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Abstract: Convolutional neural networks (CNNs) constitute a widely used deep learning approach
that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still
face some critical challenges in moving towards clinic application. The main objective of this work
is to present a comprehensive review of studies using CNN architectures to classify brain tumors
using MR images with the aim of identifying useful strategies for and possible impediments in the
development of this technology. Relevant articles were identified using a predefined, systematic
procedure. For each article, data were extracted regarding training data, target problems, the network
architecture, validation methods, and the reported quantitative performance criteria. The clinical
relevance of the studies was then evaluated to identify limitations by considering the merits of
convolutional neural networks and the remaining challenges that need to be solved to promote
the clinical application and development of CNN algorithms. Finally, possible directions for future
research are discussed for researchers in the biomedical and machine learning communities. A total of
83 studies were identified and reviewed. They differed in terms of the precise classification problem
targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported
performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas,
and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade
gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning
methods for brain tumor classification. Many networks demonstrated good performance, and it is
not evident that any specific methodological choice greatly outperforms the alternatives, especially
given the inconsistencies in the reporting of validation methods, performance metrics, and training
data encountered. Few studies have focused on clinical usability.

Keywords: deep learning; convolutional neural network; brain tumor classification; magnetic reso-
nance imaging; clinical application; clinical effectiveness; computer-aided diagnosis
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1. Introduction

Brain tumors are a heterogenous group of common intracranial tumors that cause
significant mortality and morbidity [1,2]. Malignant brain tumors are among the most ag-
gressive and deadly neoplasms in people of all ages, with mortality rates of 5.4/100,000 men
and 3.6/100,000 women per year being reported between 2014 and 2018 [3]. According
to the 2021 World Health Organization (WHO) Classification of Tumors of the Central
Nervous System, brain tumors are classified into four grades (I to IV) of increasingly ag-
gressive malignancy and worsening prognosis. Indeed, in clinical practice, tumor type
and grade influence treatment choice. Within WHO Grade IV tumors, glioblastoma is
the most aggressive primary brain tumor, with a median survival after diagnosis of just
12–15 months [4].

The pathological assessment of tissue samples is the reference standard for tumor
diagnosis and grading. However, a non-invasive tool capable of accurately classifying
tumor type and of inferring grade would be highly desirable [5]. Although there are
several non-invasive imaging modalities that can visualize brain tumors, i.e., Computed
Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging
(MRI), the last of these remains the standard of care in clinical practice [6]. MRI conveys
information on the lesion location, size, extent, features, relationship with the surrounding
structures, and associated mass effect [6]. Beyond structural information, MRI can also
assess microstructural features such as lesion cellularity [7], microvascular architecture [8],
and perfusion [9]. Advanced imaging techniques may demonstrate many aspects of tumor
heterogeneity related to type, aggressiveness, and grade; however, they are limited in
assessing the mesoscopic changes that predate macroscopic ones [10]. Many molecular
imaging techniques have recently been developed to better reveal and quantify hetero-
geneity, permitting a more accurate characterization of brain tumors. However, in order to
make use of this wealth of new information, more sophisticated and potentially partially
automated tools for image analysis may be useful [10].

Computer-aided detection and diagnosis (CADe and CADx, respectively), which refer
to software that combines artificial intelligence and computer vision to analyze radiological
and pathology images, have been developed to help radiologists diagnose human disease
in several body districts, including in applications for colorectal polyp detection and
segmentation [11,12] and lung cancer classification [13–15].

Machine learning has vigorously accelerated the development of CAD systems [16].
One of the most recent applications of machine learning in CAD is classifying objects of
interest, such as lesions, into specific classes based on input features [17–20]. In machine
learning, various image analysis tasks can be performed by finding or learning informative
features that successfully describe the regularities or patterns in data. However, convention-
ally, meaningful or task-relevant features are mainly designed by human experts based on
their knowledge of the target domain, making it challenging for those without domain ex-
pertise to leverage machine learning techniques. Furthermore, traditional machine learning
methods can only detect superficial linear relationships, while the biology underpinning
living organisms is several orders of magnitude more complex [21].

Deep learning [22], which is inspired by an understanding of the neural networks
within the human brain, has achieved unprecedented success in facing the challenges
mentioned above by incorporating the feature extraction and selection steps into the
training process [23]. Generically, deep learning models are represented by a series of
layers, and each is formed by a weighted sum of elements in the previous layer. The first
layer represents the data, and the last layer represents the output or solution. Multiple layers
enable complicated mapping functions to be reproduced, allowing deep learning models
to solve very challenging problems while typically needing less human intervention than
traditional machine learning methods. Deep learning currently outperforms alternative
machine learning approaches [24] and, for the past few years, has been widely used for a
variety of tasks in medical image analysis [25].
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A convolutional neural network (CNN) is a deep learning approach that has frequently
been applied to medical imaging problems. It overcomes the limitations of previous
deep learning approaches because its architecture allows it to automatically learn the
features that are important for a problem using a training corpus of sufficient variety and
quality [26]. Recently, CNNs have gained popularity for brain tumor classification due to
their outstanding performance with very high accuracy in a research context [27–31].

Despite the growing interest in CNN-based CADx within the research community,
translation into daily clinical practice has yet to be achieved due to obstacles such as the lack
of an adequate amount of reliable data for training algorithms and imbalances within the
datasets used for multi-class classification [32,33], among others. Several reviews [31–36]
have been published in this regard, summarizing the classification methods and key
achievements and pointing out some of the limitations in previous studies, but as of yet,
none of them have focused on the deficiencies regarding clinical adoption or have attempted
to determine the future research directions required to promote the application of deep
learning models in clinical practice. For these reasons, the current review considers the
key limitations and obstacles regarding the clinical applicability of studies in brain tumor
classification using CNN algorithms and how to translate CNN-based CADx technology
into better clinical decision making.

In this review, we explore the current studies on using CNN-based deep learning
techniques for brain tumor classification published between 2015 and 2022. We decided
to focus on CNN architectures, as alternative deep-learning techniques, such as Deep
Belief Networks or Restricted Boltzmann Machines, are much less represented in the
current literature.

The objectives of the review were three-fold: to (1) review and analyze article character-
istics and the impact of CNN methods applied to MRI for glioma classification, (2) explore
the limitations of current research and the gaps in bench-to-bedside translation, and (3) find
directions for future research in this field. This review was designed to answer the follow-
ing research questions: How has deep learning been applied to process MR images for
glioma classification? What level of impact have papers in this field achieved? How can
the translational gap be bridged to deploy deep learning algorithms in clinical practice?

The review is organized as follows: Section 2 introduces the methods used to search
and select literature related to the focus of the review. Section 3 presents the general
steps of CNN-based deep learning methods for brain tumor classification, and Section 4
introduces relevant primary studies, with an overview of their datasets, preprocessing
techniques, and computational methods for brain tumor classification, and presents a
quantitative analysis of the covered studies. Furthermore, we introduce the factors that
may directly or indirectly degrade the performance and the clinical applicability of CNN-
based CADx systems and provide an overview of the included studies with reference to
the degrading factors. Section 5 presents a comparison between the selected studies and
suggests directions for further improvements, and finally, Section 6 summarizes the work
and findings of this study.

2. Materials and Methods
2.1. Article Identification

In this review, we identified preliminary sources using two online databases, PubMed
and Scopus. The search queries used to interrogate each database are described in Table 1.
The filter option for the publication year (2015–2022) was selected so that only papers in
the chosen period were fed into the screening process (Supplementary Materials). Searches
were conducted on 30 June 2022. PubMed generated 212 results, and Scopus yielded
328 results.
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Table 1. The search queries used to interrogate the PubMed and Scopus databases.

PubMed
/Scopus

(deep learning OR deep model OR artificial
intelligence OR artificial neural network OR
autoencoder OR generative adversarial network)
OR convolutional OR (neural network) OR
neural network OR deep model OR
convolutional)

AND

(brain tumor OR glioma OR brain cancer OR
glioblastoma OR astrocytoma OR
oligodendroglioma OR ependymoma)

AND

(classification OR grading OR classify) AND

(MRI OR Magnetic Resonance OR MR images
OR radiographic OR radiology) IN

Title/Abstract

2.2. Article Selection

Articles were selected for final review using a three-stage screening process (Supple-
mentary Materials) based on a series of inclusion and exclusion criteria. After removing
duplicate records that were generated from using two databases, articles were first screened
based on the title alone. The abstract was then assessed, and finally, the full articles were
checked to confirm eligibility. The entire screening process (Supplementary Materials) was
conducted by one author (Y.T.X). In cases of doubt, records were reviewed by other authors
(D.N.M, C.T), and the decision regarding inclusion was arrived at by consensus.

The meet the inclusion criteria, articles had to:

• Be original research articles published in a peer-reviewed journal with full-text access
offered by the University of Bologna;

• Involve the use of any kind of MR images;
• Be published in English;
• Be concerned with the application of CNN deep learning techniques for brain tumor

classification.

Included articles were limited to those published from 2015 to 2022 to focus on deep
learning methodologies. Here, a study was defined as work that employed a CNN-based
deep learning algorithm to classify brain tumors and that involved the use of one or more
of the following performance metrics: accuracy, the area under the receiver operating
characteristics curve, sensitivity, specificity, or F1 score.

Exclusion criteria were:

• Review articles;
• Book or book chapters;
• Conference papers or abstracts;
• Short communications or case reports;
• Unclear descriptions of data;
• No validation performed.

If a study involved the use of a CNN model for feature extraction but traditional
machine learning techniques for the classification task, it was excluded. Studies that used
other deep learning networks, for example, artificial neural networks (ANNs), generative
adversarial networks (GANs), or autoencoders (AEs), instead of CNN models were ex-
cluded. Studies using multiple deep learning techniques as well as CNNs were included in
this study, but only the performance of the CNNs will be reviewed.

Figure 1 reports the numbers of articles screened after exclusion at each stage as
per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [37]. A review of 83 selected papers is presented in this paper. All of the articles
cover the classification of brain tumors using CNN-based deep learning techniques.
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3. Literature Review

This section presents a detailed overview of the research papers dealing with brain
tumor classification using CNN-based deep learning techniques published during the
period from 2015 to 2022. This section is formulated as follows: Section 3.1 presents a
brief overview of the general methodology adopted in the majority of the papers for the
classification of brain MRI images using CNN algorithms. Section 3.2 presents a description
of the popular publicly available datasets that have been used in the research papers
reviewed in the form of a table. Section 3.3 introduces the commonly applied preprocessing
methods used in the reviewed studies. Section 3.4 provides an introduction of widely
used data augmentation methods. Finally, Section 3.5 provides a brief overview of the
performance metrics that provide evidence about the credibility of a specific classification
algorithm model.

3.1. Basic Architecture of CNN-Based Methods

Recently, deep learning has shown outstanding performance in medical image analysis,
especially in brain tumor classification. Deep learning networks have achieved higher
accuracy than classical machine learning approaches [24]. In deep learning, CNNs have
achieved significant recognition for their capacity to automatically extract deep features by
adapting to small changes in the images [26]. Deep features are those that are derived from
other features that are relevant to the final model output.

