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Abstract: Convolutional neural networks (CNNs) constitute a widely used deep learning approach 
that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face 
some critical challenges in moving towards clinic application. The main objective of this work is to 
present a comprehensive review of studies using CNN architectures to classify brain tumors using 
MR images with the aim of identifying useful strategies for and possible impediments in the 
development of this technology. Relevant articles were identified using a predefined, systematic 
procedure. For each article, data were extracted regarding training data, target problems, the 
network architecture, validation methods, and the reported quantitative performance criteria. The 
clinical relevance of the studies was then evaluated to identify limitations by considering the merits 
of convolutional neural networks and the remaining challenges that need to be solved to promote 
the clinical application and development of CNN algorithms. Finally, possible directions for future 
research are discussed for researchers in the biomedical and machine learning communities. A total 
of 83 studies were identified and reviewed. They differed in terms of the precise classification 
problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the 
reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, 
gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from 
high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based 
deep learning methods for brain tumor classification. Many networks demonstrated good 
performance, and it is not evident that any specific methodological choice greatly outperforms the 
alternatives, especially given the inconsistencies in the reporting of validation methods, 
performance metrics, and training data encountered. Few studies have focused on clinical usability. 
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1. Introduction 
Brain tumors are a heterogenous group of common intracranial tumors that cause 

significant mortality and morbidity [1,2]. Malignant brain tumors are among the most 
aggressive and deadly neoplasms in people of all ages, with mortality rates of 5.4/100,000 
men and 3.6/100,000 women per year being reported between 2014 and 2018 [3]. 
According to the 2021 World Health Organization (WHO) Classification of Tumors of the 
Central Nervous System, brain tumors are classified into four grades (I to IV) of 
increasingly aggressive malignancy and worsening prognosis. Indeed, in clinical practice, 
tumor type and grade influence treatment choice. Within WHO Grade IV tumors, 
glioblastoma is the most aggressive primary brain tumor, with a median survival after 
diagnosis of just 12–15 months [4]. 

The pathological assessment of tissue samples is the reference standard for tumor 
diagnosis and grading. However, a non-invasive tool capable of accurately classifying 
tumor type and of inferring grade would be highly desirable [5]. Although there are 
several non-invasive imaging modalities that can visualize brain tumors, i.e., Computed 
Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance 
Imaging (MRI), the last of these remains the standard of care in clinical practice [6]. MRI 
conveys information on the lesion location, size, extent, features, relationship with the 
surrounding structures, and associated mass effect [6]. Beyond structural information, 
MRI can also assess microstructural features such as lesion cellularity [7], microvascular 
architecture [8], and perfusion [9]. Advanced imaging techniques may demonstrate many 
aspects of tumor heterogeneity related to type, aggressiveness, and grade; however, they 
are limited in assessing the mesoscopic changes that predate macroscopic ones [10]. Many 
molecular imaging techniques have recently been developed to better reveal and quantify 
heterogeneity, permitting a more accurate characterization of brain tumors. However, in 
order to make use of this wealth of new information, more sophisticated and potentially 
partially automated tools for image analysis may be useful [10]. 

Computer-aided detection and diagnosis (CADe and CADx, respectively), which 
refer to software that combines artificial intelligence and computer vision to analyze 
radiological and pathology images, have been developed to help radiologists diagnose 
human disease in several body districts, including in applications for colorectal polyp 
detection and segmentation [11,12] and lung cancer classification [13–15]. 

Machine learning has vigorously accelerated the development of CAD systems [16]. 
One of the most recent applications of machine learning in CAD is classifying objects of 
interest, such as lesions, into specific classes based on input features [17–20]. In machine 
learning, various image analysis tasks can be performed by finding or learning 
informative features that successfully describe the regularities or patterns in data. 
However, conventionally, meaningful or task-relevant features are mainly designed by 
human experts based on their knowledge of the target domain, making it challenging for 
those without domain expertise to leverage machine learning techniques. Furthermore, 
traditional machine learning methods can only detect superficial linear relationships, 
while the biology underpinning living organisms is several orders of magnitude more 
complex [21]. 

Deep learning [22], which is inspired by an understanding of the neural networks 
within the human brain, has achieved unprecedented success in facing the challenges 
mentioned above by incorporating the feature extraction and selection steps into the 
training process [23]. Generically, deep learning models are represented by a series of 
layers, and each is formed by a weighted sum of elements in the previous layer. The first 
layer represents the data, and the last layer represents the output or solution. Multiple 
layers enable complicated mapping functions to be reproduced, allowing deep learning 
models to solve very challenging problems while typically needing less human 
intervention than traditional machine learning methods. Deep learning currently 
outperforms alternative machine learning approaches [24] and, for the past few years, has 
been widely used for a variety of tasks in medical image analysis [25]. 
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A convolutional neural network (CNN) is a deep learning approach that has 
frequently been applied to medical imaging problems. It overcomes the limitations of 
previous deep learning approaches because its architecture allows it to automatically 
learn the features that are important for a problem using a training corpus of sufficient 
variety and quality [26]. Recently, CNNs have gained popularity for brain tumor 
classification due to their outstanding performance with very high accuracy in a research 
context [27–31]. 

Despite the growing interest in CNN-based CADx within the research community, 
translation into daily clinical practice has yet to be achieved due to obstacles such as the 
lack of an adequate amount of reliable data for training algorithms and imbalances within 
the datasets used for multi-class classification [32,33], among others. Several reviews [31–
36] have been published in this regard, summarizing the classification methods and key 
achievements and pointing out some of the limitations in previous studies, but as of yet, 
none of them have focused on the deficiencies regarding clinical adoption or have 
attempted to determine the future research directions required to promote the application 
of deep learning models in clinical practice. For these reasons, the current review 
considers the key limitations and obstacles regarding the clinical applicability of studies 
in brain tumor classification using CNN algorithms and how to translate CNN-based 
CADx technology into better clinical decision making. 

In this review, we explore the current studies on using CNN-based deep learning 
techniques for brain tumor classification published between 2015 and 2022. We decided 
to focus on CNN architectures, as alternative deep-learning techniques, such as Deep 
Belief Networks or Restricted Boltzmann Machines, are much less represented in the 
current literature. 

The objectives of the review were three-fold: to (1) review and analyze article 
characteristics and the impact of CNN methods applied to MRI for glioma classification, 
(2) explore the limitations of current research and the gaps in bench-to-bedside 
translation, and (3) find directions for future research in this field. This review was 
designed to answer the following research questions: How has deep learning been applied 
to process MR images for glioma classification? What level of impact have papers in this 
field achieved? How can the translational gap be bridged to deploy deep learning 
algorithms in clinical practice? 

The review is organized as follows: Section 2 introduces the methods used to search 
and select literature related to the focus of the review. Section 3 presents the general steps 
of CNN-based deep learning methods for brain tumor classification, and Section 4 
introduces relevant primary studies, with an overview of their datasets, preprocessing 
techniques, and computational methods for brain tumor classification, and presents a 
quantitative analysis of the covered studies. Furthermore, we introduce the factors that 
may directly or indirectly degrade the performance and the clinical applicability of CNN-
based CADx systems and provide an overview of the included studies with reference to 
the degrading factors. Section 5 presents a comparison between the selected studies and 
suggests directions for further improvements, and finally, Section 6 summarizes the work 
and findings of this study. 

2. Materials and Methods 
2.1. Article Identification 

In this review, we identified preliminary sources using two online databases, 
PubMed and Scopus. The search queries used to interrogate each database are described 
in Table 1. The filter option for the publication year (2015–2022) was selected so that only 
papers in the chosen period were fed into the screening process. Searches were conducted 
on 30/06/2022. PubMed generated 212 results, and Scopus yielded 328 results. 
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Table 1. The search queries used to interrogate the PubMed and Scopus databases. 

PubMed 
/Scopus 

(deep learning OR deep model OR artificial intelligence OR artificial 
neural network OR autoencoder OR generative adversarial network) OR 
convolutional OR (neural network) OR neural network OR deep model 
OR convolutional) 

AND 

(brain tumor OR glioma OR brain cancer OR glioblastoma OR astrocy-
toma OR oligodendroglioma OR ependymoma) 

AND 

(classification OR grading OR classify) AND 
(MRI OR Magnetic Resonance OR MR images OR radiographic OR radi-
ology) 

IN 

Title/Abstract  

2.2. Article Selection 
Articles were selected for final review using a three-stage screening process based on 

a series of inclusion and exclusion criteria. After removing duplicate records that were 
generated from using two databases, articles were first screened based on the title alone. 
The abstract was then assessed, and finally, the full articles were checked to confirm eli-
gibility. The entire screening process was conducted by one author (Y.T.X). In cases of 
doubt, records were reviewed by other authors (D.N.M, C.T), and the decision regarding 
inclusion was arrived at by consensus. 

The meet the inclusion criteria, articles had to: 
• Be original research articles published in a peer-reviewed journal with full-text access 

offered by the University of Bologna; 
• Involve the use of any kind of MR images; 
• Be published in English; 
• Be concerned with the application of CNN deep learning techniques for brain tumor 

classification. 
Included articles were limited to those published from 2015 to 2022 to focus on deep 

learning methodologies. Here, a study was defined as work that employed a CNN-based 
deep learning algorithm to classify brain tumors and that involved the use of one or more 
of the following performance metrics: accuracy, the area under the receiver operating 
characteristics curve, sensitivity, specificity, or F1 score. 

Exclusion criteria were: 
• Review articles; 
• Book or book chapters; 
• Conference papers or abstracts; 
• Short communications or case reports; 
• Unclear descriptions of data; 
• No validation performed. 

If a study involved the use of a CNN model for feature extraction but traditional 
machine learning techniques for the classification task, it was excluded. Studies that used 
other deep learning networks, for example, artificial neural networks (ANNs), generative 
adversarial networks (GANs), or autoencoders (AEs), instead of CNN models were ex-
cluded. Studies using multiple deep learning techniques as well as CNNs were included 
in this study, but only the performance of the CNNs will be reviewed. 

Figure 1 reports the numbers of articles screened after exclusion at each stage as per 
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [37]. A review of 83 selected papers is presented in this paper. All of the articles 
cover the classification of brain tumors using CNN-based deep learning techniques. 
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Figure 1. The PRISMA flowchart of this review. n: number of articles. 

3. Literature Review 
This section presents a detailed overview of the research papers dealing with brain 

tumor classification using CNN-based deep learning techniques published during the pe-
riod from 2015 to 2022. This section is formulated as follows: Section 3.1 presents a brief 
overview of the general methodology adopted in the majority of the papers for the classi-
fication of brain MRI images using CNN algorithms. Section 3.2 presents a description of 
the popular publicly available datasets that have been used in the research papers re-
viewed in the form of a Table. Section 3.3 introduces the commonly applied preprocessing 
methods used in the reviewed studies. Section 3.4 provides an introduction of widely used 
data augmentation methods. Finally, Section 3.5 provides a brief overview of the perfor-
mance metrics that provide evidence about the credibility of a specific classification algo-
rithm model. 

3.1. Basic Architecture of CNN-Based Methods 
Recently, deep learning has shown outstanding performance in medical image anal-

ysis, especially in brain tumor classification. Deep learning networks have achieved 
higher accuracy than classical machine learning approaches [24]. In deep learning, CNNs 
have achieved significant recognition for their capacity to automatically extract deep fea-
tures by adapting to small changes in the images [26]. Deep features are those that are 
derived from other features that are relevant to the final model output. 

The architecture of a typical deep CNN-based brain tumor classification frame is de-
scribed in Figure 2. To train a CNN-based deep learning model with tens of thousands of 
parameters, a general rule of thumb is to have at least about 10 times the number of sam-
ples as parameters in the network for the effective generalization of the problem [38]. 
Overfitting may occur during the training process if the training dataset is not sufficiently 
large [39]. Therefore, many studies [40–44] use 2D brain image slices extracted from 3D 
brain MRI volumes to solve this problem, which increases the number of examples within 
the initial dataset and mitigates the class imbalance problem. In addition, it has the 
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advantage of reducing the input data dimension and reducing the computational burden 
of training the network. 

Data augmentation is another effective technique for increasing both the amount and 
the diversity of the training data by adding modified copies of existing data with com-
monly used morphological techniques, such as rotation, reflection (also referred to as flip-
ping or mirroring), scaling, translation, and cropping [44,45]. Such strategies are based on 
the assumption that the size and orientation of image patches do not yield robust features 
for tumor classification. 

