binary classification of normal and abnormal

	
CNN + transfer learning

	
Expert labels

	
Train-test split

	
N/A

	
100.0

	
100.0

	
100.0

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S

Note: High test performance result on small test set <100 2D MR slices




	
Wood et al., 2022 [45]

	
Binary classification of normal and abnormal

	
Ensemble

CNN

	
NLP labelled radiological report

	
Train-test split incl. external test set

	
0.948

[0.945; 0.951]

	
N/A

	
91.9

[89.9; 93.9]

	
84.2

[82.2; 86.2]

	
92.3

[90.3; 94.3]

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: S

(C) Performance: S




	
(b)




	
Han et al., 2020 [35]

	
Multiple binary classification of normal/clinical dementia (Dem), normal/brain metastasis (BM), and normal/various diseases (VD) incl. small infarct and hemorrhage.

	
Unsupervised GAN +

7 Self-attention (SA) modules

	
Expert label

	
Train-test split

	
Dem: 0.765

BM: 0.921

VD: 0.613

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Nael et al., 2021 [41]

	
Multiple binary classification of normal/any abnormalities (abn), infarct (inf)/non-infarct, hemorrhage (hem)/non-hemorrhage, and mass effect (ME)/non-mass effect

	
CNN

	
Radiological report

Expert image delineation

	
Train-test split incl. external test set

	
Abn: 0.880

Inf.: 0.970

Hem.: 0.830

ME: 0.870

	
Abn: 80.0

Inf.: 95.0

Hem: 87.0

ME: 81.0

	
Abn: 80.0

Inf.: 90.0

Hem.: 72.0

ME: 79.0

	
Abn: 80.0

Inf.: 97.0

Hem.: 88.0

ME: 81.0

	
N/A

	
Abn: 94.0

Inf.: 92.0

Hem.: 32.0

ME: 12.0

	
Abn: 48.0

Inf.: 96.0

Hem.: 98.0

ME: 99.0

	
(A) Reflecting clinical practice: NS

(B) External validation: S

(C) Performance: S




	
Nayak et al., 2020 [42]

	
Multiclass classification of normal, stroke, tumor, infectious, degenerative

	
CNN

	
Expert labels

	
Train-test split

	
N/A

	
*** 97.5

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S

Note: High test performance result on small test set of 2D MR slices




	
Nayak et al., 2020 [43]

	
Multiclass classification of normal, stroke, tumor, infectious, degenerative

	
CNN +

ELM

	
Expert labels

	
Train-test split

	
N/A

	
93.8

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S

Note: High test performance result on small test set <100 2D MR slices




	
Rauschecker et al., 2020 [23]

	
Multiclass classification of 19 brain diseases incl multiple sclerosis (MS), high grade glioma, and vascular infarct defined as correctly classified within top 3 differential diagnosis

	
CNN +

Bayesian inference

	
Expert labels

	
Train-test split

	
0.920

[0.880; 0.950]

	
91.0

[84; 96]

	
N/A

	
N/A

	
N/A

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S








(a) Abbreviations: AUC = area under receiver operatic characteristics curve; Acc = accuracy; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; S = satisfied; NS = Not Satisfied (see Section 2); CNN = convolutional neural network; VAE = variational auto-encoder; ELM = extreme learning machine; GAN = generative adversarial network; RF = Random forest; SVM = Support vector machine; k-NN = k-Nearest Neighbor; DWT = Deep Wavelet Transform. * Metrics are reported for a random forest classifier on only T1 images ** Results reported for subpart of study performing case-level classification of stroke/not stroke *** Metrics reported for the largest data subset available in the study (b) Abbreviations: ELM = extreme learning machine; GAN = generative adversarial network.
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Table 4. Performance results of segmentation algorithms.






Table 4. Performance results of segmentation algorithms.