The architecture of a typical deep CNN-based brain tumor classification frame is
described in Figure 2. To train a CNN-based deep learning model with tens of thousands of
parameters, a general rule of thumb is to have at least about 10 times the number of samples
as parameters in the network for the effective generalization of the problem [38]. Overfitting
may occur during the training process if the training dataset is not sufficiently large [39].
Therefore, many studies [40–44] use 2D brain image slices extracted from 3D brain MRI
volumes to solve this problem, which increases the number of examples within the initial
dataset and mitigates the class imbalance problem. In addition, it has the advantage of
reducing the input data dimension and reducing the computational burden of training the
network.
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Figure 2. The basic workflow of a typical CNN-based brain tumor classification study with four
high-level steps: Step 1. Input Image: 2D or 3D Brain MR samples are fed into the classification model;
Step 2. Preprocessing: several preprocessing techniques are used to remove the skull, normalize the
images, resize the images, and augment the number of training examples; Step 3. CNN Classification:
the preprocessed dataset is propagated into the CNN model and is involved in training, validation,
and testing processes; Step 4. Performance Evaluation: evaluation of the classification performance
of a CNN algorithm with accuracy, specificity, F1 score, area under the curve, and sensitivity metrics.

Data augmentation is another effective technique for increasing both the amount and
the diversity of the training data by adding modified copies of existing data with commonly
used morphological techniques, such as rotation, reflection (also referred to as flipping
or mirroring), scaling, translation, and cropping [44,45]. Such strategies are based on the
assumption that the size and orientation of image patches do not yield robust features for
tumor classification.

In deep learning, overfitting is also a common problem that occurs when the learning
capacity is so large that the network will learn spurious features instead of meaningful
patterns [39]. A validation set can be used in the training process to avoid overfitting
and to obtain the stable performance of the brain tumor classification system on future
unseen data in clinical practice. The validation set provides an unbiased evaluation of a
classification model using multiple subsets of the training dataset while tuning the model’s
hyperparameters during the training process [46]. In addition, validation datasets can be
used for regularization by early stopping when the error on the validation dataset increases,
which is a sign of overfitting to the training data [39,47]. Therefore, in the article selection
process, we excluded the articles that omitted validation during the training process.

Evaluating the classification performance of a CNN algorithm is an essential part
of a research study. The accuracy, specificity, F1 score (also known as the Dice similarity
coefficient) [48], the area under the curve, and sensitivity are important metrics to assess
the classification model’s performance and to compare it to similar works in the field.

3.2. Datasets

A large training dataset is required to create an accurate and trustworthy deep learning-
based classification system for brain tumor classification. In the current instance, this
usually comprises a set of MR image volumes, and for each, a classification label is gen-
erated by a domain expert such as a neuroradiologist. In the reviewed literature, several
datasets were used for brain tumor classification, targeting both binary tasks [27,40,41,45]
and multiclass classification tasks [24,30,49–51]. Table 2 briefly lists some of the publicly
accessible databases that have been used in the studies reviewed in this paper, including
the MRI sequences as well as the size, classes, unbiased Gini Coefficient, and the web
address of the online repository for the specific dataset.

The Gini coefficient (G) [52] is a property of distribution that measures its difference
using uniformity. It can be applied to categorical data in which classes are sorted by
prevalence. Its minimum value is zero if all of the classes are equally represented, and
its maximum values varies between 0.5 for a two-class distribution to an asymptote of
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1 for many classes. The unbiased Gini coefficient divides G by the maximum value of
the number of classes present and takes values in the range of 0–1. The maximum value
for a distribution with n classes is (n − 1)/n. The values of the unbiased Gini coefficient
were calculated using R package DescTools [52]. Table 2 shows the characteristics of public
datasets in terms of balancing the samples of the available classes of tumors (unbiased Gini
coefficient) while considering the total number of samples in the datasets (“Size” column).

Table 2. An overview of publicly available datasets.

Dataset Name Available
Sequences Size Classes Unbiased Gini

Coefficient Source

TCGA-GBM T1w, ceT1w, T2w,
FLAIR 199 patients N/D N/D [53]

TCGA-LGG T1w, ceT1ce, T2w,
FLAIR 299 patients N/D N/D [54]

Brain tumor
dataset from
Figshare (Cheng
et al., 2017)

ceT1w

233 patients (82
MEN, 89 Glioma, 62

PT), 3064 images
(708 MEN, 1426
Glioma, 930 PT)

Patients (82 MEN, 89
Glioma, 62 PT),

images (708 MEN,
1426 Glioma, 930 PT)

0.116 (patients),
0.234 (images) [55]

Kaggle (Navoneel
et al., 2019)

No information
given

253 images (98
normal, 155
tumorous)

98 normal, 155
tumorous 0.225 [56]

REMBRANDT T1w, T2w, FLAIR,
DWI

112 patients (30
AST-II, 17 AST-II, 14
OLI-II, 7 OLI-III, 44

GBM)

30 AST-II, 17 AST-II,
14 OLI-II, 7 OLI-III,

44 GBM
0.402 [57]

BraTS T1w, ceT1w, T2w,
FLAIR

2019: 335 patients
(259 HGG, 76 LGG);
2018: 284 patients

(209 HGG, 75 LGG);
2017: 285 patients

(210 HGG, 75 LGG);
2015: 274 patients

(220 HGG, 54 LGG)

2019: 259 HGG, 76
LGG;2018: 209 HGG,

75 LGG;2017: 210
HGG, 75 LGG; 2015:
220 HGG, 54 LGG

0.546 (2019);
0.472 (2018);
0.474 (2017);
0.606 (2015)

[58]

ClinicalTrials.gov
(Liu et al., 2017)

T1w, ceT1w, T2w,
FLAIR

113 patients (52 LGG,
61 HGG) 52 LGG, 61 HGG 0.080 [59]

CPM-RadPath
2019

T1w, ceT1w, T2w,
FLAIR 329 patients N/D N/D [60]

IXI dataset T1w, T2w, DWI 600 normal images N/D N/D [61]

RIDER
T1w, T2w,
DCE-MRI,
ce-FLAIR

19 GBM patients
(70,220 images) 70,220 images N/D [62]

Harvard Medical
School Data T2w

42 patients (2 normal,
40 tumor), 540

images (27 normal,
513 tumorous)

Patients (2 normal,
40 tumorous),

images (27 normal,
513 tumorous)

0.905 (patients),
0.900 (images) [63]

Among the public datasets, the dataset from Figshare provided by Cheng [55] is the
most popular dataset and has been widely used for brain tumor classification. BraTS, which
refers to the Multimodal Brain Tumor Segmentation Challenge (a well-known challenge
that has taken place every year since 2012), is another dataset that is often used for testing
brain tumor classification methods. The provided data are pre-processed, co-registered
to the same anatomical template, interpolated to the exact resolution (1 mm3), and skull
stripped [55].
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Most MR techniques can generate high-resolution images, while different imaging
techniques show distinct contrast, are sensitive to specific tissues or fluid regions, and
highlight relevant metabolic or biophysical properties of brain tumors [64]. The datasets
listed in Table 2 collect one or more MRI sequences, including T1-weighted (T1w), T2-
weighted (T2w), contrast-enhanced T1-weighted (ceT1w), fluid-attenuated inversion recov-
ery (FLAIR), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) sequences. Among these, the T1w, T2w, ceT1w, and FLAIR
sequences are widely used for brain tumor classification in both research and in clinical
practice. Each sequence is distinguished by a particular series of radiofrequency pulses and
magnetic field gradients, resulting in images with a characteristic appearance [64]. Table 3
lists the imaging configurations and the main clinical distinctions of T1w, T2w, ceT1w, and
FLAIR with information retrieved from [64–67].

Table 3. The imaging configurations and main clinical distinctions of T1w, T2w, ceT1w, and FLAIR.

Sequence Sequence Characteristics Main Clinical Distinctions Example *

T1w Uses short TR and TE [64]

• Lower signal for a higher
water content [66], such
as in edema, tumor,
inflammation, infection,
or chronic hemorrhage
[66]

• Higher signal for fat [66]
• Higher signal for

subacute hemorrhage
[66]
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inversion time nulls the signal
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• Highest signal for gray
matter [67]
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cerebrospinal fluid [67]
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3.3. Preprocessing

Preprocessing is used mainly to remove extraneous variance from the input data and
to simplify the model training task. Other steps, such as resizing, are needed to work
around the limitations of neural network models.
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3.3.1. Normalization

The dataset fed into CNN models may be collected with different clinical protocols
and various scanners from multiple institutions. The dataset may consist of MR images
with different intensities because the intensities of MR image are not consistent across
different MR scanners [69]. In addition, the intensity values of MR images are sensitive to
the acquisition condition [70]. Therefore, input data should be normalized to minimize the
influence of differences between the scanners and scanning parameters. Otherwise, any
CNN network that is created will be ill-conditioned.

There are many methods for data normalization, including min-max normalization,
z-score normalization, and normalization by decimal scaling [71]. Min-max normalization
is one of the most common ways to normalize MR images found in the included arti-
cles [27,36,40]. In that approach, the intensity values of the input MR images are rescaled
into the range of (0, 1) or (−1, 1).

Z-score normalization refers to the process of normalizing every intensity value found
in MR images such that the mean of all of the values is 0 and the standard deviation is
1 [71].

3.3.2. Skull Stripping

MRI images of the brain also normally contain non-brain regions such as the dura
mater, skull, meninges, and scalp. Including these parts in the model typically deterio-
rates its performance during classification tasks. Therefore, in the studies on brain MRI
datasets that retain regions of the skull and vertebral column, skull stripping is widely
applied as a preprocessing step in brain tumor classification problems to improve perfor-
mance [24,72,73].

3.3.3. Resizing

Since deep neural networks require inputs of a fixed size, all of the images need to
be resized before being fed into CNN classification models [74]. Images larger than the
required size can be downsized by either cropping the background pixels or by downscaling
using interpolation [74,75].

3.3.4. Image Registration

Image registration is defined as a process that spatially transforms different images
into one coordinate system. In brain tumor classification, it is often necessary to analyze
multiple images of a patient to improve the treatment plan, but the images may be acquired
from different scanners, at different times, and from different viewpoints [76]. Registration
is necessary to be able to integrate the data obtained from these different measurements.

Rigid image registration is one of the most widely utilized registration methods in
the reviewed studies [77,78]. Rigid registration means that the distance between any two
points in an MR image remains unchanged before and after transformation. This approach
only allows translation and rotation transformations.

3.3.5. Bias Field Correction

In medical images, the bias field is an undesirable artifact caused by factors such as the
scan position and instrument used as well as by other unknown issues [79]. This artifact is
characterized by differences in brightness across the image and can significantly degrade
the performance of many medical image analysis techniques. Therefore, a preprocessing
step is needed to correct the bias field signal before submitting corrupted MR images to a
CNN classification model.