 
Figure 2. The basic workflow of a typical CNN-based brain tumor classification study with four 
high-level steps: Step 1. Input Image: 2D or 3D Brain MR samples are fed into the classification 
model; Step 2. Preprocessing: several preprocessing techniques are used to remove the skull, nor-
malize the images, resize the images, and augment the number of training examples; Step 3. CNN 
Classification: the preprocessed dataset is propagated into the CNN model and is involved in train-
ing, validation, and testing processes; Step 4. Performance Evaluation: evaluation of the classifica-
tion performance of a CNN algorithm with accuracy, specificity, F1 score, area under the curve, and 
sensitivity metrics. 

In deep learning, overfitting is also a common problem that occurs when the learning 
capacity is so large that the network will learn spurious features instead of meaningful 
patterns [39]. A validation set can be used in the training process to avoid overfitting and 
to obtain the stable performance of the brain tumor classification system on future unseen 
data in clinical practice. The validation set provides an unbiased evaluation of a classifi-
cation model using multiple subsets of the training dataset while tuning the model’s hy-
perparameters during the training process [46]. In addition, validation datasets can be 
used for regularization by early stopping when the error on the validation dataset in-
creases, which is a sign of overfitting to the training data [39,47]. Therefore, in the article 
selection process, we excluded the articles that omitted validation during the training pro-
cess. 

Evaluating the classification performance of a CNN algorithm is an essential part of 
a research study. The accuracy, specificity, F1 score (also known as the Dice similarity co-
efficient) [48], the area under the curve, and sensitivity are important metrics to assess the 
classification model’s performance and to compare it to similar works in the field. 

3.2. Datasets 
A large training dataset is required to create an accurate and trustworthy deep learn-

ing-based classification system for brain tumor classification. In the current instance, this 
usually comprises a set of MR image volumes, and for each, a classification label is gener-
ated by a domain expert such as a neuroradiologist. In the reviewed literature, several 
datasets were used for brain tumor classification, targeting both binary tasks [27,40,41,45] 
and multiclass classification tasks [24,30,49–51]. Table 2 briefly lists some of the publicly 
accessible databases that have been used in the studies reviewed in this paper, including 
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the MRI sequences as well as the size, classes, unbiased Gini Coefficient, and the web 
address of the online repository for the specific dataset. 

The Gini coefficient (G) [52] is a property of distribution that measures its difference 
using uniformity. It can be applied to categorical data in which classes are sorted by prev-
alence. Its minimum value is zero if all of the classes are equally represented, and its max-
imum values varies between 0.5 for a two-class distribution to an asymptote of 1 for many 
classes. The unbiased Gini coefficient divides G by the maximum value of the number of 
classes present and takes values in the range of 0–1. The maximum value for a distribution 
with n classes is (n−1)/n. The values of the unbiased Gini coefficient were calculated using 
R package DescTools [52]. Table 2 shows the characteristics of public datasets in terms of 
balancing the samples of the available classes of tumors (unbiased Gini coefficient) while 
considering the total number of samples in the datasets (“Size” column) 

Table 2. An overview of publicly available datasets. 

Dataset Name Available Sequences Size Classes 
Unbiased Gini 

Coefficient 
Source 

TCGA-GBM T1w, ceT1w, T2w, FLAIR 199 patients N/D N/D [53] 
TCGA-LGG T1w, ceT1ce, T2w, FLAIR 299 patients N/D N/D [54] 
Brain tumor dataset from 
Figshare (Cheng et al., 
2017) 

ceT1w 
233 patients (82 MEN, 89 Glioma, 62 

PT), 3064 images (708 MEN, 1426 
Glioma, 930 PT) 

Patients (82 MEN, 89 
Glioma, 62 PT), images (708 
MEN, 1426 Glioma, 930 PT) 

0.116 (patients), 
0.234 (images) 

[55] 

Kaggle (Navoneel et al., 
2019) 

No information given 253 images (98 normal, 155 tumorous) 98 normal, 155 tumorous 0.225 [56] 

REMBRANDT T1w, T2w, FLAIR, DWI 
112 patients (30 AST-II, 17 AST-II, 14 

OLI-II, 7 OLI-III, 44 GBM) 
30 AST-II, 17 AST-II, 14 

OLI-II, 7 OLI-III, 44 GBM 
0.402 [57] 

BraTS T1w, ceT1w, T2w, FLAIR 

2019: 335 patients (259 HGG, 76 LGG); 
2018: 284 patients (209 HGG, 75 LGG); 
2017: 285 patients (210 HGG, 75 LGG); 
2015: 274 patients (220 HGG, 54 LGG) 

2019: 259 HGG, 76 LGG; 
2018: 209 HGG, 75 LGG; 
2017: 210 HGG, 75 LGG; 
2015: 220 HGG, 54 LGG 

0.546 (2019); 
0.472 (2018); 
0.474 (2017); 
0.606 (2015) 

[58] 

ClinicalTrials.gov (Liu et 
al., 2017) 

T1w, ceT1w, T2w, FLAIR 113 patients (52 LGG, 61 HGG) 52 LGG, 61 HGG 0.080 [59] 

CPM-RadPath 2019 T1w, ceT1w, T2w, FLAIR 329 patients N/D N/D [60] 
IXI dataset T1w, T2w, DWI 600 normal images N/D N/D [61] 

RIDER 
T1w, T2w, DCE-MRI, ce-

FLAIR 
19 GBM patients (70,220 images) 70,220 images N/D [62] 

Harvard Medical School 
Data 

T2w 
42 patients (2 normal, 40 tumor), 540 

images (27 normal, 513 tumorous) 

Patients (2 normal, 40 
tumorous), images (27 
normal, 513 tumorous) 

0.905 (patients), 
0.900 (images) 

[63] 

Among the public datasets, the dataset from Figshare provided by Cheng [55] is the 
most popular dataset and has been widely used for brain tumor classification. BraTS, 
which refers to the Multimodal Brain Tumor Segmentation Challenge (a well-known chal-
lenge that has taken place every year since 2012), is another dataset that is often used for 
testing brain tumor classification methods. The provided data are pre-processed, co-reg-
istered to the same anatomical template, interpolated to the exact resolution (1 mm3), and 
skull stripped [55]. 

Most MR techniques can generate high-resolution images, while different imaging 
techniques show distinct contrast, are sensitive to specific tissues or fluid regions, and 
highlight relevant metabolic or biophysical properties of brain tumors [64]. The datasets 
listed in Table 2 collect one or more MRI sequences, includingT1-weighted (T1w), T2-
weighted (T2w), contrast-enhanced T1-weighted (ceT1w), fluid-attenuated inversion re-
covery (FLAIR), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI) sequences. Among these, the T1w, T2w, ceT1w, 
and FLAIR sequences are widely used for brain tumor classification in both research and 
in clinical practice. Each sequence is distinguished by a particular series of radiofrequency 
pulses and magnetic field gradients, resulting in images with a characteristic appearance 
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[64]. Table 3 lists the imaging configurations and the main clinical distinctions of T1w, T2w, 
ceT1w, and FLAIR with information retrieved from [64–67]. 

Table 3. The imaging configurations and main clinical distinctions of T1w, T2w, ceT1w, and FLAIR. 

Sequence Sequence Characteristics Main Clinical Distinctions Example * 

T1w Uses short TR and TE [64]  

• Lower signal for a higher water content [66], such as 
in edema, tumor, inflammation, infection, or chronic 
hemorrhage [66] 

• Higher signal for fat [66] 
• Higher signal for subacute hemorrhage [66]  

T2w Uses long TR and TE [64] 

• Higher signal for a higher water content, such as in 
edema, tumor, infarction, inflammation, infection, or 
subdural collection [66] 

• Lower signal for fat [66] 
• Lower signal for fibrous tissue [66]  

ceT1w 
Uses the same TR and TE as 
T1w; employs contrast agents 
[64] 

 Higher signal for areas of breakdown in the blood–
brain barrier that indicate induced inflammation [65] 

 

FLAIR 
Uses very long TR and TE; the 
inversion time nulls the signal 
from fluid [67] 

• Highest signal for abnormalities [65] 
• Highest signal for gray matter [67] 
• Lower signal for cerebrospinal fluid [67] 

 
* Pictures from [68]. TR, repetition time. TE, echo time. 

3.3. Preprocessing 
Preprocessing is used mainly to remove extraneous variance from the input data and 

to simplify the model training task. Other steps, such as resizing, are needed to work 
around the limitations of neural network models. 

3.3.1. Normalization 
The dataset fed into CNN models may be collected with different clinical protocols 

and various scanners from multiple institutions. The dataset may consist of MR images 
with different intensities because the intensities of MR image are not consistent across 
different MR scanners [69]. In addition, the intensity values of MR images are sensitive to 
the acquisition condition [70]. Therefore, input data should be normalized to minimize 
the influence of differences between the scanners and scanning parameters. Otherwise, 
any CNN network that is created will be ill-conditioned. 

There are many methods for data normalization, including min-max normalization, 
z-score normalization, and normalization by decimal scaling [71]. Min-max normalization 
is one of the most common ways to normalize MR images found in the included articles 
[27,36,40]. In that approach, the intensity values of the input MR images are rescaled into 
the range of (0, 1) or (−1, 1). 

Z-score normalization refers to the process of normalizing every intensity value 
found in MR images such that the mean of all of the values is 0 and the standard deviation 
is 1 [71]. 
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3.3.2. Skull Stripping 
MRI images of the brain also normally contain non-brain regions such as the dura 

mater, skull, meninges, and scalp. Including these parts in the model typically deteriorates 
its performance during classification tasks. Therefore, in the studies on brain MRI datasets 
that retain regions of the skull and vertebral column, skull stripping is widely applied as 
a preprocessing step in brain tumor classification problems to improve performance 
[24,72,73]. 

3.3.3. Resizing 
Since deep neural networks require inputs of a fixed size, all of the images need to be 

resized before being fed into CNN classification models [74]. Images larger than the re-
quired size can be downsized by either cropping the background pixels or by downscaling 
using interpolation [74,75]. 

3.3.4. Image Registration 
Image registration is defined as a process that spatially transforms different images 

into one coordinate system. In brain tumor classification, it is often necessary to analyze 
multiple images of a patient to improve the treatment plan, but the images may be ac-
quired from different scanners, at different times, and from different viewpoints [76]. Reg-
istration is necessary to be able to integrate the data obtained from these different meas-
urements. 

Rigid image registration is one of the most widely utilized registration methods in 
the reviewed studies [77,78]. Rigid registration means that the distance between any two 
points in an MR image remains unchanged before and after transformation. This approach 
only allows translation and rotation transformations.  

3.3.5. Bias Field Correction 
In medical images, the bias field is an undesirable artifact caused by factors such as 

the scan position and instrument used as well as by other unknown issues [79]. This arti-
fact is characterized by differences in brightness across the image and can significantly 
degrade the performance of many medical image analysis techniques. Therefore, a pre-
processing step is needed to correct the bias field signal before submitting corrupted MR 
images to a CNN classification model. 

The N4 bias field correction algorithm and the Statistical Parametric Mapping (SPM) 
module are common approaches for correcting the inhomogeneity in the intensity of MR 
images. The N4 bias field correction algorithm is a popular method for correcting the low-
frequency-intensity non-uniformity present in MR image data [80]. SPM contains several 
software packages that are used for brain segmentation. These packages usually contain 
a set for skull stripping, intensity non-uniformity (bias) correction, and segmentation rou-
tines [81]. 

3.4. Data Augmentation 
CNN-based classification requires a large number of data. A general rule of thumb is 

to have at least about 10 times the number of samples set as parameters in the network for 
the effective generalization of the problem [38]. If the database is significantly smaller, 
overfitting might occur. Data augmentation is one of the foremost data techniques to sub-
side imbalanced distribution and data scarcity problems. It has been used in many studies 
focusing brain tumor classification [24,45,49,50] and involves geometrical transformation 
operations such as rotation, reflection (also referred to as flipping or mirroring), scaling, 
translation, and cropping (Figure 3). 
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(e) (f) (g) (h) 

Figure 3. Data augmentation: (a) original image; (b) 18。rotation. When rotating by an arbitrary 
number of degrees (non-modulo 90), rotation will result in the image being padded in each corner. 
Then, a crop is taken from the center of the newly rotated image to retain the largest crop possible 
while maintaining the image’s aspect ratio; (c) left–right flipping; (d) top–bottom flipping; (e) scal-
ing by 1.5 times; (f) cropping by center cropping to the size 150 ×150; (g) random brightness en-
hancement; (h) random contrast enhancement. 