	
Author

	
Aim of Algorithm

	
Type of Algorithm

	
Ground Truth

	
Testing Strategy

	
Performance Results

	
Workflow Applicability




	
DSC

	
Sens (%)

	
Spec (%)

	
PPV (%)

	
NPV (%)






	
Ahmadi et al., 2021 [28]

	
Multiclass segmentation incl. neoplasm and neurodegenerative disease

	
CNN

	
Synthetic labels via robust PCA

	
Train-test split

	
0.912

	
99.9

	
99.8

	
N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: S




	
Baur et al., 2021 [29]

	
Multiclass segmentation of normal, MS, glioblastoma (GBM), glioma, microangiopathy (MA), and WMH

	
Unsupervised VAE

	
Radiological report

Expert image delineation

	
Train-test split

	
MS: 0.650

GBM: 0.390

Glioma: 0.350

MA: 0.730

WMH: 0.450

	
MS: 62.0

GBM: 56.0

Glioma: 29.0

MA: 36.0

WMH: 13.0

	
N/A

	
MS: 67.0

GBM: 14.0

Glioma: 28.0

MA: 17.0

WMH: 49.0

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Duong et al., 2019 [30]

	
Multiclass segmentation of 19+ different abnormalities incl. MS, high grade glioma, and infarcts

	
CNN

	
Expert image delineation

	
Train-test split

	
0.789

[0.767; 0.811]

	
76.7

[74.2; 79.2]

	
99.9

[99; 99]

	
76.9

[75.1; 78.7]

	
99.0

[99; 99]

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Hu et al., 2020 [36]

	
Multiclass segmentation of infarct and glioma

	
CNN

	
Expert image delineation

	
Train-test split

	
Infarct: 0.300

[0.120; 0.520]

Glioma: 0.860

	
Infarct: 43.0

[16; 70]

Glioma: 87.0

	
Infarct: N/A

Glioma: 87.0

	
Infarct: 35.0

[8; 62]

Glioma: N/A

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Kamnitsas et al., 2017 [37]

	
Multiclass

segmentation of infarct, traumatic brain injury (TBI), and glioma

	
Ensemble CNN

	
Expert image delineation

	
Train-test split

	
Infarct: 0.590

[0.280; 0.900]

TBI: 0.645

[0.480; 0.810]

Glioma: 0.849

	
Infarct: 60.0

[33; 87]

TBI: 63.9

[47; 81]

Glioma: 87.7

	
N/A

	
Infarct: 68.0

[35; 100]

TBI: 69.8

[52; 88]

Glioma: 85.3

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Kim et al., 2021 [38]

	
Multiclass segmentation of infarct and glioma

	
Unsupervised VAE

	
Expert image delineation

	
Train-test split

	
Infarct: 0.278

[0.273; 0.283]

Glioma: 0.692

[0.686; 0.698]

	
Infarct: 42.9

[42.2; 43.6]

Glioma: 67.5

[65.1; 69.9]

	
N/A

	
Infarct: 20.5

[19.8; 21.2]

Glioma: 71.1

[67.2; 75.0]

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS




	
Pereira et al., 2019 [44]

	
Multiclass segmentation of infarct incl. penumbra and glioma

	
CNN

	
Expert image delineation

	
Train-test split

	
Infarct: 0.340

[0.140; 0.540]

Penumbra: 0.820

[0.730; 0.910]

Glioma: 0.866

	
Infarct: 55.0 [25; 85]

Glioma: 84.6

	
N/A

	
Infarct: 36.0

[11; 61]

Glioma: 89.8

	
N/A

	
(A) Reflecting clinical practice: NS

(B) External validation: NS

(C) Performance: NS








Abbreviations: VAE = variational auto-encoder; CNN = convolutional neural network; DSC = Dice-score coefficient; Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; S = satisfied; NS = Not Satisfied; CNN = convolutional neural network; VAE = variational autoencoder; PCA = principal component analysis; MS = multiple sclerosis; WMH = white matter hyperintensities.
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Table 5. Presentation of risk of bias/concern for applicability analysis results.






Table 5. Presentation of risk of bias/concern for applicability analysis results.





	
Source

	
Risk of Bias

	
Concern for Applicability




	
Patient

Selection

	
Index Test

	
Reference Test

	
Flow and Timing

	
Patient

Selection

	
Index Test

	
Reference Test






	
Ahmadi et al., 2021 [28]
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Summary of risk of bias and concern for applicability for all included studies.  [image: Diagnostics 12 01878 i004] = low risk of bias and concern for applicability;  [image: Diagnostics 12 01878 i005] = high risk of bias and concern for applicability;  [image: Diagnostics 12 01878 i006] = unclear risk of bias and concern for applicability.
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