The N4 bias field correction algorithm and the Statistical Parametric Mapping (SPM)
module are common approaches for correcting the inhomogeneity in the intensity of MR
images. The N4 bias field correction algorithm is a popular method for correcting the low-
frequency-intensity non-uniformity present in MR image data [80]. SPM contains several
software packages that are used for brain segmentation. These packages usually contain
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a set for skull stripping, intensity non-uniformity (bias) correction, and segmentation
routines [81].

3.4. Data Augmentation

CNN-based classification requires a large number of data. A general rule of thumb
is to have at least about 10 times the number of samples set as parameters in the network
for the effective generalization of the problem [38]. If the database is significantly smaller,
overfitting might occur. Data augmentation is one of the foremost data techniques to sub-
side imbalanced distribution and data scarcity problems. It has been used in many studies
focusing brain tumor classification [24,45,49,50] and involves geometrical transformation
operations such as rotation, reflection (also referred to as flipping or mirroring), scaling,
translation, and cropping (Figure 3).
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Figure 3. Data augmentation: (a) original image; (b) 18◦ rotation. When rotating by an arbitrary
number of degrees (non-modulo 90), rotation will result in the image being padded in each corner.
Then, a crop is taken from the center of the newly rotated image to retain the largest crop possible
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by 1.5 times; (f) cropping by center cropping to the size 150 × 150; (g) random brightness enhancement;
(h) random contrast enhancement.

Data augmentation techniques can be divided into two classes: position augmentation
and color augmentation. Some of the most popular position augmentation methods
include rotation, reflection (also referred to as flipping or mirroring), scaling, translation,
and cropping, and they have been commonly used to enlarge MR datasets in studies
focusing on brain tumor classification [45,51,72,77]. Color augmentation methods such as
contrast enhancement and brightness enhancement have also been applied in the included
studies [28,43].

Recently, well-established data augmentation techniques have begun to be supple-
mented by automatic methods that use deep learning approaches. For example, the authors
in [44] proposed a progressively growing generative adversarial network (PGGAN) aug-
mentation model to help overcome the shortage of images needed for CNN classification
models. However, such methods are rare in the literature reviewed.

3.5. Performance Measures

Evaluating the classification performance of a CNN algorithm is an essential part of a
research study. Here, we outline the evaluation metrics that are the most commonly en-
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countered in the brain tumor classification literature, namely accuracy, precision, sensitivity,
F1 score, and the area under the curve.

In classification tasks, true positive (TP) represents an image that is correctly classified
into the positive class according to the ground truth. Similarly, true negative is an outcome
in which the model correctly classifies an imagine into the negative class. On the other hand,
false positive (FP) is an outcome in which the model incorrectly classifies an image into
the positive class when the ground truth is negative. False negative (FN) is an outcome in
which the model incorrectly classifies an image that should be placed in the positive class.

3.5.1. Accuracy

Accuracy (ACC) is a metric that measures the performance of a model in correctly
classifying the classes in a given dataset and is given as the percentage of total correct
classifications divided by the total number of images.

ACC =
TP + TN

TP + TN + FP + FN
(1)

3.5.2. Specificity

Specificity (SPE) represents the proportion of correctly classified negative samples to
all of the negative samples identified in the data.

SPE =
TN

TN + FP
(2)

3.5.3. Precision

Precision (PRE) represents the ratio of true positives to all of the identified positives.

PRE =
TP

TP + FP
(3)

3.5.4. Sensitivity

Sensitivity (SEN) measures the ability of a classification model to identify positive
samples. It represents the ratio of true positives to the total number of (actual) positives in
the data.

SEN =
TP

TP + FN
(4)

3.5.5. F1 Score

The F1 score [48] is one of the most popular metrics and considers both precision and
recall. It can be used to assess the performance of classification models with class imbalance
problems [82] and considers the number of prediction errors that a model makes and looks
at the type of errors that are made. It is higher if there is a balance between PRE and SEN.

F1 score = 2
PRE × SEN
PRE + SEN

(5)

3.5.6. Area under the Curve

The area under the curve (AUC) measures the entire two-dimensional area underneath
the ROC curve from (0, 0) to (1, 1). It measures the ability of a classifier to distinguish
between classes.

Clinicians and software developers need to understand how performance metrics can
measure the properties of CNN models for different medical problems. In research studies,
several metrics are typically used to evaluate a model’s performance.

Accuracy is among the most commonly used metric to evaluate a classification model
but is also known for being misleading in cases when the classes have different distributions
in the data [83,84]. Precision is an important metric in cases when the occurrence of false
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positives is unacceptable/intolerable [84]. Specificity measures the ability of a model to
correctly identify people without the disease in question. Sensitivity, also known as recall, is
an important metric in cases where identifying the number of positives is crucial and when
the occurrence of false negatives is unacceptable/intolerable [83,84]. It must be interpreted
with care in cases with strongly imbalanced classes.

It is important to recognize that there is always a tradeoff between sensitivity and
specificity. Balancing between two metrics has to be based on the medical use case and
the associated requirements [83]. Precision and sensitivity are both proportional to TP
but have an inverse relationship. Whether to maximize recall or precision depends on
the application: Is it more important to only identify relevant instances, or to make sure
that all relevant instances are identified? The balance between precision and sensitivity
has to be considered in medical use cases in which some false positives are tolerable; for
example, in cancer detection, it is crucial to identify all positive cases. On the other hand,
for a less severe disease with high prevalence, it is important to achieve the highest possible
precision [83].

4. Results

This section provides an overview of the research papers focusing on brain tumor
classification using CNN techniques. Section 4.1 presents a quantitative analysis of the
number of articles published from 2015 to 2022 on deep learning and CNN in brain
tumor classification and the usage of the different CNN algorithms applied in the studies
covered. Then, Section 4.2 introduces the factors that may directly or indirectly degrade
the performance and the clinical applicability of CNN-based CADx systems. Finally, in
Section 4.3, an overview of the included studies will be provided with reference to the
degrading factors introduced in Section 4.2.

4.1. Quantitative Analysis

As mentioned in the introduction, many CNN models have been used to classify the
MR images of brain tumor patients. They overcome the limitations of earlier deep learning
approaches and have gained popularity among researchers for brain tumor classification
tasks. Figure 4 shows the number of research articles on brain tumor classification using
deep learning methods and CNN-based deep learning techniques published on PubMed
and Scopus in the years from 2015 to June 2022; the number of papers related to brain
tumor classification using CNN techniques grows rapidly from 2019 onwards and accounts
for the majority of the total number of studies published in 2020, 2021, and 2022. This is
because of the high generalizability, stability, and accuracy rate of CNN algorithms.
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Figure 5 shows the usage of the most commonly used preprocessing techniques for
addressing problems in brain tumor classification, including data augmentation, normal-
ization, resizing, skull stripping, bias field correction, and registration. In this figure, only
data from 2017 to 2022 are visualized, as no articles using the preprocessing methods
mentioned were published in 2015 or 2016. Since 2020, data augmentation has been used
in the majority of studies to ease data scarcity and overfitting problems. However, the
bias field problem has yet to be taken seriously, and few studies have included bias field
correction in the preprocessing process.
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Figure 6 breaks down the usage of the publicly available CNN architectures used in
the articles included in this review, including custom CNN models, VGG, AlexNet, ResNet,
GoogLeNet, DenseNet, and EfficientNet.
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AlexNet [85] came out in 2012 and was a revolutionary advancement in deep learning;
it improved traditional CNNs by introducing a composition of consecutively stacked con-
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volutional layers and became one of the best models for image classification. VGG, which
refers to the Visual Geometry Group, was a breakthrough in the world of convolutional
neural networks after AlexNet. It is a type of deep CNN architecture with multiple layers
that was originally proposed by K. Simonyan and A. Zisserman in [86] and was developed
to improve model performance by increasing the depth of such CNNs.

GoogLeNet is a deep convolutional neural network with 22 layers based on the Incep-
tion architecture; it was developed by researchers at Google [87]. GoogLeNet addresses
most of the problems that large networks face, such as computational expense and over-
fitting, by employing the Inception module. This module can use max pooling and three
varied sizes of filters (1 × 1, 3 × 3, 5 × 5) for convolution in a single image block; such
blocks are then concatenated and passed onto the next layer. An extra 1 × 1 convolution
can be added to the neural network before the 3 × 3 and 5 × 5 layers to make the process
even less computationally expensive [87]. ResNet stands for Deep Residual Network. It is
an innovative convolutional neural network that was originally proposed in [88]. ResNet
makes use of residual blocks to improve the accuracy of models. A residual block is a skip-
connection block that typically has double- or triple-layer skips that contain nonlinearities
(ReLU) and batch normalization in between; it can help to reduce the problem of vanishing
gradients or can help to mitigate accuracy saturation problems [88]. DenseNet, which
stands for Dense Convolutional Network, is a type of convolutional neural network that
utilizes dense connections between layers. DenseNet was mainly developed to improve the
decreased accuracy caused by the vanishing gradient in neural networks [89]. Additionally,
those CNNs take in images with a pixel resolution of 224 × 224. Therefore, for brain tumor
classification, the authors need to center crop a 224 × 224 patch in each image to keep the
input image size consistent.

Convolutional neural networks are commonly built using a fixed resource budget.
When more resources are available, the depth, width, and resolution of the model need to
be scaled up for better accuracy and efficiency [90]. Unlike previous CNNs, EfficientNet is a
novel baseline network that uses a different model-scaling technique based on a compound
coefficient and neural architecture search methods that can carefully balance network depth,
width, and resolution [90].

4.2. Clinical Applicability Degrading Factors

This section introduces the factors that hinder the adoption and development of CNN-
based brain tumor classification CADx systems into clinic practice, including data quality,
data scarcity, data mismatch, data imbalance, classification performance, research value
towards clinic needs, and the Black-Box characteristics of CNN models.

4.2.1. Data Quality

During the MR image acquisition process, both the scanner and external sources may
produce electrical noise in the receiver coil, generating image artifacts in the brain MR
volumes [69]. In addition, the MR image reconstruction process is sensitive to acquisition
conditions, and further artifacts are introduced if the subject under examination moves
during the acquisition of a single image [69]. These errors are inevitable and reduce the
quality of the MR images used to train networks. As a result, the quality of the training data
degrades the sensitivity/specificity of CNN models, thus compromising their applicability
in a clinic setting.

4.2.2. Data Scarcity

Big data is one of the biggest challenges that CNN-based CADx systems face today. A
large number of high-quality annotated data is required to build high-performance CNN
classification models, while it is a challenge to label a large number of medical images
due to the complexity of medical data. When a CNN classification system does not have
enough data, overfitting can occur—as classification is based on extraneous variance in the
training set—affecting the capacity of the network to generalize new data [91].
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4.2.3. Data Mismatch

Data mismatch refers to a situation in which a model that has been well-trained in a lab
environment fails to generalize real-world clinical data. It might be caused by overfitting of
the training set or due to mismatch between research images and clinic ones [82]. Studies
are at high risk of generalization failure if they omit a validation step or if the test set does
not reflect the characteristics of the clinical data.