Data augmentation techniques can be divided into two classes: position augmenta-
tion and color augmentation. Some of the most popular position augmentation methods 
include rotation, reflection (also referred to as flipping or mirroring), scaling, translation, 
and cropping, and they have been commonly used to enlarge MR datasets in studies fo-
cusing on brain tumor classification [45,51,72,77]. Color augmentation methods such as 
contrast enhancement and brightness enhancement have also been applied in the included 
studies [28,43]. 

Recently, well-established data augmentation techniques have begun to be supple-
mented by automatic methods that use deep learning approaches. For example, the au-
thors in [44] proposed a progressively growing generative adversarial network (PGGAN) 
augmentation model to help overcome the shortage of images needed for CNN classifica-
tion models. However, such methods are rare in the literature reviewed. 

3.5. Performance Measures 
Evaluating the classification performance of a CNN algorithm is an essential part of 

a research study. Here, we outline the evaluation metrics that are the most commonly 
encountered in the brain tumor classification literature, namely accuracy, precision, sen-
sitivity, F1 score, and the area under the curve. 

In classification tasks, true positive (TP) represents an image that is correctly classi-
fied into the positive class according to the ground truth. Similarly, true negative is an 
outcome in which the model correctly classifies an imagine into the negative class. On the 
other hand, false positive (FP) is an outcome in which the model incorrectly classifies an 
image into the positive class when the ground truth is negative. False negative (FN) is an 
outcome in which the model incorrectly classifies an image that should be placed in the 
positive class. 
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3.5.1. Accuracy 
Accuracy (ACC) is a metric that measures the performance of a model in correctly 

classifying the classes in a given dataset and is given as the percentage of total correct 
classifications divided by the total number of images. 

TP TNACC
TP TN FP FN

+=
+ + +

 (1)

3.5.2. Specificity 
Specificity (SPE) represents the proportion of correctly classified negative samples to 

all of the negative samples identified in the data. 

TNSPE
TN FP

=
+

 (2)

3.5.3. Precision 
Precision (PRE) represents the ratio of true positives to all of the identified positives. 

TPPRE
TP FP

=
+

 (3)

3.5.4. Sensitivity 
Sensitivity (SEN) measures the ability of a classification model to identify positive 

samples. It represents the ratio of true positives to the total number of (actual) positives 
in the data. 

TPSEN
TP FN

=
+

 (4)

3.5.5. F1 score 
The F1 score [48] is one of the most popular metrics and considers both precision and 

recall. It can be used to assess the performance of classification models with class imbal-
ance problems [82] and considers the number of prediction errors that a model makes and 
looks at the type of errors that are made. It is higher if there is a balance between PRE and 
SEN. 

*1 sco   re=2 PRE SENF
PRE SEN+

 (5)

3.5.6. Area under the Curve 
The area under the curve (AUC) measures the entire two-dimensional area under-

neath the ROC curve from (0, 0) to (1, 1). It measures the ability of a classifier to distinguish 
between classes. 

Clinicians and software developers need to understand how performance metrics 
can measure the properties of CNN models for different medical problems. In research 
studies, several metrics are typically used to evaluate a model’s performance. 

Accuracy is among the most commonly used metric to evaluate a classification model 
but is also known for being misleading in cases when the classes have different distribu-
tions in the data [83,84]. Precision is an important metric in cases when the occurrence of 
false positives is unacceptable/intolerable [84]. Specificity measures the ability of a model 
to correctly identify people without the disease in question. Sensitivity, also known as 
recall, is an important metric in cases where identifying the number of positives is crucial 



Diagnostics 2022, 12, 1850 12 of 41 
 

 

and when the occurrence of false negatives is unacceptable/intolerable [83,84]. It must be 
interpreted with care in cases with strongly imbalanced classes. 

It is important to recognize that there is always a tradeoff between sensitivity and 
specificity. Balancing between two metrics has to be based on the medical use case and 
the associated requirements [83]. Precision and sensitivity are both proportional to TP but 
have an inverse relationship. Whether to maximize recall or precision depends on the ap-
plication: Is it more important to only identify relevant instances, or to make sure that all 
relevant instances are identified? The balance between precision and sensitivity has to be 
considered in medical use cases in which some false positives are tolerable; for example, 
in cancer detection, it is crucial to identify all positive cases. On the other hand, for a less 
severe disease with high prevalence, it is important to achieve the highest possible preci-
sion [83]. 

4. Results 
This section provides an overview of the research papers focusing on brain tumor 

classification using CNN techniques. Section 4.1 presents a quantitative analysis of the 
number of articles published from 2015 to 2022 on deep learning and CNN in brain tumor 
classification and the usage of the different CNN algorithms applied in the studies cov-
ered. Then, Section 4.2 introduces the factors that may directly or indirectly degrade the 
performance and the clinical applicability of CNN-based CADx systems. Finally, in Sec-
tion 4.3, an overview of the included studies will be provided with reference to the de-
grading factors introduced in Section 4.2. 

4.1. Quantitative Analysis 
As mentioned in the introduction, many CNN models have been used to classify the 

MR images of brain tumor patients. They overcome the limitations of earlier deep learning 
approaches and have gained popularity among researchers for brain tumor classification 
tasks. Figure 4 shows the number of research articles on brain tumor classification using 
deep learning methods and CNN-based deep learning techniques published on PubMed 
and Scopus in the years from 2015 to June 2022; the number of papers related to brain 
tumor classification using CNN techniques grows rapidly from 2019 onwards and ac-
counts for the majority of the total number of studies published in 2020, 2021, and 2022. 
This is because of the high generalizability, stability, and accuracy rate of CNN algo-
rithms. 

 
Figure 4. Number of articles published from 2015 to 2022. 
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Figure 5 shows the usage of the most commonly used preprocessing techniques for 
addressing problems in brain tumor classification, including data augmentation, normal-
ization, resizing, skull stripping, bias field correction, and registration. In this figure, only 
data from 2017 to 2022 are visualized, as no articles using the preprocessing methods men-
tioned were published in 2015 or 2016. Since 2020, data augmentation has been used in 
the majority of studies to ease data scarcity and overfitting problems. However, the bias 
field problem has yet to be taken seriously, and few studies have included bias field cor-
rection in the preprocessing process. 

 
Figure 5. Usage of preprocessing techniques from 2017 to 2022. 

Figure 6 breaks down the usage of the publicly available CNN architectures used in 
the articles included in this review, including custom CNN models, VGG, AlexNet, Res-
Net, GoogLeNet, DenseNet, and EfficientNet. 

 
Figure 6. Usage of state-of-the-art CNN models from 2015 and 2022. 

AlexNet [85] came out in 2012 and was a revolutionary advancement in deep learn-
ing; it improved traditional CNNs by introducing a composition of consecutively stacked 
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convolutional layers and became one of the best models for image classification. VGG, 
which refers to the Visual Geometry Group, was a breakthrough in the world of convolu-
tional neural networks after AlexNet. It is a type of deep CNN architecture with multiple 
layers that was originally proposed by K. Simonyan and A. Zisserman in [86] and was 
developed to improve model performance by increasing the depth of such CNNs. 

GoogLeNet is a deep convolutional neural network with 22 layers based on the In-
ception architecture; it was developed by researchers at Google [87]. GoogLeNet ad-
dresses most of the problems that large networks face, such as computational expense and 
overfitting, by employing the Inception module. This module can use max pooling and 
three varied sizes of filters (1 × 1, 3 × 3, 5 × 5) for convolution in a single image block; such 
blocks are then concatenated and passed onto the next layer. An extra 1 × 1 convolution 
can be added to the neural network before the 3 × 3 and 5 × 5 layers to make the process 
even less computationally expensive [87]. ResNet stands for Deep Residual Network. It is 
an innovative convolutional neural network that was originally proposed in [88]. ResNet 
makes use of residual blocks to improve the accuracy of models. A residual block is a skip-
connection block that typically has double- or triple-layer skips that contain nonlinearities 
(ReLU) and batch normalization in between; it can help to reduce the problem of vanish-
ing gradients or can help to mitigate accuracy saturation problems [88]. DenseNet, which 
stands for Dense Convolutional Network, is a type of convolutional neural network that 
utilizes dense connections between layers. DenseNet was mainly developed to improve 
the decreased accuracy caused by the vanishing gradient in neural networks [89]. Addi-
tionally, those CNNs take in images with a pixel resolution of 224 × 224. Therefore, for 
brain tumor classification, the authors need to center crop a 224 × 224 patch in each image 
to keep the input image size consistent. 

Convolutional neural networks are commonly built using a fixed resource budget. 
When more resources are available, the depth, width, and resolution of the model need to 
be scaled up for better accuracy and efficiency [90]. Unlike previous CNNs, EfficientNet 
is a novel baseline network that uses a different model-scaling technique based on a com-
pound coefficient and neural architecture search methods that can carefully balance net-
work depth, width, and resolution [90]. 

4.2. Clinical Applicability Degrading Factors 
This section introduces the factors that hinder the adoption and development of 

CNN-based brain tumor classification CADx systems into clinic practice, including data 
quality, data scarcity, data mismatch, data imbalance, classification performance, research 
value towards clinic needs, and the Black-Box characteristics of CNN models. 

4.2.1. Data Quality 
During the MR image acquisition process, both the scanner and external sources may 

produce electrical noise in the receiver coil, generating image artifacts in the brain MR 
volumes [69]. In addition, the MR image reconstruction process is sensitive to acquisition 
conditions, and further artifacts are introduced if the subject under examination moves 
during the acquisition of a single image [69]. These errors are inevitable and reduce the 
quality of the MR images used to train networks. As a result, the quality of the training 
data degrades the sensitivity/specificity of CNN models, thus compromising their ap-
plicability in a clinic setting. 

4.2.2. Data Scarcity 
Big data is one of the biggest challenges that CNN-based CADx systems face today. 

A large number of high-quality annotated data is required to build high-performance 
CNN classification models, while it is a challenge to label a large number of medical im-
ages due to the complexity of medical data. When a CNN classification system does not 
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have enough data, overfitting can occur—as classification is based on extraneous variance 
in the training set—affecting the capacity of the network to generalize new data [91]. 

4.2.3. Data Mismatch 
Data mismatch refers to a situation in which a model that has been well-trained in a 

lab environment fails to generalize real-world clinical data. It might be caused by overfit-
ting of the training set or due to mismatch between research images and clinic ones [82]. 
Studies are at high risk of generalization failure if they omit a validation step or if the test 
set does not reflect the characteristics of the clinical data. 

4.2.4. Class Imbalance 
In brain MRI datasets such as the BraTS 2019 dataset [92], which consists of 210 HGG 

and 75 LGG patients (unbiased Gini coefficient 0.546, as shown in Table 2), HGG is repre-
sented by a much higher percentage of samples than LGG, leading to so-called class im-
balance problems, in which inputting all of the data into the CNN classifier to build up 
the learning model will usually lead to a learning bias to the majority class [93]. When an 
unbalanced training set is used, it is important to assess model performance using several 
performance measures (Section 3.5). 

4.2.5. Research Value towards Clinical Needs 
Different brain tumor classification tasks were studied using CNN-based deep learn-

ing techniques during the period from 2015 to 2022, including clinically relevant two-class 
classification (normal vs. tumorous [29,41,94,95], HGG vs. LGG [27,40,45,73], LGG-II vs. 
LGG-III [96], etc.); three-class classification (normal vs. LGG vs. HGG [24], meningioma 
(MEN) vs. pituitary tumor (PT) vs. glioma [39,42,49,50], glioblastoma multiforme (GBM) 
vs. astrocytoma (AST) vs. oligodendroglioma(OLI) [30], etc.); four-class classification 
(LGG vs. OLI vs. anaplastic glioma (AG) vs. GBM [72], normal vs. AST-II vs. OLI-III vs. 
GBM-IV [24], normal vs. MEN vs. PT vs. glioma [97], etc.); five-class classification (AST-II 
vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV [24]); and six-class classification (normal vs. 
AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV [24]). 

Not all classification tasks are equally difficult, and this is the case for the deep learn-
ing research community and clinical practice. The authors in [24] used AlexNet for multi-
class classification tasks, including two-class classification: normal vs. tumor, three-class 
classification: normal vs. LGG vs. HGG; four-class classification: normal vs. AST vs. OLI 
vs. GBM; five-class classification: AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV, and 
six-class classification: normal vs. AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV. The 
results reported 100% accuracy for the normal vs. tumorous classification. The accuracy 
for the five-class classification (AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV) was 
only 87.14%. Similarly, in a recent publication [98], the authors utilized the same CNN 
model for multi-class brain tumor classification. The overall accuracy obtained for normal 
vs. tumorous classification reached 100% compared to the lower accuracy of 90.35% ob-
tained for the four-class classification task (Grade I vs. Grade II vs. Grade III vs. Grade IV) 
and 86.08% for the five-class classification of AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. 
GBM. 

The goal of research in the field of CADx is to help address existing unmet clinical 
needs and to provide assistance methods and tools for the difficult tasks that human pro-
fessionals cannot easily handle in clinical practice. It is observed that CNN-based models 
have achieved quite high accuracies for normal/tumorous image classification, while more 
research is needed to improve the classification performance of more difficult tasks, espe-
cially in five-class classification (e.g., AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM) and 
four-class classification (e.g., Grade I vs. Grade II vs. Grade III vs. Grade IV) tasks. There-
fore, studies that use normal vs. tumorous as their target problem have little clinical value. 



Diagnostics 2022, 12, 1850 16 of 41 
 

 

4.2.6. Classification Performance 
Classification performance, which indicates the reliability and trustworthiness of 

CADx systems, is one of the most important factors to be considered when translating 
research findings into clinical practice. It has been shown that CNN techniques perform 
well in most of brain tumor classification tasks, such as in two-class classification (normal 
and tumorous [94,95] and HGG and LGG [45,73]) and three-class classification (normal 
vs. LGG vs. HGG [24] and MEN vs. PT vs. glioma [49,50]) tasks. However, the classifica-
tion performance obtained for more difficult classification tasks, such as a five-class clas-
sification between AST-II, AST-III, OLI-II, OLI-III, and GBM, remains poor [24,98] and 
justifies further research. 

4.2.7. Black-Box Characteristics of CNN Models 
The brain tumor classification performance of some of the CNN-based deep learning 

techniques reviewed here is remarkable. Still, their clinical application is also limited by 
another factor: the “Black-Box” problem. Even the designers of a CNN model cannot usu-
ally explain the internal workings of the model or why it arrived at a specific decision. 
The features used to decide the classification of any given image are not an output of the 
system. This lack of explainability reduces the confidence of clinicians in the results of the 
techniques and impedes the adoption and development of deep learning tools into clinical 
practice [99]. 

4.3. Overview of Included Studies 
Many research papers have emerged following the wave of enthusiasm for CNN-

based deep learning techniques from 2015 to present day. In this review, 83 research pa-
pers are assessed to summarize the effectiveness of CNN algorithms in brain tumor clas-
sification and to suggest directions for future research in this field. 

Among the articles included, twenty-five use normal/tumorous as their classification 
target. However, as mentioned in Section 4.2.5, the differentiation between normal and 
tumorous images is not a difficult task. It has been well-solved both in research and clinic 
practice and thus has little value for clinical application. Therefore, studies that use normal 
vs. tumorous as their target problem will not be reviewed further in the following assess-
ment steps. 

Table 4a provides an overview of the included studies that focus on CNN-based deep 
learning methods for brain tumor classification but does not include studies working with 
a normal vs. tumorous classification. The datasets, MRI sequences, size of the datasets, 
and the preprocessing methods are summarized. Table 4b summarizes the classification 
tasks, classification architecture, validation methods, and performance metrics of the re-
viewed articles. 

As introduced in Section 4.2, the major challenge confronting brain tumor classifica-
tion using CNN techniques in MR images lies in the training data, including the chal-
lenges caused by data quality, data scarcity, data mismatch, and data imbalance, which 
hinder the adoption and development of CNN-based brain tumor classification CADx 
systems into clinic practice. Here, we assess several recently published studies to provide 
a convenient collection of the state-of-the-art techniques that have been used to address 
these issues and the problems that have not been solved in those studies. 

Currently, data augmentation is recognized as the best solution to the problem 
caused by data scarcity and has been widely utilized in brain tumor classification studies. 

The authors in [100] used different data augmentation methods, including rotation, 
flipping, Gaussian blur, sharpening, edge detection, embossing, skewing, and shearing, 
to increase the size of the dataset. The proposed system aims to classify between Grade I, 
Grade II, Grade III, and Grade IV, and the original data consist of 121 images (36 Grade I 
images, 32 Grade II images, 25 Grade III images, and 28 Grade IV images), and by using 
data augmentation techniques, 30 new images are generated from each MR image. The 
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proposed model is experimentally evaluated using both augmented and original data. 
The results show that the overall accuracy after data augmentation reaches 90.67%, which 
is greater than the accuracy of 87.38% obtained without augmentation. 

While most data augmentation techniques aim to increase extraneous variance in the 
training set, deep learning can be used by itself, at least in theory, to increase meaningful 
variance. In a recent publication by Allah et al. [44], a novel data augmentation method 
called a progressive growing generative adversarial network (PGGAN) was proposed and 
combined with rotation and flipping methods. The method involves an incremental in-
crease of the size of the model during the training to produce MR images of brain tumors 
and to help overcome the shortage of images for deep learning training. The brain tumor 
images were classified using a VGG19 feature extractor coupled with a CNN classifier. 
The accuracy of the combined VGG19 + CNN and PGGAN data augmentation framework 
achieved an accuracy of 98.54%. 

Another approach that helps overcome the problem of data scarcity and that can also 
reduce computational costs and training time is transfer learning. Transfer learning is a 
hot research topic in machine learning; previously learned knowledge can be transferred 
for the performance of a new task by fine-tuning a previously generated model with a 
smaller dataset that is more specific to the aim of the study. Transfer learning is usually 
expressed using pre-trained models such as VGG, GoogLeNet, and AlexNet that have 
been trained on the large benchmark dataset ImageNet [101]. 



Diagnostics 2022, 12, 1850 18 of 41 
 

 

Table 4. (a) Overview of included studies that focus on CNN-based deep learning methods for brain tumor classification, with the exception of studies focusing 
on normal vs. tumorous classification. Datasets, MRI sequences, size of the datasets, and preprocessing methods are summarized. (b) Overview of included 
studies that focus on CNN-based deep learning methods for brain tumor classification, with the exception of study focusing on normal vs. tumorous classifica-
tion. Classification tasks, classification architecture, validation methods, and performance metrics are summarized. 
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Özcan et al. [27] 2021  Private dataset T2w/ FLAIR 104 (50 LGG, 54 HGG) 518 x x    Conversion to 
BMP 

 x x x x   

Hao et al. [102] 2021 BraTS 2019 
T1w, ceT1w, 
T2w 

335 (259 HGG, 76 LGG) 6700   x x x         

Tripathi et al. [103] 
2021 

1. TCGA-GBM,  
2. LGG-1p19qDeletion 

T2w 322 (163 HGG, 159 LGG) 7392 (5088 LGG, 2304 HGG)    x   x x x x  x  

Ge et al. [40] 2020 BraTS 2017 
T1w, ceT1w， 
T2w, FLAIR 

285 (210 HGG, 75 LGG)        x   x    

Mzoughi et al. [28] 
2020 

BraTS 2018 ceT1w 284 (209 HGG, 75 LGG)   x x   Contrast 
enhancement 

   x    

Yang et al. [45] 2018 
ClinicalTrials.gov 
(NCT026226201) 

ceT1w 113 (52 LGG, 61 HGG)       Conversion to 
BMP 

 x x x   
Histogram 
equalization, adding 
noise 

Zhuge et al. [77] 2020 
1.TCIA-LGG, 2. BraTS 
2018 

T1w, T2w, 
FLAIR, ceT1w 

315 (210 HGG, 105 LGG)   x   x 
Clipping, bias 
field correction 

 x x x    

Decuyper et al. [73] 
2021 

1. TCGA-LGG, 2. 
TCGA-GBM, 3. 
TCGA-1p19qDeletion, 
4. BraTS 2019. 5. GUH 
dataset  

T1w, ceT1w, 
T2w, FLAIR 

738 (164 from TCGA-GBM, 
121 from TCGA-LGG, 141 
from 1p19qDeletion, 202 
from BraTS 2019, 110 from 
GUH dataset) (398 GBM vs. 
340 LGG) 

  x  x x Interpolation  x  x   Elastic transform 

He et al. [78] 2021 1.Dataset from TCIA FLAIR, ceT1w 214 (106 HGG, 108 LGG)   x x  x        x 
 2. BraTS 2017 FLAIR, ceT1w 285 (210 HGG, 75 LGG)   x x  x        x 
Hamdaoui et al. 
[104] 2021 

BraTS 2019 
T1w, ceT1w， 
T2w, FLAIR 

285 (210 HGG, 75 LGG) 
53064 (26532 HGG, 26532 
LGG) 

x        x x    

Chikhalikar et al. 
[105] 2021  

BraTS 2015 T2w, FLAIR 274 (220 HGG, 54 LGG) 521      Contrast 
enhancement 

       

Ahmad [106] 2019 BraTS 2015 No info shared  124 (99 HGG, 25 LGG)  x            

Naser et al. [96] 2020 TCGA-LGG 
T1W, FLAIR, 
ceT1w 

108 (50 Grade II, 58 Grade 
III) 

 x x x   Padding x x x x x   

Allah et al. [44] 2021 
Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x      x  x   PGGAN 
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Swati et al. [50] 2019 
Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x           

Guan et al. [43] 2021 
Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x   Contrast 
enhancement 

 x  x    

Deepak et al. [39] 
2019 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x           

Díaz-Pernas et al. 
[42] 2021 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x           Elastic transform 

Ismael et al. [49] 
2020 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2) x  x    x x x x x  Whitening, brightness 
manipulation 

Alhassan et al. [107] 
2021 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x            

Bulla et al. [108] 2020 
Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x           

Ghassemi et al. [109] 
2020 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x      x  x    

Kakarla et al. [110] 
2021 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x   
Contrast 
enhancement 

       

Noreen et al. [111] 
2021 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x            

Noreen et al. [112] 
2020 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x            

Kumar et al. [113] 
2021 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)        x      

Badža et al. [114] 
2020 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x     x  x    

Alaraimi et al. [115] 
2021  

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x    x x x x  x  

Lo et al. [116] 2019 Dataset from TCIA** ceT1w 
130 (30 Grade II, 43 Grade 
III, 57 Grade IV) 

  x x   
Contrast 
enhancement 

x x x x  x  

Kurc et al. [117] 2020 Data from TCGA 
ceT1w, T2-
FLAIR 

32 (16 OLI, 16 AST)     x x 
Bias field 
correction 

 x    x  

Pei et al. [118] 2020 
1. CPM-RadPath 2019, 
2. BraTS 2019 

T1w, ceT1w, 
T2w, FLAIR 

398 (329 from CPM-RadPath 
2019, 69 from BraTS 2019) 

  x  x x 
Noise 
reduction 

 x x   x  

Ahammed et al. [72] 
2019 

Private dataset T2w 20 
557 (130 Grade I, 169 Grade II, 
Grade III 103, Grade IV 155) 

   x  
Filtering, 
enhancement 

x x x x    

Mohammed et al. 
[51] 2020 

Radiopaedia No info shared 60 (15 of each class) 
1258 (311 EP, 286 normal, 380 
MEN, 281 MB) 

  x   Denoising x x x x  x  

McAvoy et al. [119] 
2021 

Private dataset ceT1w 320 (160 GBM, 160 PCNSL) 
3887 (2332 GBM, 1555 
PCNSL) 

 x x   
Random changes 
to color, noise 
sampling 

   x    

Gilanie et al. [120] 
2021 

Private dataset 
T1w, T2w, 
FLAIR 

180 (50 AST-I, 40 AST-II, 40 
AST-III, 50 AST-IV) 

30240 (8400 AST-I, 6720 AST-
II, 6720 AST-III, 8400 AST-IV) 

 x    
Bias field 
correction 

 x      

Kulkarni et al. [121] 
2021 

Private dataset 
T1w, T2w, 
FLAIR 

 
200 (100 benign, 100 
malignant) 

     
Denoising,  
contrast 
enhancement 

x x x x x   

Artzi et al. [122] 2021 Private dataset 
T1w, FLAIR, 
DTI 

158 (22 Normal, 63 PA, 57 
MB, 16 EP) 