4.2.4. Class Imbalance

In brain MRI datasets such as the BraTS 2019 dataset [92], which consists of 210
HGG and 75 LGG patients (unbiased Gini coefficient 0.546, as shown in Table 2), HGG is
represented by a much higher percentage of samples than LGG, leading to so-called class
imbalance problems, in which inputting all of the data into the CNN classifier to build up
the learning model will usually lead to a learning bias to the majority class [93]. When an
unbalanced training set is used, it is important to assess model performance using several
performance measures (Section 3.5).

4.2.5. Research Value towards Clinical Needs

Different brain tumor classification tasks were studied using CNN-based deep learning
techniques during the period from 2015 to 2022, including clinically relevant two-class
classification (normal vs. tumorous [29,41,94,95], HGG vs. LGG [27,40,45,73], LGG-II vs.
LGG-III [96], etc.); three-class classification (normal vs. LGG vs. HGG [24], meningioma
(MEN) vs. pituitary tumor (PT) vs. glioma [39,42,49,50], glioblastoma multiforme (GBM)
vs. astrocytoma (AST) vs. oligodendroglioma (OLI) [30], etc.); four-class classification
(LGG vs. OLI vs. anaplastic glioma (AG) vs. GBM [72], normal vs. AST-II vs. OLI-III vs.
GBM-IV [24], normal vs. MEN vs. PT vs. glioma [97], etc.); five-class classification (AST-II
vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV [24]); and six-class classification (normal vs.
AST-II vs. AST-III vs. OLI-II vs. OLI-III vs. GBM-IV [24]).

Not all classification tasks are equally difficult, and this is the case for the deep
learning research community and clinical practice. The authors in [24] used AlexNet for
multi-class classification tasks, including two-class classification: normal vs. tumor, three-
class classification: normal vs. LGG vs. HGG; four-class classification: normal vs. AST
vs. OLI vs. GBM; five-class classification: AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM-IV, and six-class classification: normal vs. AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM-IV. The results reported 100% accuracy for the normal vs. tumorous classification.
The accuracy for the five-class classification (AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM-IV) was only 87.14%. Similarly, in a recent publication [98], the authors utilized the
same CNN model for multi-class brain tumor classification. The overall accuracy obtained
for normal vs. tumorous classification reached 100% compared to the lower accuracy of
90.35% obtained for the four-class classification task (Grade I vs. Grade II vs. Grade III vs.
Grade IV) and 86.08% for the five-class classification of AST-II vs. AST-III vs. OLI-II vs.
OLI-III vs. GBM.

The goal of research in the field of CADx is to help address existing unmet clinical
needs and to provide assistance methods and tools for the difficult tasks that human
professionals cannot easily handle in clinical practice. It is observed that CNN-based
models have achieved quite high accuracies for normal/tumorous image classification,
while more research is needed to improve the classification performance of more difficult
tasks, especially in five-class classification (e.g., AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM) and four-class classification (e.g., Grade I vs. Grade II vs. Grade III vs. Grade IV)
tasks. Therefore, studies that use normal vs. tumorous as their target problem have little
clinical value.

4.2.6. Classification Performance

Classification performance, which indicates the reliability and trustworthiness of
CADx systems, is one of the most important factors to be considered when translating
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research findings into clinical practice. It has been shown that CNN techniques perform
well in most of brain tumor classification tasks, such as in two-class classification (normal
and tumorous [94,95] and HGG and LGG [45,73]) and three-class classification (normal vs.
LGG vs. HGG [24] and MEN vs. PT vs. glioma [49,50]) tasks. However, the classification
performance obtained for more difficult classification tasks, such as a five-class classification
between AST-II, AST-III, OLI-II, OLI-III, and GBM, remains poor [24,98] and justifies
further research.

4.2.7. Black-Box Characteristics of CNN Models

The brain tumor classification performance of some of the CNN-based deep learning
techniques reviewed here is remarkable. Still, their clinical application is also limited by
another factor: the “Black-Box” problem. Even the designers of a CNN model cannot
usually explain the internal workings of the model or why it arrived at a specific decision.
The features used to decide the classification of any given image are not an output of the
system. This lack of explainability reduces the confidence of clinicians in the results of the
techniques and impedes the adoption and development of deep learning tools into clinical
practice [99].

4.3. Overview of Included Studies

Many research papers have emerged following the wave of enthusiasm for CNN-based
deep learning techniques from 2015 to present day. In this review, 83 research papers are
assessed to summarize the effectiveness of CNN algorithms in brain tumor classification
and to suggest directions for future research in this field.

Among the articles included, twenty-five use normal/tumorous as their classification
target. However, as mentioned in Section 4.2.5, the differentiation between normal and
tumorous images is not a difficult task. It has been well-solved both in research and
clinic practice and thus has little value for clinical application. Therefore, studies that use
normal vs. tumorous as their target problem will not be reviewed further in the following
assessment steps.

Table 4a provides an overview of the included studies that focus on CNN-based deep
learning methods for brain tumor classification but does not include studies working with
a normal vs. tumorous classification. The datasets, MRI sequences, size of the datasets,
and the preprocessing methods are summarized. Table 4b summarizes the classification
tasks, classification architecture, validation methods, and performance metrics of the
reviewed articles.

As introduced in Section 4.2, the major challenge confronting brain tumor classification
using CNN techniques in MR images lies in the training data, including the challenges
caused by data quality, data scarcity, data mismatch, and data imbalance, which hinder the
adoption and development of CNN-based brain tumor classification CADx systems into
clinic practice. Here, we assess several recently published studies to provide a convenient
collection of the state-of-the-art techniques that have been used to address these issues and
the problems that have not been solved in those studies.

Currently, data augmentation is recognized as the best solution to the problem caused
by data scarcity and has been widely utilized in brain tumor classification studies.

The authors in [100] used different data augmentation methods, including rotation,
flipping, Gaussian blur, sharpening, edge detection, embossing, skewing, and shearing,
to increase the size of the dataset. The proposed system aims to classify between Grade I,
Grade II, Grade III, and Grade IV, and the original data consist of 121 images (36 Grade I
images, 32 Grade II images, 25 Grade III images, and 28 Grade IV images), and by using
data augmentation techniques, 30 new images are generated from each MR image. The
proposed model is experimentally evaluated using both augmented and original data. The
results show that the overall accuracy after data augmentation reaches 90.67%, which is
greater than the accuracy of 87.38% obtained without augmentation.
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While most data augmentation techniques aim to increase extraneous variance in the
training set, deep learning can be used by itself, at least in theory, to increase meaningful
variance. In a recent publication by Allah et al. [44], a novel data augmentation method
called a progressive growing generative adversarial network (PGGAN) was proposed
and combined with rotation and flipping methods. The method involves an incremental
increase of the size of the model during the training to produce MR images of brain tumors
and to help overcome the shortage of images for deep learning training. The brain tumor
images were classified using a VGG19 feature extractor coupled with a CNN classifier.
The accuracy of the combined VGG19 + CNN and PGGAN data augmentation framework
achieved an accuracy of 98.54%.

Another approach that helps overcome the problem of data scarcity and that can also
reduce computational costs and training time is transfer learning. Transfer learning is a hot
research topic in machine learning; previously learned knowledge can be transferred for
the performance of a new task by fine-tuning a previously generated model with a smaller
dataset that is more specific to the aim of the study. Transfer learning is usually expressed
using pre-trained models such as VGG, GoogLeNet, and AlexNet that have been trained
on the large benchmark dataset ImageNet [101].
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Table 4. (a) Overview of included studies that focus on CNN-based deep learning methods for brain tumor classification, with the exception of studies focusing on
normal vs. tumorous classification. Datasets, MRI sequences, size of the datasets, and preprocessing methods are summarized. (b) Overview of included studies that
focus on CNN-based deep learning methods for brain tumor classification, with the exception of study focusing on normal vs. tumorous classification. Classification
tasks, classification architecture, validation methods, and performance metrics are summarized.
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Özcan et al.
[27] 2021 Private dataset T2w/FLAIR 104 (50 LGG, 54

HGG) 518 x x Conversion to
BMP x x x x

Hao et al.
[102] 2021 BraTS 2019 T1w, ceT1w, T2w 335 (259 HGG, 76

LGG) 6700 x x x

Tripathi et al.
[103] 2021

1. TCGA-GBM,
2. LGG-
1p19qDeletion

T2w 322 (163 HGG, 159
LGG)

7392 (5088 LGG, 2304
HGG) x x x x x x

Ge et al. [40]
2020 BraTS 2017 T1w, ceT1w, T2w,

FLAIR
285 (210 HGG, 75
LGG) x x

Mzoughi et al.
[28] 2020 BraTS 2018 ceT1w 284 (209 HGG, 75

LGG) x x Contrast
enhancement x

Yang et al.
[45] 2018

ClinicalTrials.gov
(NCT026226201) ceT1w 113 (52 LGG, 61

HGG)
Conversion to
BMP x x x

Histogram
equalization,
adding noise

Zhuge et al.
[77] 2020

1.TCIA-LGG, 2.
BraTS 2018

T1w, T2w, FLAIR,
ceT1w

315 (210 HGG, 105
LGG) x x

Clipping, bias
field
correction

x x x

Decuyper et al.
[73] 2021

1. TCGA-LGG, 2.
TCGA-GBM, 3.
TCGA-
1p19qDeletion, 4.
BraTS 2019. 5.
GUH dataset

T1w, ceT1w, T2w,
FLAIR

738 (164 from
TCGA-GBM, 121
from TCGA-LGG,
141 from
1p19qDeletion, 202
from BraTS 2019, 110
from GUH dataset)
(398 GBM vs. 340
LGG)

x x x Interpolation x x Elastic
transform
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Table 4. Cont.

He et al. [78]
2021

1.Dataset from
TCIA FLAIR, ceT1w 214 (106 HGG, 108

LGG) x x x x

2. BraTS 2017 FLAIR, ceT1w 285 (210 HGG, 75
LGG) x x x x

Hamdaoui
et al. [104]
2021

BraTS 2019 T1w, ceT1w, T2w,
FLAIR

285 (210 HGG, 75
LGG)

53,064 (26,532 HGG,
26,532 LGG) x x x

Chikhalikar
et al. [105]
2021

BraTS 2015 T2w, FLAIR 274 (220 HGG, 54
LGG) 521 Contrast

enhancement

Ahmad [106]
2019 BraTS 2015 No info shared 124 (99 HGG, 25

LGG) x

Naser et al.
[96] 2020 TCGA-LGG T1W, FLAIR, ceT1w 108 (50 Grade II, 58

Grade III) x x x Padding x x x x x

Allah et al.
[44] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x x PGGAN

Swati et al.
[50] 2019

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x

Guan et al.
[43] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x Contrast

enhancement x x

Deepak et al.
[39] 2019

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x

Díaz-Pernas
et al. [42] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x Elastic

transform
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Table 4. Cont.

Ismael et al.
[49] 2020

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x x x x x x

Whitening,
brightness
manipulation

Alhassan et al.
[107] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x

Bulla et al.
[108] 2020

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x

Ghassemi et al.
[109] 2020

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x x

Kakarla et al.
[110] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x Contrast

enhancement

Noreen et al.
[111] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x

Noreen et al.
[112] 2020

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x

Kumar et al.
[113] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x

Badža et al.
[114] 2020

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x x x

Alaraimi et al.
[115] 2021

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x x x x x x

Lo et al. [116]
2019

Dataset from
TCIA ** ceT1w

130 (30 Grade II, 43
Grade III, 57 Grade
IV)

x x Contrast
enhancement x x x x x

Kurc et al.
[117] 2020

Data from
TCGA ceT1w, T2-FLAIR 32 (16 OLI, 16 AST) x x Bias field

correction x x

Pei et al. [118]
2020

1. CPM-RadPath
2019, 2. BraTS
2019

T1w, ceT1w, T2w,
FLAIR

398 (329 from
CPM-RadPath 2019,
69 from BraTS 2019)

x x x Noise
reduction x x x
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Ahammed
et al. [72] 2019 Private dataset T2w 20

557 (130 Grade I, 169
Grade II, Grade III
103, Grade IV 155)

x Filtering,
enhancement x x x x

Mohammed
et al. [51] 2020 Radiopaedia No info shared 60 (15 of each class)

1258 (311 EP, 286
normal, 380 MEN,
281 MB)

x Denoising x x x x x

McAvoy et al.
[119] 2021 Private dataset ceT1w 320 (160 GBM, 160

PCNSL)
3887 (2332 GBM,
1555 PCNSL) x x

Random
changes to
color, noise
sampling

x

Gilanie et al.
[120] 2021 Private dataset T1w, T2w, FLAIR

180 (50 AST-I, 40
AST-II, 40 AST-III, 50
AST-IV)

30240 (8400 AST-I,
6720 AST-II, 6720
AST-III, 8400 AST-IV)

x Bias field
correction x

Kulkarni et al.
[121] 2021 Private dataset T1w, T2w, FLAIR 200 (100 benign, 100

malignant)

Denoising,
contrast
enhancement

x x x x x

Artzi et al.
[122] 2021 Private dataset T1w, FLAIR, DTI 158 (22 Normal, 63

PA, 57 MB, 16 EP)
731 (110 Normal, 280
PA, 266 MB, 75 EP) x x x

Background
removal, bias
field
correction

x x x Brightness
changes

Tariciotti et al.
[123] 2022 Private dataset ceT1w

121 (47 GBM, 37
PCNSL, 37
Metastasis)

3597 (1481 GBM,
1073 PCNSL, 1043
Metastasis))

x x Conversion to
PNG

Ait et al. [124]
2022

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x

Alanazi et al.
[125] 2022

1. Dataset from
Kaggle No info shared

826 Glioma, 822
MEN, 395 no tumor,
and 827 PT

x x x Noise removal

2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2) x x x Noise removal

Ye et al. [126]
2022 Private dataset ceT1w 73 x x Image trans-

formation x

Blurring,
ghosting,
motion,
affining,
random
elastic
deformation
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Gaur et al.
[127] 2022

MRI dataset by
Bhuvaji No info shared 2296 x Gaussian

noise adding

Guo et al.
[128] 2022

CPM-RadPath
2020

T1w, ceT1w, T2w,
FLAIR

221 (133 GBM, 54
AST, 34 OLI) x x

Bias field
correction,
Gaussian
noise adding

x x
Random
contrast
adjusting

Aamir et al.
[129] 2022

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x Contrast

enhancement x x

Rizwan et al.
[130] 2022

Figshare (Cheng
et al., 2017) ceT1w 230 (81 MEN, 90

Glioma, 59 PT)
3061 (707 MEN, 1425
Glioma, 929 PT) x x

Noise filtering
and
smoothing

salt-
noise/grayscale
di stortion

Dataset from
TCIA T1w

513 (204 Grade II, 128
Grade III, 181 Grade
IV)

70 (32 Grade II, 18
Grade III, 20 Grade
IV)

x x
Noise filtering
and
smoothing

salt-
noise/grayscale
di stortion

Nayak et al.
[131] 2022

1.daataset from
Kaggle, 2.
Figshare (Cheng
et al., 2017)

ceT1w
1. No info shared, 2.
233 (as shown in
Table 2)

3260 (196 Normal,
3064 (as shown in
Table 2))

x
Gaussian
blurring, noise
removal

x x x

Chatterjee
et al. [132]
2022

1.BraTS2019, 2.
IXI Dataset ceT1w 1. 332 (259 HGG, 73

LGG), 2. 259 Normal x x x x Affine

Khazaee et al.
[133] 2022 BraTS2019 ceT1w, T2w, FLAIR 335 (259 HGG, 76

LGG)
26,904 (13,233 HGG,
13,671 LGG) x x

Isunuri et al.
[134] 2022

Figshare (Cheng
et al., 2017) ceT1w 233 (as shown in

Table 2)
3064 (as shown in
Table 2) x x

Gu et al. [30]
2021

1. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2) x

2.
REMBRANDT No info shared 130 110,020 x



Diagnostics 2022, 12, 1850 23 of 46

Table 4. Cont.

Rajini [135]
2019

1. IXI dataset,
REMBRANDT,
TCGA-GBM,
TCGA-LGG

No info shared

600 normal images
from IXI dataset, 130
patients from
REMBRANDT, 200
patients from
TCGA-GBM, 299
patients from
TCGA-LGG

2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2)

Anaraki et al.
[136] 2019

1: IXI dataset,
REMBRANDT,
TCGA-GBM,
TCGA-LGG,
private dataset

no info of IXI, ceT1w
from REMBRANDT,
TCGA-GBM,
TCGA-LGG

600 normal images
from IXI dataset, 130
patients from
REMBRANDT, 199
patients from
TCGA-GBM, 299
patients from
TCGA-LGG, 60
patients from private
dataset

x x x x x x

2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2) x x x x x x

Sajjad et al.
[100] 2019 1. Radiopaedia No info shared

121 (36 Grade I, 32
Grade II, 25 Grade III,
28 Grade IV)

x x
Denoising,
bias field
correction

x x x

Gaussian
blurring,
sharpening,
embossing,
skewing

2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2) x x

Denoising,
bias field
correction

x x x

Gaussian
blurring,
sharpening,
embossing,
skewing

Wahlang et al.
[137] 2020 1. Radiopaedia FLAIR 11 (2 Metastasis, 6

Glioma, 3 MEN) x

2. BraTS 2017 No info shared 20 3100 Median
filtering
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Tandel et al.
[138] 2021 REMBRANDT T2w See 1–4 below See 1–4 below x Converted to

RGB x x

130 1. 2156 (1041 normal,
1091 tumorous)

47 2. 557 (356 AST-II,
201 AST-III)

21 3. 219 (128 OLI-II, 91
OLI-III)

112 4. 1115 (484 LGG, 631
HGG)

Xiao et al. [97]
2021

1. Private
dataset No info shared 1109 (495 MT, 614

Normal) x

2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2) x

3. Brain Tumor
Classification
(MRI) Dataset
from Kaggle

No info shared
3264 (937 MEN, 926
Glioma, 901 PT, 500
Normal)

x

Tandel et al.
[24] 2020 REMBRANDT T2w

112 (30 AST-II, 17
AST-II, 14 OLI-II, 7
OLI-III, 44 GBM)

See 1–5 below x x x

1. 2132 (1041 normal,
1091 tumorous)

2. 2156 (1041 normal,
484 LGG, 631 HGG)

3. 2156 (1041 normal,
557 AST, 219 OLI, 339
GBM)

4. 1115 (356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)

Ayadi et al.
[98] 2021 1. Radiopaedia No info shared

121 (36 Grade I, 32
Grade II, 25 Grade III,
28 Grade IV)

x x
Gaussian
blurring,
sharpening
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2. Figshare
(Cheng et al.,
2017)

ceT1w 233 (as shown in
Table 2)

3064 (as shown in
Table 2)

3.
REMBRANDT FLAIR, T1w, T2w

130 (47 AST, 21 OLI,
44 GBM, 18
unknown)

See 1–5 below x x
Gaussian
blurring,
sharpening

1. 2132 (1041 normal, 1091 tumorous)
2. 2156 (1041 normal, 484 LGG, 631 HGG)
3. 2156 (1041 normal, 557 AST, 219 OLI, 339 GBM)
4. 1115 (356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)
5. 2156 (1041 normal, 356 AST-II, 201 AST-III, 128 OLI-II, 91 OLI-III, 339 GBM)

(b)

Author and Year Classification Tasks Model Architecture Validation Performance ACC% 5

2 classes

Özcan et al. [27] 2021 LGG (grade II) vs. HGG (grade IV) Custom CNN model 5-fold CV SEN = 98.0%, SPE = 96.3%, F1 score = 97.0%, AUC = 0.989 97.1

Hao et al. [102] 2021 LGG vs. HGG Transfer learning with
AlexNet No info shared AUC = 82.89%

Tripathi et al. [103] 2021 LGG vs. HGG Transfer learning with
Resnet18 No info shared 95.87

Ge et al. [40] 2020 LGG vs. HGG Custom CNN model No info shared SEN = 84.35%, SPE = 93.65% 90.7

Mzoughi et al. [28] 2020 LGG vs. HGG Multi-scale 3D CNN No info shared 96.49

Yang et al. [45] 2018 LGG vs. HGG Transfer learning with
AlexNet, GoogLeNet 5-fold CV AUC = 0.939 86.7

Zhuge et al. [77] 2020 LGG vs. HGG Transfer learning with
ResNet50 5-fold CV SEN = 93.5%, SPE = 97.2% 96.3

3D CNN 5-fold CV SEN = 94.7%, SPE = 96.8% 97.1

Decuyper et al. [73] 2021 LGG vs. GBM 3D CNN No info shared SEN = 90.16%, SPE = 89.80%, AUC = 0.9398 90

He et al. [78] 2021 LGG vs. HGG Custom CNN model 5-fold CV TCIA: SEN = 97.14%, SPE = 90.48%, AUC = 0.9349 92.86

BraTS 2017: SEN = 95.24%, SPE = 92%, AUC = 0.952 94.39

Hamdaoui et al. [104] 2021 LGG vs. HGG

Transfer learning with
stacking VGG16, VGG19,
MobileNet, InceptionV3,
Xception, Inception
ResNetV2, DenseNet121

10-fold CV PRE = 98.67%, F1 score = 98.62%, SEN = 98.33% 98.06

Chikhalikar et al. [105] 2021 LGG vs. HGG Custom CNN model No info shared 99.46

Ahmad [106] 2019 LGG vs. HGG Custom CNN model No info shared 88
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Khazaee et al. [133] 2022 LGG vs. HGG Transfer learning with
EfficientNetB0 CV PRE = 98.98%, SEN = 98.86%, SPE = 98.79% 98.87%