731 (110 Normal, 280 PA, 266 
MB, 75 EP) 

x  x  x 
Background 
removal, bias field 
correction 

 x x x   Brightness changes 

Tariciotti et al. [123] 
2022 

Private dataset ceT1w 
121 (47 GBM, 37 PCNSL, 37 
Metastasis) 

3597 (1481 GBM, 1073 
PCNSL, 1043 Metastasis)) 

 x x   
Conversion to 
PNG 
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Ait et al. [124] 2022 
Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x           

Alanazi et al. [125] 
2022 

1. Dataset from 
Kaggle 

No info shared  
826 Glioma, 822 MEN, 395 no 
tumor, and 827 PT 

x x x   Noise removal        

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2) x x x   Noise removal        

Ye et al. [126] 2022 Private dataset ceT1w 73   x x   
Image 
transformation 

   x   

Blurring, ghosting, 
motion, affining, 
random elastic 
deformation 

Gaur et al. [127] 2022 
MRI dataset by 
Bhuvaji 

No info shared  2296   x   
Gaussian noise 
adding 

       

Guo et al. [128] 2022 CPM-RadPath 2020 
T1w, ceT1w, 
T2w, FLAIR 

221 (133 GBM, 54 AST, 34 
OLI) 

    x x 

Bias field 
correction, 
Gaussian noise 
adding 

 x x    
Random 
contrast adjusting 

Aamir et al. [129] 
2022 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x    
Contrast 
enhancement 

 x  x    

Rizwan et al. [130] 
2022 

Figshare (Cheng et al., 
2017) 

ceT1w 
230 (81 MEN, 90 Glioma, 59 
PT) 

3061 (707 MEN, 1425 Glioma, 
929 PT) 

x  x   
Noise filtering 
and smoothing 

      
salt-noise/grayscale di 
stortion 

 Dataset from TCIA T1w 
513 (204 Grade II, 128 Grade 
III, 181 Grade IV) 

70 (32 Grade II, 18 Grade III, 
20 Grade IV) 

x  x   
Noise filtering 
and smoothing 

      
salt-noise/grayscale di 
stortion 

Nayak et al. [131] 
2022 

1.daataset from 
Kaggle, 2. Figshare 
(Cheng et al., 2017) 

ceT1w 
1.No info shared, 2. 233 (as 
shown in Table 2) 

3260 (196 Normal, 3064 (as 
shown in Table 2)) 

 x    
Gaussian 
blurring, noise 
removal 

x x x     

Chatterjee et al. [132] 
2022 

1.BraTS2019, 2. IXI 
Dataset 

ceT1w 
1.332 (259 HGG, 73 LGG), 2. 
259 Normal 

  x x x      x   Affine 

Khazaee et al. [133] 
2022 

BraTS2019 
ceT1w, T2w, 
FLAIR 

335 (259 HGG, 76 LGG) 
26904 (13233 HGG, 13671 
LGG) 

       x  x    

Isunuri et al. [134] 
2022 

Figshare (Cheng et al., 
2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x           

Gu et al. [30] 2021 
1. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)   x           

 2. REMBRANDT No info shared 130 110020   x           

Rajini [135] 2019 

1. IXI dataset, 
REMBRANDT, 
TCGA-GBM, TCGA-
LGG 

No info shared 

600 normal images from IXI 
dataset, 130 patients from 
REMBRANDT, 200 patients 
from TCGA-GBM, 299 
patients from TCGA-LGG 

              

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)              

Anaraki et al. [136] 
2019 

1: IXI dataset, 
REMBRANDT, 
TCGA-GBM, TCGA-
LGG, private dataset 

no info of IXI, 
ceT1w from 
REMBRANDT, 
TCGA-GBM, 
TCGA-LGG 

600 normal images from IXI 
dataset, 130 patients from 
REMBRANDT, 199 patients 
from TCGA-GBM, 299 
patients from TCGA-LGG, 
60 patients from private 
dataset 

  x x    x x x x    

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)  x x    x x x x    
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Sajjad et al. [100] 
2019 

1. Radiopaedia No info shared   
121 (36 Grade I, 32 Grade II, 
25 Grade III, 28 Grade IV) 

 x x   
Denoising, bias 
field correction 

 x  x x  
Gaussian blurring, 
sharpening, embossing, 
skewing 

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w  233 (as shown in Table 2) 3064 (as shown in Table 2)  x x   
Denoising, bias 
field correction 

 x  x x  
Gaussian blurring, 
sharpening, embossing, 
skewing 

Wahlang et al. [137] 
2020 

1. Radiopaedia FLAIR 
11 (2 Metastasis, 6 Glioma, 3 
MEN) 

            x  

 2. BraTS 2017 No info shared 20 3100      Median filtering        
Tandel et al. [138] 
2021 

REMBRANDT T2w See 1–4 below See 1–4 below   x   Converted to RGB  x x     

   130 
1. 2156 (1041 normal, 1091 
tumorous) 

 
            

   47 
2. 557 (356 AST-II, 201 AST-
III) 

 
            

   21 3. 219 (128 OLI-II, 91 OLI-III)              
   112 4. 1115 (484 LGG, 631 HGG)              
Xiao et al. [97] 2021 1. Private dataset No info shared  1109 (495 MT, 614 Normal)   x           

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)   x           

 
3. Brain Tumor 
Classification (MRI) 
Dataset from Kaggle 

No info shared  
3264 (937 MEN, 926 Glioma, 
901 PT, 500 Normal) 

  x           

Tandel et al. [24] 
2020 

REMBRANDT T2w 
112 (30 AST-II, 17 AST-II, 14 
OLI-II, 7 OLI-III, 44 GBM) 

See 1–5 below    x    x x     

    
1. 2132 (1041 normal, 1091 
tumorous) 

 
            

    
2. 2156 (1041 normal, 484 
LGG, 631 HGG) 

 
            

    
3. 2156 (1041 normal, 557 
AST, 219 OLI, 339 GBM) 

 
            

    4. 1115 (356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM) 
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)     

Ayadi et al. [98] 2021 1. Radiopaedia No info shared  
121 (36 Grade I, 32 Grade II, 
25 Grade III, 28 Grade IV) 

       x  x   
Gaussian blurring, 
sharpening 

 
2. Figshare (Cheng et 
al., 2017) 

ceT1w 233 (as shown in Table 2) 3064 (as shown in Table 2)              

 3. REMBRANDT 
FLAIR, T1w, 
T2w 

130 (47 AST, 21 OLI, 44 
GBM, 18 unknown) 

See 1–5 below        x  x   
Gaussian blurring, 
sharpening 

    1. 2132 (1041 normal, 1091 tumorous) 
2. 2156 (1041 normal, 484 LGG, 631 HGG) 
3. 2156 (1041 normal, 557 AST, 219 OLI, 339 GBM) 
4. 1115 (356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM) 
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM) 

    
    
    
    
Notes: 1. Rigid registration unless otherwise notes; 2. translation also referred to as shifting; 3. scaling also referred to as zooming; 4. reflection also referred to as flipping or mirroring. 
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(b) 

Author and Year Classification Tasks Model Architecture Validation Performance ACC%1 

2 classes 
Özcan et al. [27] 2021  LGG (grade II) vs. HGG (grade IV) Custom CNN model 5-fold CV SEN = 98.0%, SPE = 96.3%, F1 score = 97.0%, 

AUC = 0.989 
97.1 

Hao et al. [102] 2021 LGG vs. HGG Transfer learning with AlexNet No info shared AUC = 82.89%  
 

Tripathi et al. [103] 2021 LGG vs. HGG Transfer learning with Resnet18 No info shared 
 

95.87 
Ge et al. [40] 2020 LGG vs. HGG Custom CNN model No info shared SEN = 84.35%, SPE = 93.65% 90.7 
Mzoughi et al. [28] 2020 LGG vs. HGG Multi-scale 3D CNN  No info shared 

 
96.49 

Yang et al. [45] 2018 LGG vs. HGG Transfer learning with AlexNet, GoogLeNet 5-fold CV AUC = 0.939 86.7 
Zhuge et al. [77] 2020 LGG vs. HGG Transfer learning with ResNet50 5-fold CV SEN = 93.5%, SPE = 97.2% 96.3   

3D CNN 5-fold CV SEN = 94.7%, SPE = 96.8% 97.1 
Decuyper et al. [73] 2021 LGG vs. GBM 3D CNN No info shared SEN = 90.16%, SPE = 89.80%, AUC = 0.9398 90 
He et al. [78] 2021 LGG vs. HGG Custom CNN model 5-fold CV TCIA: SEN = 97.14%, SPE = 90.48%, AUC = 

0.9349 
92.86 

  
  BraTS 2017: SEN = 95.24%, SPE = 92%, AUC = 

0.952 
94.39 

Hamdaoui et al. [104] 2021 LGG vs. HGG Transfer learning with stacking VGG16, VGG19, MobileNet, 
InceptionV3, Xception, Inception ResNetV2, DenseNet121 

10-fold CV PRE = 98.67%, F1 score = 98.62%, SEN = 98.33% 98.06 

Chikhalikar et al. [105] 2021  LGG vs. HGG Custom CNN model No info shared 
 

99.46 
Ahmad [106] 2019 LGG vs. HGG Custom CNN model No info shared 

 
88 

Khazaee et al. [133] 2022 LGG vs. HGG Transfer learning with EfficientNetB0 CV PRE = 98.98%, SEN = 98.86%, SPE = 98.79% 98.87% 
Naser et al. [96] 2020 LGG (Grade II) vs. LGG (Grade III) Transfer learning with VGG16 5-fold CV SEN = 97%, SPE = 98% 95 
Kurc et al. [117] 2020 OLI vs. AST 3D CNN 5-fold CV 

 
80 

McAvoy et al. [119] 2021 GBM vs. PCNSL Transfer learning with EfficientNetB4 No info shared GBM: AUC = 0.94, PCNSL: AUC = 0.95 
 

Kulkarni et al. [121] 2021 Benign vs. Malignant Transfer learning with AlexNet 5-fold CV PRE = 93.7%, RE = 100%, F1 score = 96.77% 96.55 
  Transfer learning with VGG16 5-fold CV PRE = 55%, RE = 50%, F1 score = 52.38% 50 
  Transfer learning with ResNet18 5-fold CV PRE = 78.94%, RE = 83.33%, F1 score = 81.07% 82.5 
  Transfer learning with ResNet50 5-fold CV PRE = 95%, RE = 55.88%, F1 score = 70.36% 60 
  Transfer learning with GoogLeNet 5-fold CV PRE = 75%, RE = 100%, F1 score = 85.71% 87.5 
Wahlang et al. [137] 2020 HGG vs. LGG AlexNet No info shared  62 
  U-Net No info shared  60 
Xiao et al. [97] 2021 MT vs. Normal Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV AUC = 0.9530 98.2 
Alanazi et al. [125] 2022 Normal vs. Tumorous Custom CNN No info shared  95.75% 
Tandel et al. [138] 2021 1. Normal vs. Tumorous DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 96.76%, SPE = 96.43%, AUC = 0.966 96.51 
 2. AST-II vs. AST-III DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 94.63%, SPE = 99.44%, AUC = 0.9704 97.7 
 3. OLI-II vs. OLI-III DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 100%, SPE = 100%, AUC = 1 100 
 4. LGG vs. HGG DL-MajVot (AlexNet, VGG16, ResNet18, GoogleNet, ResNet50) 5-fold CV SEN = 98.33%, SPE = 98.57%, AUC = 0.9845 98.43 
Tandel et al. [24] 2020 Normal vs. Tumorous Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE = 100%, PRE = 100%, F1 score = 100% 100 
Ayadi et al. [98] 2021 Normal vs. Tumorous Custom CNN model 5-fold CV  100 
Ye et al. [126] 2022 Germinoma vs. Glioma Transfer learning with ResNet18 5-fold CV AUC = 0.88 81% 
3 classes      
Allah et al. [44] 2021 MEN vs. Glioma vs. PT PGGAN-augmentation VGG19 No info shared  98.54 
Swati et al. [50] 2019 MEN vs. Glioma vs. PT Transfer learning with VGG19 5-fold CV SEN = 94.25%, SPE = 94.69%, PRE = 89.52%, F1 

score = 91.73% 
94.82 

Guan et al. [43] 2021 MEN vs. Glioma vs. PT EfficientNet 5-fold CV  98.04 
Deepak et al. [39] 2019 MEN vs. Glioma vs. PT Transfer learning with GoogleNet 5-fold CV  98 
Díaz-Pernas et al. [42] 2021 MEN vs. Glioma vs. PT Multiscale CNN 5-fold CV  97.3 
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Ismael et al. [49] 2020 MEN vs. Glioma vs. PT Residual networks 5-fold CV PRE = 99.0%, RE = 99.0%, F1 score = 99.0% 99 
Alhassan et al. [107] 2021 MEN vs. Glioma vs. PT Custom CNN model k-fold CV PRE = 99.6%, RE = 98.6%, F1 score = 99.0% 98.6 
Bulla et al. [108] 2020 MEN vs. Glioma vs. PT Transfer learning with InceptionV3 CNN model holdout validation, 10-fold 