Naser et al. [96] 2020 LGG (Grade II) vs. LGG (Grade III) Transfer learning with
VGG16 5-fold CV SEN = 97%, SPE = 98% 95

Kurc et al.
[117] 2020 OLI vs. AST 3D CNN 5-fold CV 80

McAvoy et al. [119] 2021 GBM vs. PCNSL Transfer learning with
EfficientNetB4 No info shared GBM: AUC = 0.94, PCNSL: AUC = 0.95

Kulkarni et al. [121] 2021 Benign vs. Malignant Transfer learning with
AlexNet 5-fold CV PRE = 93.7%, RE = 100%, F1 score = 96.77% 96.55

Transfer learning with
VGG16 5-fold CV PRE = 55%, RE = 50%, F1 score = 52.38% 50

Transfer learning with
ResNet18 5-fold CV PRE = 78.94%, RE = 83.33%, F1 score = 81.07% 82.5

Transfer learning with
ResNet50 5-fold CV PRE = 95%, RE = 55.88%, F1 score = 70.36% 60

Transfer learning with
GoogLeNet 5-fold CV PRE = 75%, RE = 100%, F1 score = 85.71% 87.5

Wahlang et al. [137] 2020 HGG vs. LGG AlexNet No info shared 62

U-Net No info shared 60

Xiao et al. [97] 2021 MT vs. Normal Transfer learning with
ResNet50

3-fold, 5-fold, 10-fold
CV AUC = 0.9530 98.2

Alanazi et al. [125] 2022 Normal vs. Tumorous Custom CNN No info shared 95.75%

Tandel et al. [138] 2021 1. Normal vs. Tumorous
DL-MajVot (AlexNet,
VGG16, ResNet18,
GoogleNet, ResNet50)

5-fold CV SEN = 96.76%, SPE = 96.43%, AUC = 0.966 96.51

2. AST-II vs. AST-III
DL-MajVot (AlexNet,
VGG16, ResNet18,
GoogleNet, ResNet50)

5-fold CV SEN = 94.63%, SPE = 99.44%, AUC = 0.9704 97.7

3. OLI-II vs. OLI-III
DL-MajVot (AlexNet,
VGG16, ResNet18,
GoogleNet, ResNet50)

5-fold CV SEN = 100%, SPE = 100%, AUC = 1 100

4. LGG vs. HGG
DL-MajVot (AlexNet,
VGG16, ResNet18,
GoogleNet, ResNet50)

5-fold CV SEN = 98.33%, SPE = 98.57%, AUC = 0.9845 98.43

Tandel et al. [24] 2020 Normal vs. Tumorous Transfer learning with
AlexNet

Multiple CV (K2, K5,
K10) RE = 100%, PRE = 100%, F1 score = 100% 100

Ayadi et al. [98] 2021 Normal vs. Tumorous Custom CNN model 5-fold CV 100
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Ye et al. [126] 2022 Germinoma vs. Glioma Transfer learning with
ResNet18 5-fold CV AUC = 0.88 81%

3 classes

Allah et al. [44] 2021 MEN vs. Glioma vs. PT PGGAN-augmentation
VGG19 No info shared 98.54

Swati et al. [50] 2019 MEN vs. Glioma vs. PT Transfer learning with
VGG19 5-fold CV SEN = 94.25%, SPE = 94.69%, PRE = 89.52%, F1 score = 91.73% 94.82

Guan et al. [43] 2021 MEN vs. Glioma vs. PT EfficientNet 5-fold CV 98.04

Deepak et al. [39] 2019 MEN vs. Glioma vs. PT Transfer learning with
GoogleNet 5-fold CV 98

Díaz-Pernas et al. [42] 2021 MEN vs. Glioma vs. PT Multiscale CNN 5-fold CV 97.3

Ismael et al. [49] 2020 MEN vs. Glioma vs. PT Residual networks 5-fold CV PRE = 99.0%, RE = 99.0%, F1 score = 99.0% 99

Alhassan et al. [107] 2021 MEN vs. Glioma vs. PT Custom CNN model k-fold CV PRE = 99.6%, RE = 98.6%, F1 score = 99.0% 98.6

Bulla et al. [108] 2020 MEN vs. Glioma vs. PT Transfer learning with
InceptionV3 CNN model

holdout validation,
10-fold CV, stratified
10-fold CV, group
10-fold CV

Under group 10-fold CV: PRE = 97.57%, RE = 99.47%, F1 score = 98.40%,
AUC = 0.995 99.82

Ghassemi et al. [109] 2020 MEN vs. Glioma vs. PT CNN-GAN 5-fold CV PRE = 95.29%, SEN = 94.91%, SPE = 97.69%, F1 score = 95.10% 95.6

Kakarla et al. [110] 2021 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV PRE = 97.41%, RE = 97.42% 97.42

Noreen et al. [111] 2021 MEN vs. Glioma vs. PT Transfer learning with
Inception-v3 K-fold CV 93.31

Transfer learning with
Inception model K-fold CV 91.63

Noreen et al. [112] 2020 MEN vs. Glioma vs. PT Transfer learning with
Inception-v3 No info shared 99.34

Transfer learning with
DensNet201 No info shared 99.51

Kumar et al. [113] 2021 MEN vs. Glioma vs. PT Transfer learning with
ResNet50 5-fold CV PRE = 97.20%, RE = 97.20%, F1 score = 97.20%

Badža et al. [114] 2020 MEN vs. Glioma vs. PT Custom CNN model 10-fold CV PRE = 95.79%, RE = 96.51%, F1 score = 96.11% 96.56

Ait et al. [124] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared PRE = 98.3%, SEN = 98.6%, F1 score = 98.6% 98.70%

Alanazi et al. [125] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared 96.90%

Gaur et al. [127] 2022 MEN vs. Glioma vs. PT Custom CNN k-fold CV 94.64%

Aamir et al. [129] 2022 MEN vs. Glioma vs. PT Custom CNN 5-fold CV 98.95%

Rizwan et al. [130] 2022 MEN vs. Glioma vs. PT Custom CNN No info shared 99.8%
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Isunuri et al. [134] 2022 MEN vs. Glioma vs. PT Custom CNN 5-fold CV PRE = 97.33%, SEN = 97.19%, F1 score = 97.26% 97.52%

Alaraimi et al. [115] 2021 MEN vs. Glioma vs. PT Transfer learning with
AlexNet No info shared AUC = 0.976 94.4

Transfer learning with
VGG16 No info shared AUC = 0.981 100

Transfer learning with
GoogLeNet No info shared AUC = 0.986 98.5

Lo et al. [116] 2019 Grade II vs. Grade III vs. Grade IV Transfer learning with
AlexNet 10-fold CV 97.9

Pei et al. [118] 2020 GBM vs. AST vs. OLI 3D CNN No info shared 74.9

Gu et al. [30] 2021 1. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV SEN = 94.64%, PRE = 94.61%, F1 score = 94.70% 96.39

2. GBM vs. AST vs. OLI Custom CNN model 5-fold CV SEN = 93.66%, PRE = 95.12%, F1 score = 94.05% 97.37

Rajini [135] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 98.16

Anaraki et al. [136] 2019 MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 94.2

Sajjad et al. [100] 2019 MEN vs. Glioma vs. PT Transfer learning with
VGG19 No info shared SEN = 88.41%, SPE = 96.12% 94.58

Wahlang et al. [137] 2020 Metastasis vs. Glioma vs. MEN Lenet No info shared 48

AlexNet No info shared 75

Xiao et al. [97] 2021 MEN vs. Glioma vs. PT Transfer learning with
ResNet50

3-fold, 5-fold, 10-fold
CV 98.02

Tandel et al. [24] 2020 Normal vs. LGG vs. HGG Transfer learning with
AlexNet

Multiple CV (K2, K5,
K10) RE = 94.85%, PRE = 94.75%, F1 score = 94.8% 95.97

Chatterjee et al. [132] 2022 Normal vs. HGG vs. LGG Transfer learning with
ResNet 3-fold CV F1 score = 93.45% 96.84%

Ayadi et al. [98] 2021 1. Normal vs. LGG vs. HGG Custom CNN model 5-fold CV 95

2. MEN vs. Glioma vs. PT Custom CNN model 5-fold CV 94.74

Guo et al. [128] 2022 GBM vs. AST vs. OLI Custom CNN 3-fold CV SEN = 0.772, SPE = 93.0%, AUC = 0.902 87.8%

Rizwan et al. [130] 2022 Grade I vs. Grade II vs. Grade III Custom CNN No info shared 97.14%

Tariciotti et al. [123] 2022 Metastasis vs. GBM vs. PCNSL Resnet101 Hold-out PRE = 91.88%, SEN = 90.84%, SPE = 96.34%, F1 score = 91.0%, AUC = 0.92 94.72%

4 classes

Ahammed et al. [72] 2019 Grade I vs. Grade II vs. Grade III vs. Grade IV VGG19 No info shared PRE = 94.71%, SEN = 92.72%, SPE = 98.13%, F1 score = 93.71% 98.25

Mohammed et al. [51] 2020 EP vs. MEN vs. MB vs. Normal Custom CNN model No info shared SEN = 96%, PRE = 100% 96

Gilanie et al. [120] 2021 AST-I vs. AST-II vs. AST-III vs. AST-IV Custom CNN model No info shared 96.56

Artzi et al. [122] 2021 Normal vs. PA vs. MB vs. EP Custom CNN model 5-fold CV 88
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Nayak et al. [131] 2022 Normal vs. MEN vs. Glioma vs. PT Transfer learning with
EfficientNet No info shared PRE = 98.75%, F1 score = 98.75% 98.78%

Rajini [135] 2019 Normal vs. Grade II vs. Grade III vs. Grade IV Custom CNN model 5-fold CV 96.77

Anaraki et al. [136] 2019 Normal vs. Grade II vs. Grade III vs. Grade IV Custom CNN model 5-fold CV

Sajjad et al. [100] 2019 Grade I vs. Grade II vs. Grade III vs. Grade IV Transfer learning with
VGG19 No info shared 90.67

Xiao et al. [97] 2021 MEN vs. Glioma vs. PT vs. Normal Transfer learning with
ResNet50

3-fold, 5-fold, 10-fold
CV PRE = 97.43%, RE = 97.67%, SPE = 99.24%, F1 score = 97.55% 97.7

Tandel et al. [24] 2020 Normal vs. AST vs. OLI vs. GBM Transfer learning with
AlexNet

Multiple CV (K2, K5,
K10) RE = 94.17%, PRE = 95.41%, F1 score = 94.78% 96.56

Ayadi et al. [98] 2021 1. normal vs. AST vs. OLI vs. GBM Custom CNN model 5-fold CV 94.41