CV, stratified 10-fold CV, 
group 10-fold CV 

Under group 10-fold CV: PRE = 97.57%, RE = 
99.47%, F1 score = 98.40%, AUC = 0.995 

99.82 

Ghassemi et al. [109] 2020 MEN vs. Glioma vs. PT CNN-GAN 5-fold CV PRE = 95.29%, SEN = 94.91%, SPE = 97.69%, F1 
score = 95.10% 

95.6 

Kakarla et al. [110] 2021 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV PRE = 97.41%, RE = 97.42% 97.42 
Noreen et al. [111] 2021 MEN vs. Glioma vs. PT Transfer learning with Inception-v3 K-fold CV  93.31 
  Transfer learning with Inception model K-fold CV  91.63 
Noreen et al. [112] 2020 MEN vs. Glioma vs. PT Transfer learning with Inception-v3 No info shared  99.34 
  Transfer learning with DensNet201 No info shared  99.51 
Kumar et al. [113] 2021 MEN vs. Glioma vs. PT Transfer learning with ResNet50 5-fold CV PRE = 97.20%, RE = 97.20%, F1 score = 97.20%  
Badža et al. [114] 2020 MEN vs. Glioma vs. PT Custom CNN model 10-fold CV PRE = 95.79%, RE = 96.51%, F1 score = 96.11% 96.56 
Ait et al. [124] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared PRE = 98.3%, SEN = 98.6%, F1 score = 98.6% 98.70% 
Alanazi et al. [125] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared  96.90% 
Gaur et al. [127] 2022 MEN vs. Glioma vs. PT Custom CNN k-fold CV  94.64% 
Aamir et al. [129] 2022 MEN vs. Glioma vs. PT Custom CNN 5-fold CV  98.95% 
Rizwan et al. [130] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared  99.8% 
Isunuri et al. [134] 2022 MEN vs. Glioma vs. PT Custom CNN 5-fold CV PRE = 97.33%, SEN = 97.19%, F1 score = 97.26% 97.52% 
Alaraimi et al. [115] 2021  MEN vs. Glioma vs. PT Transfer learning with AlexNet No info shared AUC = 0.976 94.4 
  Transfer learning with VGG16 No info shared AUC = 0.981 100 
  Transfer learning with GoogLeNet No info shared AUC = 0.986 98.5 
Lo et al. [116] 2019 Grade II vs. Grade III vs. Grade IV Transfer learning with AlexNet 10-fold CV  97.9 
Pei et al. [118] 2020 GBM vs. AST vs. OLI 3D CNN No info shared  74.9 
Gu et al. [30] 2021 1. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV SEN = 94.64%, PRE = 94.61%, F1 score = 94.70% 96.39 
 2. GBM vs. AST vs. OLI Custom CNN model 5-fold CV SEN = 93.66%, PRE = 95.12%, F1 score = 94.05% 97.37 
Rajini [135] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV  98.16 
Anaraki et al. [136] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV  94.2 
Sajjad et al. [100] 2019 MEN vs. Glioma vs. PT  Transfer learning with VGG19 No info shared SEN = 88.41%, SPE = 96.12% 94.58 
Wahlang et al. [137] 2020 Metastasis vs. Glioma vs. MEN Lenet No info shared  48 
  AlexNet No info shared  75 
Xiao et al. [97] 2021 MEN vs. Glioma vs. PT Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV  98.02 
Tandel et al. [24] 2020 Normal vs. LGG vs. HGG Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE = 94.85%, PRE = 94.75%, F1 score = 94.8% 95.97 
Chatterjee et al. [132] 2022 Normal vs. HGG vs. LGG Transfer learning with ResNet 3-fold CV F1 score = 93.45% 96.84% 
Ayadi et al. [98] 2021 1. Normal vs. LGG vs. HGG Custom CNN model 5-fold CV  95 
 2. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV  94.74 
Guo et al. [128] 2022 GBM vs. AST vs. OLI Custom CNN 3-fold CV SEN = 0.772, SPE= 93.0%, AUC = 0.902 87.8% 
Rizwan et al. [130] 2022 Grade I vs. Grade II vs. Grade III Custom CNN No info shared  97.14% 
Tariciotti et al. [123] 2022 Metastasis vs. GBM vs. PCNSL Resnet101 Hold-out PRE = 91.88%, SEN = 90.84%, SPE = 96.34%, F1 

score = 91.0%, AUC = 0.92 
94.72% 

4 classes      
Ahammed et al. [72] 2019 Grade I vs. Grade II vs. Grade III vs. Grade IV VGG19 No info shared PRE = 94.71%, SEN = 92.72%, SPE = 98.13%, F1 

score = 93.71% 
98.25 

Mohammed et al. [51] 2020 EP vs. MEN vs. MB vs. Normal Custom CNN model No info shared SEN = 96%, PRE = 100% 96 
Gilanie et al. [120] 2021 AST-I vs. AST-II vs. AST-III vs. AST-IV Custom CNN model No info shared  96.56 
Artzi et al. [122] 2021 Normal vs. PA vs. MB vs. EP Custom CNN model 5-fold CV  88 
Nayak et al. [131] 2022 Normal vs. MEN vs. Glioma vs. PT Transfer learning with EfficientNet No info shared PRE = 98.75%, F1 score = 98.75% 98.78% 
Rajini [135] 2019 Normal vs. Grade II vs. Grade III vs. Grade IV Custom CNN model 5-fold CV  96.77 
Anaraki et al. [136] 2019 Normal vs. Grade II vs. Grade III vs. Grade IV Custom CNN model 5-fold CV   
Sajjad et al. [100] 2019 Grade I vs. Grade II vs. Grade III vs. Grade IV Transfer learning with VGG19 No info shared  90.67 
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Xiao et al. [97] 2021 MEN vs. Glioma vs. PT vs. Normal Transfer learning with ResNet50 3-fold, 5-fold, 10-fold CV PRE = 97.43%, RE = 97.67%, SPE = 99.24%, F1 
score = 97.55%  

97.7 

Tandel et al. [24] 2020 Normal vs. AST vs. OLI vs. GBM Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE = 94.17%, PRE = 95.41%, F1 score = 94.78% 96.56 
Ayadi et al. [98] 2021 1. normal vs. AST vs. OLI vs. GBM Custom CNN model 5-fold CV  94.41 
 2. Grade I vs. Grade II vs. Grade III vs. Grade IV Custom CNN model 5-fold CV  93.71 
5 classes      
Tandel et al. [24] 2020 AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-

IV 
Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE = 84.4%, PRE = 89.57%, F1 score = 86.89% 87.14 

Ayadi et al. [98] 2021 AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM Custom CNN model 5-fold CV  86.08 
6 classes      
Tandel et al. [24] 2020 Normal vs. AST-II vs. AST-III vs. OLI-II vs. OLI-

III vs. GBM-IV 
Transfer learning with AlexNet Multiple CV (K2, K5, K10) RE = 91.51%, PRE = 92.46%, F1 score = 91.97% 93.74 

Ayadi et al. [98] 2021 normal vs. AST-II vs. AST-III vs. OLI-II vs. OLI-
III vs. GBM 

Custom CNN model 5-fold CV  92.09 
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Many attempts have been made to investigate the value of transfer learning tech-
niques for brain tumor classification [39,45,50,102,104,108,116,121]. Deepak and Ameer 
[39] used the GoogLeNet with the transfer learning technique to differentiate between 
glioma, MEN, and PT from the dataset provided by Cheng [55]. This proposed system 
achieved a mean classification accuracy of 98%. 

In a study conducted by Yang et al. [45], AlexNet and GoogLeNet were both trained 
from scratch and fine-tuned from pre-trained models from the ImageNet database for 
HGG and LGG classification. The dataset used in this method consisted of ceT1w images 
from 113 patients (52 LGG, 61 HGG) with pathologically proven gliomas. The results 
show that GoogLeNet proved superior to AlexNet for the task. The performance 
measures, including validation accuracy, test accuracy, and test AUC of GoogLeNet 
trained from scratch, were 0.867, 0.909, and 0.939, respectively. With fine-tuning, the pre-
trained GoogLeNet obtained performed better during glioma grading, with a validation 
accuracy of 0.867, a test accuracy of 0.945, and a test AUC 0.968. 

The authors in [50] proposed a block-wise fine-tuning strategy using a pre-trained 
VGG19 for brain tumor classification. The dataset consisted of 3064 images (708 MEN, 
1426 glioma, and 930 PT) from 233 patients (82 MEN, 89 glioma, and 62 PT). The authors 
achieved an overall accuracy of 94.82% under five-fold cross-validation. In another study 
by Bulla et al. [108], classification was performed in a pre-trained InceptionV3 CNN model 
using data from the same dataset. Several validation methods, including holdout valida-
tion, 10-fold cross-validation, stratified 10-fold cross-validation, and group 10-fold cross-
validation, were used during the training process. The best classification accuracy of 
99.82% for patient-level classification was obtained under group 10-fold cross-validation. 

The authors in [104] used InceptionResNetV2, DenseNet121, MobileNet, Incep-
tionV3, Xception, VGG16, and VGG19, which have already been pre-trained on the 
ImageNet dataset, to classify HGG and LGG brain images. The MR images used in this 
research were collected from the BraTS 2019 database, which contains 285 patients (210 
HGG, 75 LGG). The 3D MRI volumes from the dataset were then converted into 2D slices, 
generating 26,532 LGG images and 94,284 HGG images. The authors selected 26,532 im-
ages from HGG to balance these two classes to reduce the impact on classification perfor-
mance due to class imbalance. The average precision, f1-score, and sensitivity for the test 
dataset were 98.67%, 98.62%, and 98.33%, respectively. 

Lo et al. [116] used transfer learning with fine-tuned AlexNet and data augmentation 
to classify Grade II, Grade III, and Grade IV brain tumor images from a small dataset 
comprising 130 patients (30 Grade II, 43 Grade III, 57 Grade IV). The results demonstrate 
much higher accuracy when using the pre-trained AlexNet. The proposed transferred 
DCNN CADx system achieved a mean accuracy of 97.9% and a mean AUC of 0.9991, 
while the DCNN without pre-trained features only achieved a mean accuracy of 61.42% 
and a mean AUC of 0.8222. 

Kulkarni and Sundari [121] utilized five transfer learning architectures, AlexNet, 
VGG16, ResNet18, ResNet50, and GoogLeNet, to classify benign and malignant brain tu-
mors from the private dataset collected by the authors, which only contained 200 images 
(100 benign and 100 malignant). In addition, data augmentation techniques, including 
scaling, translation, rotation, translation, shearing, and reflection, were performed to gen-
eralize the model and to reduce the possibility of overfitting. The results show that the 
fine-tuned AlexNet architecture achieved the highest accuracy and sensitivity values of 
93.7% and 100%. 

Despite many studies on CADx systems demonstrating inspiring classification per-
formance, the validation of their algorithms for clinical practice has hardly been carried 
out. External validation is an efficient approach to overcome the problems caused by data 
mismatch and to improve the generalization, stability, and robustness of classification al-
gorithms. It is the action of evaluating the classification model in a new independent da-
taset to determine whether the model performs well. However, we only found two studies 
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that used an external clinical dataset to evaluate the effectiveness and generalization ca-
pability of the proposed scheme, which is described in below. 

Decuyper et al. [73] proposed a 3D CNN model to classify brain MR volumes col-
lected from the TCGA-LGG, TCGA-GBM, and BraTS 2019 databases into HGG and LGG. 
Multiple MRI sequences, including T1w, ceT1w, T2w, and FLAIR, were used in this re-
search. All of the MR data were co-registered to the same anatomical template and inter-
polated to 1 mm3 voxel sizes. Additionally, a completely independent dataset of 110 pa-
tients acquired at the Ghent University Hospital (GUH) was used as an external dataset 
to validate the efficiency and generalization of the proposed model. The resulting valida-
tion accuracy, sensitivity, specificity, and AUC for the GUH dataset were 90.00%, 90.16%, 
89.80%, and 0.9398. 

In [120], Gilanie et al. presented an automatic method using a CNN architecture for 
astrocytoma grading between AST-I, AST-II, AST-III, and AST-IV. The dataset consisted 
of MR slices from 180 subjects, including 50 AST-I cases, 40 AST-II cases, 40 AST-III cases, 
and 50 AST-IV cases. T1w, T2w, and FLAIR were used in the experiments. In addition, 
the N4ITK method [80] was used in the preprocessing stage to correct the bias field dis-
tortion present in the MR images. The results were validated on a locally developed da-
taset to evaluate the effectiveness and generalization capabilities of the proposed scheme. 
The proposed method obtained an overall accuracy of 96.56% for the external validation 
dataset. 

In brain tumor classification, it is often necessary to use image co-registration to pre-
process input data when images are collected from different sequences or different scan-
ners. However, we found that this problem has not yet been taken seriously. In the sur-
veyed articles, six studies [73,76,98,118,135,136] used data from multiple datasets for one 
classification target, while only two studies [73,76] performed image co-registration dur-
ing the image preprocessing process. 

The authors in [76] proposed a 2D Mask RCNN model and a 3DConvNet model to 
distinguish between LGG (Grades II and Grade III) and HGG (Grade IV) on multiple MR 
sequences, including T1w, ceT1w, T2w, and FLAIR. The TCIA-LGG and BraTS 2018 data-
bases were used to train and validate these two CNN models in this research work. In the 
2D Mask RCNN model, all of the input MR images were first preprocessed by rigid image 
registration and intensity inhomogeneity correction. In addition, data augmentation was 
also implemented to increase the size and the diversity of the training data. The perfor-
mance measures accuracy, sensitivity, and specificity achieved values of 96.3%, 93.5%, 
and 97.2% using the proposed 2D Mask RCNN-based method and 97.1%, 94.7%, and 
96.8% with the 3DConvNet method, respectively. 

In the study conducted by Ayadi [98], the researchers built a custom CNN model for 
multiple classification tasks. They collected data from three online databases, Radiopae-
dia, the dataset provided by Cheng, and REMBRANDT, for brain tumor classification, but 
no image co-registration was performed to minimize shift between images and to reduce 
its impact on the classification performance. The overall accuracy obtained for tumorous 
and normal classification reached 100%; for normal, LGG, and HGG classification, it 
reached 95%; for MEN, glioma, and PT classification, it reached 94.74%; for normal, AST, 
OLI, and GBM classification, it reached 94.41%; for Grade I, Grade II, Grade III, and Grade 
IV classification, it reached 90.35%; for AST-II, AST-III, OLI-II, OLI-III, and GBM classifi-
cation, it reached 86.08%; and for normal, AST-II, AST-III, OLI-II, OLI-III, and GBM clas-
sification, it reached 92.09%. 

The authors in [118] proposed a 3D CNN model for brain tumor classification be-
tween GBM, AST, and OLI. A merged dataset comprising data from the CPM-RadPath 
2019 and BraTS 2019 databases was used to train and validate the proposed model, but 
the authors did not perform image co-registration. The results show that the classification 
model has very poor performance during brain tumor classification, with an accuracy of 
74.9%. 
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In [135], the researchers presented a CNN-PSO method for two classification tasks: 
normal vs. Grade II vs. Grade III vs. Grade IV and MEN vs. glioma vs. PA. The MR images 
used for the first task were collected from four publicly available datasets: the IXI dataset, 
REMBRANDT, TCGA-GBM, and TCGA-LGG. The overall accuracy obtained was 96.77% 
for classification between normal, Grade II, Grade III, and Grade IV and 98.16% for MEN, 
glioma, and PA classification. 

Similar to the work conducted in [135], Anaraki et al. [136] used MR data merged 
from four online databases: the IXI dataset, REMBRANDT, TCGA-GBM, and TCGA-LGG, 
and from one private dataset collected by the authors for normal, Grade II, Grade III, and 
Grade IV classification. They also used the dataset proposed by Cheng [55] for MEN, gli-
oma, and PA classification. Different data augmentation methods were performed to fur-
ther enlarge the size of the training set. The authors in these studies did not co-register the 
MR images from different sequences from different institutions for the four-class classifi-
cation task. The results show that 93.1% accuracy was achieved for normal, Grade II, 
Grade III, and Grade IV classification, and 94.2% accuracy was achieved for MEN, glioma, 
and PA classification. 

Despite the high accuracy levels reported in most studies using CNN techniques, we 
found that in several studies [102,117,118,137], the models demonstrated very poor per-
formance during brain tumor classification tasks. 

The authors in [102] explored transfer learning techniques for brain tumor classifica-
tion. The experiments were performed on the BraTS 2019 dataset, which consists of 335 
patients diagnosed with brain tumors (259 patients with HGG and 76 patients with LGG). 
The model achieved a classification AUC of 82.89% on a separate test dataset of 66 pa-
tients. The classification performance obtained by transfer learning in this study is rela-
tively low, hindering its development and application in clinical practice. The authors of 
[117] presented a 3D CNN model developed to categorize adult diffuse glioma cases into 
the OLI and AST classes. The dataset used in the experiment consisted of 32 patients (16 
patients with OLI and 16 patients with AST). The model achieved accuracy values of 80%. 
The main reason for the poor performance probably lies in the small dataset, with only 32 
patients being used for model training. That is far from enough to train a 3D model. 

In another study [137], two brain tumor classification tasks were studied using the 
Lenet, AlexNet, and U-net CNN architectures. In the experiments, MR images from 11 
patients (two metastasis, six glioma, and three MEN) obtained from Radiopaedia were 
utilized to classify metastasis, glioma, and MEN; the data of 20 patients collected from 
BraTS 2017 were used for HGG and LGG classification. The results show poor classifica-
tion performance by the three CNN architectures on the two tasks, with an accuracy of 
75% obtained by AlexNet and an accuracy of 48% obtained by Lenet for the first task and 
an accuracy of 62% obtained by AlexNet and an accuracy of 60% obtained by U-net for 
the second task. The poor performance of Lenet is probably due to its simple architecture, 
which is not capable of high-resolution image classification. On the other hand, the U-net 
CNN performs well in segmentation tasks but is not the most commonly used network 
for classification. 

Even though CNNs have demonstrated remarkable performance in brain tumor clas-
sification tasks in the majority of the reviewed studies, their level of trustworthiness and 
transparency must be evaluated in a clinic context. Of the included articles, only two stud-
ies, conducted by Artzi et al. [122] and Gaur et al. [127], investigated the Black-Box nature 
of CNN models for brain tumor classification to ensure that the model is looking in the 
correct place rather than at noise or unrelated artifacts. 

The authors in [122] proposed a pre-trained ResNet-50 CNN architecture to classify 
three posterior fossa tumors from a private dataset and explained the classification deci-
sion by using gradient-weighted class activation mapping (Grad-CAM). The dataset con-
sisted of 158 MRI scans of 22 healthy controls and 63 PA, 57 MB, and 16 EP patients. In 
this study, several preprocessing methods were used to reduce the influence of MRI data 
on the classification performance of the proposed CNN model. Image co-registration was 
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performed to ensure that the images become spatially aligned. Bias field correction was 
also conducted to remove the intensity gradient from the image. Data augmentation meth-
ods, including flipping, reflection, rotation, and zooming, were used to increase the size 
and diversity of the dataset. However, class imbalance within the dataset, particularly the 
under-representation of EP, was not addressed. The proposed architecture achieved a 
mean validation accuracy of 88% and 87% for the test dataset. The results demonstrate 
that the proposed network using Grad-CAM can identify the area of interest and train the 
classification model based on pathology-related features. 

Gaur et al. [127] proposed a CNN-based model integrated with local interpretable 
model-agnostic explanation (LIME) and Shapley additive explanation (SHAP) for the clas-
sification and explanation of meningioma, glioma, pituitary, and normal images using an 
MRI dataset of 2870 MR images. For better classification results, Gaussian noise was in-
troduced in the pre-processing step to improve the learning for the CNN, with mean = 0 
and a standard deviation of 10 0.5. The proposed CNN architecture achieved an accuracy 
of 94.64% for the MRI dataset. The proposed model also provided a locally model-agnostic 
explanation to describe the results for ordinary people more qualitatively.  

5. Discussion 
Many of the articles included in this review demonstrate that CNN-based architec-

tures can be powerful and effective when applied to different brain tumor classification 
tasks. Table 4b shows that the classification of HGG and LGG images and the differentia-
tion of MEN, glioma, and PT images were the most frequently studied applications. The 
popularity of these applications is likely linked to the availability of well-known and eas-
ily accessible public databases, such as the BraTS datasets and the dataset made available 
by Cheng [55]. Figure 7 reveals that there is an increase in the overall accuracy achieved 
by CNN architectures for brain tumor classification from 2018 to 2022. It is observed that 
from 2019 onwards, the overall classification accuracy achieved in most studies reached 
90%, with only few works obtaining lower accuracies, and in 2020, the extreme outlier 
accuracy was 48% [137]. It is also apparent from this figure that the proportion of papers 
with an accuracy higher than 95% increases after 2020. 

 
Figure 7. Classification accuracy by publication year. 

In order to discuss the technical differences and points of similarity between the pa-
pers included in the present review, we decided to proceed thematically. Wherever pos-
sible, it is more useful to make comparisons between studies containing as few differences 
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as possible. The most commonly reported metric, and the only one that will be employed 
here, is the accuracy. There are several studies that allow us to make such comparisons 
across only one factor. In other cases, several studies employ a similar methodology, and 
we can perform across-study comparisons. Finally, accuracy data can be plotted for single 
factors to allow for a simple visual comparison without attempting to separate confound-
ing factors. 

5.1. The Importance of the Classification Task 
Three papers [24,97,98] investigated the effect of splitting a dataset into different 

numbers of categories. They all showed the expected monotonic decrease in accuracy as 
the number of classes increased, with the caveat that the “normal” image category is rel-
atively easy to distinguish from the others and does not decrease accuracy when added 
as an additional category. The pattern is also apparent in Figure 8—the maximum accu-
racy for two-class problems was 100%; for four-class problems, it was 98.8%; and for six-
class problems, it was 93.7%. 

 
Figure 8. Classification accuracy by classification task. 

Two papers employed a single architecture to perform different classification tasks 
[30,138] while keeping the number of classes constant. The results in [30] showed little 
difference between the accuracy obtained for two different problems, which could be ex-
plained by differences in the datasets. The results of [138] showed slightly larger variation 
between four two-class problems. Curiously, nets trained on larger datasets yielded worse 
accuracy values, suggesting that results obtained from smaller samples have an inflated 
accuracy (100% for a problem based on 219 images, 96.1% for a problem based on 2156 
images). With reference to Figure 8, the classification task seems to have a larger effect 
than the class number on the accuracy. Note that the categories that group various specific 
tasks (two-class, three-class) together show much greater heterogeneity than those with 
the same number of classes for specific comparisons. 

Further evidence regarding the importance of the task comes from a comparison of 
the accuracy in the papers comparing tumor grade (LGC vs. HGC) and those seeking to 
differentiate different types of tumors (MEN vs. glioma vs. PT); although the latter task 
involves more classes, the median accuracy is 97.6 (against 94.4 for the former). We com-
pared the articles that studied the classification of HGG and LGG and found that the 
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classification performance varies widely, even between the articles published in 2021 that 
utilized state-of-the-art CNN techniques. One of the key factors that significantly affects 
the performance of CNN models for brain tumor classification lies in the size of the da-
tasets. The authors of [40] and [78] both proposed custom CNN models to classify HGG 
and LGG images of 285 MRI scans from the BraTS 2017 dataset. The overall accuracy val-
ues were 90.7% and 94.28%, respectively. The authors of [137] utilized AlexNet for the 
same task, but MRI data of only 20 patients from the same dataset were studied. The 
model in this study yielded a poor classification accuracy of 62%, the lowest value among 
the articles on this classification task. 

Figure 8 presents the overall accuracies achieved by the reviewed studies that 
worked on different classification tasks. What stands out in the figure is that with the ex-
ception of the five-class tasks, which achieved accuracies lower than 90%, the CNNs 
achieved promising accuracies on different brain tumor classification tasks, especially in 
three-class classification tasks distinguishing between MEN, glioma, and PT. We also no-
ticed that the accuracies of the three-class classification tasks fluctuated widely, with the 
lowest accuracy being 48% in [137] for the metastasis vs. glioma vs. MEN classification. 
More research attention should be paid to improving the accuracies of these classification 
tasks. 