2. Grade I vs. Grade II vs. Grade III vs. Grade
IV Custom CNN model 5-fold CV 93.71

5 classes

Tandel et al. [24] 2020 AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM-IV

Transfer learning with
AlexNet

Multiple CV (K2, K5,
K10) RE = 84.4%, PRE = 89.57%, F1 score = 86.89% 87.14

Ayadi et al. [98] 2021 AST-II vs. AST-III vs. OLI-II vs. OLI-III vs.
GBM Custom CNN model 5-fold CV 86.08

6 classes

Tandel et al. [24] 2020 Normal vs. AST-II vs. AST-III vs. OLI-II vs.
OLI-III vs. GBM-IV

Transfer learning with
AlexNet

Multiple CV (K2, K5,
K10) RE = 91.51%, PRE = 92.46%, F1 score = 91.97% 93.74

Ayadi et al. [98] 2021 normal vs. AST-II vs. AST-III vs. OLI-II vs.
OLI-III vs. GBM Custom CNN model 5-fold CV 92.09

Notes: 1 Rigid registration unless otherwise notes; 2 translation also referred to as shifting; 3 scaling also referred to as zooming; 4 reflection also referred to as flipping or mirroring; **
The Cancer Imaging Archive, https://www.cancerimagingarchive.net/ (accessed on 27 July 2022). 5 Referring to overall accuracy, mean accuracy, or highest accuracy depending on the
information provided by the paper or the highest accuracy when multiple models are used.

https://www.cancerimagingarchive.net/
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Many attempts have been made to investigate the value of transfer learning techniques
for brain tumor classification [39,45,50,102,104,108,116,121]. Deepak and Ameer [39] used
the GoogLeNet with the transfer learning technique to differentiate between glioma, MEN,
and PT from the dataset provided by Cheng [55]. This proposed system achieved a mean
classification accuracy of 98%.

In a study conducted by Yang et al. [45], AlexNet and GoogLeNet were both trained
from scratch and fine-tuned from pre-trained models from the ImageNet database for HGG
and LGG classification. The dataset used in this method consisted of ceT1w images from
113 patients (52 LGG, 61 HGG) with pathologically proven gliomas. The results show that
GoogLeNet proved superior to AlexNet for the task. The performance measures, including
validation accuracy, test accuracy, and test AUC of GoogLeNet trained from scratch, were
0.867, 0.909, and 0.939, respectively. With fine-tuning, the pre-trained GoogLeNet obtained
performed better during glioma grading, with a validation accuracy of 0.867, a test accuracy
of 0.945, and a test AUC 0.968.

The authors in [50] proposed a block-wise fine-tuning strategy using a pre-trained
VGG19 for brain tumor classification. The dataset consisted of 3064 images (708 MEN,
1426 glioma, and 930 PT) from 233 patients (82 MEN, 89 glioma, and 62 PT). The au-
thors achieved an overall accuracy of 94.82% under five-fold cross-validation. In another
study by Bulla et al. [108], classification was performed in a pre-trained InceptionV3 CNN
model using data from the same dataset. Several validation methods, including holdout
validation, 10-fold cross-validation, stratified 10-fold cross-validation, and group 10-fold
cross-validation, were used during the training process. The best classification accuracy of
99.82% for patient-level classification was obtained under group 10-fold cross-validation.

The authors in [104] used InceptionResNetV2, DenseNet121, MobileNet, InceptionV3,
Xception, VGG16, and VGG19, which have already been pre-trained on the ImageNet
dataset, to classify HGG and LGG brain images. The MR images used in this research were
collected from the BraTS 2019 database, which contains 285 patients (210 HGG, 75 LGG).
The 3D MRI volumes from the dataset were then converted into 2D slices, generating 26,532
LGG images and 94,284 HGG images. The authors selected 26,532 images from HGG to
balance these two classes to reduce the impact on classification performance due to class
imbalance. The average precision, f1-score, and sensitivity for the test dataset were 98.67%,
98.62%, and 98.33%, respectively.

Lo et al. [116] used transfer learning with fine-tuned AlexNet and data augmentation
to classify Grade II, Grade III, and Grade IV brain tumor images from a small dataset
comprising 130 patients (30 Grade II, 43 Grade III, 57 Grade IV). The results demonstrate
much higher accuracy when using the pre-trained AlexNet. The proposed transferred
DCNN CADx system achieved a mean accuracy of 97.9% and a mean AUC of 0.9991, while
the DCNN without pre-trained features only achieved a mean accuracy of 61.42% and a
mean AUC of 0.8222.

Kulkarni and Sundari [121] utilized five transfer learning architectures, AlexNet,
VGG16, ResNet18, ResNet50, and GoogLeNet, to classify benign and malignant brain
tumors from the private dataset collected by the authors, which only contained 200 images
(100 benign and 100 malignant). In addition, data augmentation techniques, including
scaling, translation, rotation, translation, shearing, and reflection, were performed to
generalize the model and to reduce the possibility of overfitting. The results show that the
fine-tuned AlexNet architecture achieved the highest accuracy and sensitivity values of
93.7% and 100%.

Despite many studies on CADx systems demonstrating inspiring classification per-
formance, the validation of their algorithms for clinical practice has hardly been carried
out. External validation is an efficient approach to overcome the problems caused by data
mismatch and to improve the generalization, stability, and robustness of classification
algorithms. It is the action of evaluating the classification model in a new independent
dataset to determine whether the model performs well. However, we only found two
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studies that used an external clinical dataset to evaluate the effectiveness and generalization
capability of the proposed scheme, which is described in below.

Decuyper et al. [73] proposed a 3D CNN model to classify brain MR volumes collected
from the TCGA-LGG, TCGA-GBM, and BraTS 2019 databases into HGG and LGG. Multiple
MRI sequences, including T1w, ceT1w, T2w, and FLAIR, were used in this research. All of
the MR data were co-registered to the same anatomical template and interpolated to 1 mm3

voxel sizes. Additionally, a completely independent dataset of 110 patients acquired at the
Ghent University Hospital (GUH) was used as an external dataset to validate the efficiency
and generalization of the proposed model. The resulting validation accuracy, sensitivity,
specificity, and AUC for the GUH dataset were 90.00%, 90.16%, 89.80%, and 0.9398.

In [120], Gilanie et al. presented an automatic method using a CNN architecture for
astrocytoma grading between AST-I, AST-II, AST-III, and AST-IV. The dataset consisted
of MR slices from 180 subjects, including 50 AST-I cases, 40 AST-II cases, 40 AST-III cases,
and 50 AST-IV cases. T1w, T2w, and FLAIR were used in the experiments. In addition, the
N4ITK method [80] was used in the preprocessing stage to correct the bias field distortion
present in the MR images. The results were validated on a locally developed dataset to
evaluate the effectiveness and generalization capabilities of the proposed scheme. The
proposed method obtained an overall accuracy of 96.56% for the external validation dataset.

In brain tumor classification, it is often necessary to use image co-registration to
preprocess input data when images are collected from different sequences or different
scanners. However, we found that this problem has not yet been taken seriously. In the
surveyed articles, six studies [73,76,98,118,135,136] used data from multiple datasets for
one classification target, while only two studies [73,76] performed image co-registration
during the image preprocessing process.

The authors in [76] proposed a 2D Mask RCNN model and a 3DConvNet model to
distinguish between LGG (Grades II and Grade III) and HGG (Grade IV) on multiple
MR sequences, including T1w, ceT1w, T2w, and FLAIR. The TCIA-LGG and BraTS 2018
databases were used to train and validate these two CNN models in this research work. In
the 2D Mask RCNN model, all of the input MR images were first preprocessed by rigid
image registration and intensity inhomogeneity correction. In addition, data augmentation
was also implemented to increase the size and the diversity of the training data. The
performance measures accuracy, sensitivity, and specificity achieved values of 96.3%, 93.5%,
and 97.2% using the proposed 2D Mask RCNN-based method and 97.1%, 94.7%, and 96.8%
with the 3DConvNet method, respectively.

In the study conducted by Ayadi [98], the researchers built a custom CNN model for
multiple classification tasks. They collected data from three online databases, Radiopaedia,
the dataset provided by Cheng, and REMBRANDT, for brain tumor classification, but no
image co-registration was performed to minimize shift between images and to reduce its
impact on the classification performance. The overall accuracy obtained for tumorous and
normal classification reached 100%; for normal, LGG, and HGG classification, it reached
95%; for MEN, glioma, and PT classification, it reached 94.74%; for normal, AST, OLI,
and GBM classification, it reached 94.41%; for Grade I, Grade II, Grade III, and Grade IV
classification, it reached 90.35%; for AST-II, AST-III, OLI-II, OLI-III, and GBM classification,
it reached 86.08%; and for normal, AST-II, AST-III, OLI-II, OLI-III, and GBM classification,
it reached 92.09%.

The authors in [118] proposed a 3D CNN model for brain tumor classification between
GBM, AST, and OLI. A merged dataset comprising data from the CPM-RadPath 2019 and
BraTS 2019 databases was used to train and validate the proposed model, but the authors
did not perform image co-registration. The results show that the classification model has
very poor performance during brain tumor classification, with an accuracy of 74.9%.

In [135], the researchers presented a CNN-PSO method for two classification tasks:
normal vs. Grade II vs. Grade III vs. Grade IV and MEN vs. glioma vs. PA. The MR images
used for the first task were collected from four publicly available datasets: the IXI dataset,
REMBRANDT, TCGA-GBM, and TCGA-LGG. The overall accuracy obtained was 96.77%
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for classification between normal, Grade II, Grade III, and Grade IV and 98.16% for MEN,
glioma, and PA classification.

Similar to the work conducted in [135], Anaraki et al. [136] used MR data merged from
four online databases: the IXI dataset, REMBRANDT, TCGA-GBM, and TCGA-LGG, and
from one private dataset collected by the authors for normal, Grade II, Grade III, and Grade
IV classification. They also used the dataset proposed by Cheng [55] for MEN, glioma, and
PA classification. Different data augmentation methods were performed to further enlarge
the size of the training set. The authors in these studies did not co-register the MR images
from different sequences from different institutions for the four-class classification task. The
results show that 93.1% accuracy was achieved for normal, Grade II, Grade III, and Grade
IV classification, and 94.2% accuracy was achieved for MEN, glioma, and PA classification.

Despite the high accuracy levels reported in most studies using CNN techniques,
we found that in several studies [102,117,118,137], the models demonstrated very poor
performance during brain tumor classification tasks.

The authors in [102] explored transfer learning techniques for brain tumor classifi-
cation. The experiments were performed on the BraTS 2019 dataset, which consists of
335 patients diagnosed with brain tumors (259 patients with HGG and 76 patients with
LGG). The model achieved a classification AUC of 82.89% on a separate test dataset of
66 patients. The classification performance obtained by transfer learning in this study is
relatively low, hindering its development and application in clinical practice. The authors
of [117] presented a 3D CNN model developed to categorize adult diffuse glioma cases
into the OLI and AST classes. The dataset used in the experiment consisted of 32 patients
(16 patients with OLI and 16 patients with AST). The model achieved accuracy values of
80%. The main reason for the poor performance probably lies in the small dataset, with
only 32 patients being used for model training. That is far from enough to train a 3D model.