5.2. The Effect of the Dataset 
A few studies applied the same network architecture to two different datasets. For 

He et al. [78], the results demonstrating a higher accuracy (94.4% against 92.9%) were 
based on a training set that was both larger and more unbalanced. The first factor would 
have improved the training process, while the latter made the classification task easier. 
Several papers derive different subgroups from different datasets (for example, healthy 
subject data from IXI and tumors from other sets). This is poor practice, as there are likely 
to be non-pathological differences between the sets acquired from different centres, and 
this can artificially inflate classification accuracy [139]. 

As was mentioned in the Results section, dataset size is considered a critical factor in 
determining the classification performance of a CNN architecture. Some studies report 
the dataset size in terms of the number of subjects included, and others report it in terms 
of the number of images. Typically, several images are included from each subject, but 
this number is not specified. 

Figures 9 and 10 sum up the classification accuracies obtained according to each of 
the factors; Figure 9 shows that there is a marked increase in the overall accuracy achieved 
with more training subjects The improvement gained by increasing the image number 
seems more modest. 
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Figure 9. Classification accuracy by number of patients. 

 
Figure 10. Classification accuracy by number of images. 

Another interesting aspect of the datasets used is the choice of MRI sequence. This 
may provide a hint as to the features being used for classification. Comparing the articles 
that focused on the same classification task, of the sequences listed in Table 3, only ceT1w 
was associated with studies showing a higher classification accuracy than those that ex-
cluded it for MEN vs. Glioma vs. PT classification, while all of the sequences contributed 
to an improvement in LGG vs. HGG classification. As a consequence, studies using mul-
tiple sequences were associated with higher accuracy in the LGG vs. HGG task but not in 
MEN vs. Glioma vs. PT classification. 

5.3. The Effect of CNN Architecture 
Three studies present comparisons of different architectures trained on the same 

problems (Yang et al. [45], Kulkarni et al. [121], Wahling at el. [137]). 
In a study conducted by Yang et al. [45], GoogLeNet and AlexNet were both trained 

from scratch and fine-tuned from pre-trained models from the ImageNet database for 
HGG and LGG classification. When both were trained from scratch, GoogLeNet proved 
superior to AlexNet for the task. The test accuracies were 0.909 and 0.855, respectively. 
Fine-tuning pre-existing nets resulted in better performance in both cases, with accuracies 
on the test set of 0.945 and 0.927, respectively. In [121], five nets were used to distinguish 
benign from malignant tumors. The reported accuracies were surprisingly variable; from 
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worst to best, the results were VGG16 (0.5) and ResNet50 (0.68). In [137], AlexNet and 
LeNet were both used to distinguish three classes. 

The overall accuracies achieved by the different CNN architectures that have been 
used extensively for brain tumor classification are summarized in Figure 11. It shows that 
the majority of CNN models have achieved high performance for brain tumor classifica-
tion tasks, in which transfer learning with ResNet, VGG, and GoogleNet showed more 
stable performance than other models, such as 3D CNN. Among the reviewed articles, 
five articles utilized 3D CNN for brain tumor classification, and the classification accuracy 
of those studies fluctuates wildly. The highest accuracy was 97.1%, achieved by Zhuge et 
al. [77], who trained a 3D CNN architecture with a dataset of 315 patients (210 HGG, 105 
LGG). The lowest accuracy of 75% was obtained by Pei et al. [118], who used 398 brain 
MR image volumes for GBM vs. AST vs. OLI classification. In another study [117], the 
authors explored a 3D CNN model for OLI and AST classification using a very small da-
taset of 32 patients (16 OLI, 16 AST) and obtained a low accuracy of 80%. It seems that 3D 
CNN is a promising technique for realizing patient-wise diagnosis, and the accessibility 
of a large MRI dataset can hopefully improve the performance of 3D CNNs on brain tu-
mor classification tasks. 

 
Figure 11. Classification accuracy by CNN architecture. 

5.4. The Effect of Pre-Processing and Data Augmentation Methods 
Researchers have paid increasing amounts of attention to enhancing input image 

quality by conducting different preprocessing steps on brain MRI datasets before propa-
gating them into CNN architectures. No studies have systematically tested the number 
and combination of operations that optimize classification accuracy. Figure 12 presents 
the overall accuracy obtained with different numbers of preprocessing operations. It 
shows that the studies that pre-processed input MR images collectively obtained higher 
classification accuracies than the studies that performed no preprocessing methods. How-
ever, it is not obvious that more steps led to better performance. 
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Figure 12. Classification accuracy by number of preprocessing operations. 

As previously stated, data augmentation can create variations in the images that can 
improve the generalization capability of the models to new images, and different data 
augmentation techniques have been widely explored and applied to increase both the 
amount and the diversity of training data. Figure 13 illustrates the overall accuracy ob-
tained with different numbers of data augmentation operations. It can be seen that studies 
that performed five data augmentation techniques achieved higher and more stable clas-
sification performance than the studies that performed fewer operations. 

 
Figure 13. Classification accuracy by number of data augmentation operations. 

The accuracy data do not support the use of any single data augmentation method. 
It is interesting to ask whether data augmentation techniques were implemented specifi-
cally in those studies that lacked training data. However, on average, there is little differ-
ence between the 59 studies including or the 27 omitting a data augmentation step. On 
average, the former included 233 cases or 4743 images, and the latter included 269 cases 
or 7517 images. Curiously, the number of studies employing data augmentation has fallen 
as a proportion among those published in 2022, both compared to the total and compared 
to those using pre-processing methods. 

Figure 14 indicates the cumulative impact of factors that are not fully reported or 
considered in the studies reported in Table 4. Articles with multiple analyses for which 
factors differed were scored 1 (i.e., missing). Data are derived from Table 4, with the 
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following exceptions: “Explainability considered” means that there was some analysis 
within the article on the information used to come to a diagnosis. Out-of-cohort testing 
occurred when CNN testing was performed on a cohort that was not used in the train-
ing/validation phase (i.e., different hospital or scanner). Author affiliations were derived 
from the author information in the DOI/CrossRef listed in the bibliography. An author 
was considered to have a clinical affiliation if their listed affiliations included a depart-
ment of radiology, clinical neurology, neurosurgery, or oncology. 

 
Figure 14. Histogram (left scale) and cumulative distribution (right scale) of factors not fully re-
ported or considered in the studies reported in Table 4. 

From the figure, the category other performance criteria performed means that per-
formance criteria other than accuracy were reported. Validation was considered to be not 
properly reported if it was not performed or if the methods used in the validation step 
were not clearly described. Training patients/images properly reported means that the 
number of patients/images in each category used for training/validation is explicitly de-
fined. Both factors are relevant as separate images from the same patient and are not fully 
independent. Public data used means that the data used are available to other researchers. 
In practice, all of the public data used were gathered in other studies, and no non-public 
data were made available by any of the studies identified. 

5.5. The Effect of Other Factors 
Beyond showing accuracy gains, the surveyed articles rarely examined their gener-

alization capability and interpretability. Only very few studies [73,120] tested their classi-
fication models on an independent dataset, and only one study [122] investigated the 
Black-Box characteristic of CNN models for brain tumor classification to ensure that the 
model they obtained was looking in the correct place for decision-making rather than at 
noise or unrelated artifacts. 

A limitation of this survey arises from the challenge of making comparisons in an 
objective manner between studies to analyze how each degrading factor affects the clas-
sification performance. One reason is that some studies worked on the same classification 
task but utilized different datasets, preprocessing methods, or classification techniques. 
Another reason lies in the variety of performance metrics reported. While accuracy was 
the most popular performance metric, it was not universally reported. Based on the 
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difficulties encountered in the preparation of the present review, we suggest that at the 
very least, all deep learning studies for classification clearly report the classification accu-
racy of the models constructed and the numbers of images/subjects of each class used for 
training, validation, and testing purposes. 

5.6. Future Directions 
It is clear from the comparative analysis presented in Table 4b that CNN techniques 

and algorithms have great power and ability to handle medical MR data, but so far, but 
none of them are at the point of clinical usability. The challenges we have identified here 
must be appropriately addressed if CNN research is to be translated into clinic practice. 
This review has identified some common performance-degrading factors and potential 
solutions. 

5.6.1. The Training Data Problem 
An exorbitant number of training cases are required to train a deep learning algo-

rithm from scratch. With a limited number of training data, transfer learning with fine-
tuning on pre-trained CNNs was demonstrated to yield better results for brain tumor clas-
sification than training such CNNs from scratch [45,116]. This is an efficient method for 
training networks when training data are expensive or difficult to collect in medical fields. 
In addition, high hardware requirements and long training times are also challenges that 
CNN-based CADx brain tumor classification systems face in clinical applications today. 
The continued development of state-of-the-art CNN architectures has resulted with a vo-
racious appetite for computing power. Since the cost of training a deep learning model 
scales with the number of parameters and the amount of input data, this implies that com-
putational requirements grow at the rate of at least the square of the number of training 
data [140]. With pre-trained models, transfer learning is also promising to address the 
difficulties caused by high hardware requirements and long training times when adopting 
CNN-based CADx systems for brain tumor classification in clinical practice. There are 
many issues related to optimizing transfer learning that remain to be studied. 

5.6.2. The Evaluation Problem 
CADx systems are mainly used for educational and training purposes but not in clin-

ical practice. Clinics still hesitate to use CADx-based systems. One reason for this is the 
lack of standardized methods for evaluating CADx systems in a realistic setting. The per-
formance measures described in Section 4.2 are a useful and necessary baseline to com-
pare algorithms, but they are all highly sensitive to the training set used, and more so-
phisticated tools are needed. It would be useful to define a pathway towards in-use per-
formance evaluation, such as what was recently proposed for quantitative neuroradiology 
[141]. It is notable that many of the papers reviewed did not include any authors with a 
clinical background and that the image formats used to train the models were those typi-
cal of the AI research community (PNG) and not those of the radiology community (DI-
COM, NIfTI). 

5.6.3. Explainability and Trust 
The Black-Box nature of deep CNNs has greatly limited their application outside of 

a research context. To trust systems powered by CNN models, clinicians need to know 
how they make predictions. However, among the articles surveyed, very few addressed 
this problem. The authors in [142] proposed a prototypical part network (ProtoPNet) that 
can highlight the image regions used for decision-making and can explain the reasoning 
process for the classification target by comparing the representative patches of the test 
image with the prototypes learned from a large number of data. To date, several studies 
have tested the explanation model proposed in [142] that was able to highlight image re-
gions used for decision making in medical imaging fields, such as for mass lesion 
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classification [143], lung disease detection [144,145], and Alzheimer’s diseases classifica-
tion [146]. Future research in the brain tumor classification field will need to test how 
explainable models influence the attitudes and decision-making processes of radiologists 
or other clinicians. 

The lack of physician training on how to interact with CADx systems and how to 
interpret their results to make diagnostic decisions is a separate but related technical chal-
lenge that can reduce the performance of CADx systems in practice, something that is not 
addressed in any of the papers included in the review. A greater role for physicians in the 
research process may bring benefits both in terms of the relevance of research projects and 
the acceptance of their results. 

In summary, the future of CNN-based brain tumor classification studies is very 
promising and focusing on the right direction with references to the challenges mentioned 
above would advance these studies from research labs to hospitals. We believe that our 
review provides researchers in the biomedical and machine learning communities with 
indicators for useful future directions for this purpose. 

6. Conclusions 
CADx systems may play an important role in assisting physicians in making deci-

sions. This paper surveyed 83 articles that adopted CNNs for brain MRI classification and 
analyzed the challenges and barriers that CNN-based CADx brain tumor classification 
systems face today in clinical application and development. A detailed analysis of the po-
tential factors that affect classification accuracy is provided in this study. From the com-
parative analysis in Table 4b, it is clear that CNN techniques and algorithms have great 
power and ability to handle medical MR data. However, many of the CNN classification 
models that have been developed so far still are still lacking in one way or another in terms 
of clinical application and development. Research oriented towards appropriately ad-
dressing the challenges noted here can help drive the translation of CNN research into 
clinical practice for brain tumor classification. In this review, some performance degrad-
ing factors and their solutions are also discussed to provide researchers in the biomedical 
and machine learning communities with indicators for developing optimized CADx sys-
tems for brain tumor classification. 
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