In another study [137], two brain tumor classification tasks were studied using the
Lenet, AlexNet, and U-net CNN architectures. In the experiments, MR images from
11 patients (two metastasis, six glioma, and three MEN) obtained from Radiopaedia were
utilized to classify metastasis, glioma, and MEN; the data of 20 patients collected from
BraTS 2017 were used for HGG and LGG classification. The results show poor classification
performance by the three CNN architectures on the two tasks, with an accuracy of 75%
obtained by AlexNet and an accuracy of 48% obtained by Lenet for the first task and an
accuracy of 62% obtained by AlexNet and an accuracy of 60% obtained by U-net for the
second task. The poor performance of Lenet is probably due to its simple architecture,
which is not capable of high-resolution image classification. On the other hand, the U-net
CNN performs well in segmentation tasks but is not the most commonly used network
for classification.

Even though CNNs have demonstrated remarkable performance in brain tumor
classification tasks in the majority of the reviewed studies, their level of trustworthiness
and transparency must be evaluated in a clinic context. Of the included articles, only two
studies, conducted by Artzi et al. [122] and Gaur et al. [127], investigated the Black-Box
nature of CNN models for brain tumor classification to ensure that the model is looking in
the correct place rather than at noise or unrelated artifacts.

The authors in [122] proposed a pre-trained ResNet-50 CNN architecture to classify
three posterior fossa tumors from a private dataset and explained the classification decision
by using gradient-weighted class activation mapping (Grad-CAM). The dataset consisted
of 158 MRI scans of 22 healthy controls and 63 PA, 57 MB, and 16 EP patients. In this
study, several preprocessing methods were used to reduce the influence of MRI data on
the classification performance of the proposed CNN model. Image co-registration was
performed to ensure that the images become spatially aligned. Bias field correction was also
conducted to remove the intensity gradient from the image. Data augmentation methods,
including flipping, reflection, rotation, and zooming, were used to increase the size and
diversity of the dataset. However, class imbalance within the dataset, particularly the
under-representation of EP, was not addressed. The proposed architecture achieved a
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mean validation accuracy of 88% and 87% for the test dataset. The results demonstrate
that the proposed network using Grad-CAM can identify the area of interest and train the
classification model based on pathology-related features.

Gaur et al. [127] proposed a CNN-based model integrated with local interpretable
model-agnostic explanation (LIME) and Shapley additive explanation (SHAP) for the
classification and explanation of meningioma, glioma, pituitary, and normal images using
an MRI dataset of 2870 MR images. For better classification results, Gaussian noise was
introduced in the pre-processing step to improve the learning for the CNN, with mean = 0
and a standard deviation of 10 0.5. The proposed CNN architecture achieved an accuracy of
94.64% for the MRI dataset. The proposed model also provided a locally model-agnostic
explanation to describe the results for ordinary people more qualitatively.

5. Discussion

Many of the articles included in this review demonstrate that CNN-based architectures
can be powerful and effective when applied to different brain tumor classification tasks.
Table 4b shows that the classification of HGG and LGG images and the differentiation
of MEN, glioma, and PT images were the most frequently studied applications. The
popularity of these applications is likely linked to the availability of well-known and easily
accessible public databases, such as the BraTS datasets and the dataset made available by
Cheng [55]. Figure 7 reveals that there is an increase in the overall accuracy achieved by
CNN architectures for brain tumor classification from 2018 to 2022. It is observed that from
2019 onwards, the overall classification accuracy achieved in most studies reached 90%,
with only few works obtaining lower accuracies, and in 2020, the extreme outlier accuracy
was 48% [137]. It is also apparent from this figure that the proportion of papers with an
accuracy higher than 95% increases after 2020.
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In order to discuss the technical differences and points of similarity between the papers
included in the present review, we decided to proceed thematically. Wherever possible, it is
more useful to make comparisons between studies containing as few differences as possible.
The most commonly reported metric, and the only one that will be employed here, is the
accuracy. There are several studies that allow us to make such comparisons across only one
factor. In other cases, several studies employ a similar methodology, and we can perform
across-study comparisons. Finally, accuracy data can be plotted for single factors to allow
for a simple visual comparison without attempting to separate confounding factors.



Diagnostics 2022, 12, 1850 34 of 46

5.1. The Importance of the Classification Task

Three papers [24,97,98] investigated the effect of splitting a dataset into different
numbers of categories. They all showed the expected monotonic decrease in accuracy
as the number of classes increased, with the caveat that the “normal” image category is
relatively easy to distinguish from the others and does not decrease accuracy when added
as an additional category. The pattern is also apparent in Figure 8—the maximum accuracy
for two-class problems was 100%; for four-class problems, it was 98.8%; and for six-class
problems, it was 93.7%.
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Two papers employed a single architecture to perform different classification tasks [30,
138] while keeping the number of classes constant. The results in [30] showed little differ-
ence between the accuracy obtained for two different problems, which could be explained
by differences in the datasets. The results of [138] showed slightly larger variation between
four two-class problems. Curiously, nets trained on larger datasets yielded worse accuracy
values, suggesting that results obtained from smaller samples have an inflated accuracy
(100% for a problem based on 219 images, 96.1% for a problem based on 2156 images).
With reference to Figure 8, the classification task seems to have a larger effect than the
class number on the accuracy. Note that the categories that group various specific tasks
(two-class, three-class) together show much greater heterogeneity than those with the same
number of classes for specific comparisons.

Further evidence regarding the importance of the task comes from a comparison of
the accuracy in the papers comparing tumor grade (LGC vs. HGC) and those seeking
to differentiate different types of tumors (MEN vs. glioma vs. PT); although the latter
task involves more classes, the median accuracy is 97.6 (against 94.4 for the former). We
compared the articles that studied the classification of HGG and LGG and found that
the classification performance varies widely, even between the articles published in 2021
that utilized state-of-the-art CNN techniques. One of the key factors that significantly
affects the performance of CNN models for brain tumor classification lies in the size of the
datasets. The authors of [40,78] both proposed custom CNN models to classify HGG and
LGG images of 285 MRI scans from the BraTS 2017 dataset. The overall accuracy values
were 90.7% and 94.28%, respectively. The authors of [137] utilized AlexNet for the same
task, but MRI data of only 20 patients from the same dataset were studied. The model in
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this study yielded a poor classification accuracy of 62%, the lowest value among the articles
on this classification task.

Figure 8 presents the overall accuracies achieved by the reviewed studies that worked
on different classification tasks. What stands out in the figure is that with the exception
of the five-class tasks, which achieved accuracies lower than 90%, the CNNs achieved
promising accuracies on different brain tumor classification tasks, especially in three-class
classification tasks distinguishing between MEN, glioma, and PT. We also noticed that the
accuracies of the three-class classification tasks fluctuated widely, with the lowest accuracy
being 48% in [137] for the metastasis vs. glioma vs. MEN classification. More research
attention should be paid to improving the accuracies of these classification tasks.

5.2. The Effect of the Dataset

A few studies applied the same network architecture to two different datasets. For He
et al. [78], the results demonstrating a higher accuracy (94.4% against 92.9%) were based
on a training set that was both larger and more unbalanced. The first factor would have
improved the training process, while the latter made the classification task easier. Several
papers derive different subgroups from different datasets (for example, healthy subject
data from IXI and tumors from other sets). This is poor practice, as there are likely to be
non-pathological differences between the sets acquired from different centres, and this can
artificially inflate classification accuracy [139].

As was mentioned in the Results section, dataset size is considered a critical factor in
determining the classification performance of a CNN architecture. Some studies report the
dataset size in terms of the number of subjects included, and others report it in terms of
the number of images. Typically, several images are included from each subject, but this
number is not specified.

Figures 9 and 10 sum up the classification accuracies obtained according to each of the
factors; Figure 9 shows that there is a marked increase in the overall accuracy achieved with
more training subjects The improvement gained by increasing the image number seems
more modest.
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Another interesting aspect of the datasets used is the choice of MRI sequence. This may
provide a hint as to the features being used for classification. Comparing the articles that
focused on the same classification task, of the sequences listed in Table 3, only ceT1w was
associated with studies showing a higher classification accuracy than those that excluded
it for MEN vs. Glioma vs. PT classification, while all of the sequences contributed to an
improvement in LGG vs. HGG classification. As a consequence, studies using multiple
sequences were associated with higher accuracy in the LGG vs. HGG task but not in MEN
vs. Glioma vs. PT classification.

5.3. The Effect of CNN Architecture

Three studies present comparisons of different architectures trained on the same
problems (Yang et al. [45], Kulkarni et al. [121], Wahling et al. [137]).

In a study conducted by Yang et al. [45], GoogLeNet and AlexNet were both trained
from scratch and fine-tuned from pre-trained models from the ImageNet database for HGG
and LGG classification. When both were trained from scratch, GoogLeNet proved superior
to AlexNet for the task. The test accuracies were 0.909 and 0.855, respectively. Fine-tuning
pre-existing nets resulted in better performance in both cases, with accuracies on the test
set of 0.945 and 0.927, respectively. In [121], five nets were used to distinguish benign from
malignant tumors. The reported accuracies were surprisingly variable; from worst to best,
the results were VGG16 (0.5) and ResNet50 (0.68). In [137], AlexNet and LeNet were both
used to distinguish three classes.

The overall accuracies achieved by the different CNN architectures that have been
used extensively for brain tumor classification are summarized in Figure 11. It shows that
the majority of CNN models have achieved high performance for brain tumor classification
tasks, in which transfer learning with ResNet, VGG, and GoogleNet showed more stable
performance than other models, such as 3D CNN. Among the reviewed articles, five articles
utilized 3D CNN for brain tumor classification, and the classification accuracy of those
studies fluctuates wildly. The highest accuracy was 97.1%, achieved by Zhuge et al. [77],
who trained a 3D CNN architecture with a dataset of 315 patients (210 HGG, 105 LGG).
The lowest accuracy of 75% was obtained by Pei et al. [118], who used 398 brain MR image
volumes for GBM vs. AST vs. OLI classification. In another study [117], the authors
explored a 3D CNN model for OLI and AST classification using a very small dataset of
32 patients (16 OLI, 16 AST) and obtained a low accuracy of 80%. It seems that 3D CNN
is a promising technique for realizing patient-wise diagnosis, and the accessibility of a
large MRI dataset can hopefully improve the performance of 3D CNNs on brain tumor
classification tasks.
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5.4. The Effect of Pre-Processing and Data Augmentation Methods

Researchers have paid increasing amounts of attention to enhancing input image
quality by conducting different preprocessing steps on brain MRI datasets before propa-
gating them into CNN architectures. No studies have systematically tested the number
and combination of operations that optimize classification accuracy. Figure 12 presents the
overall accuracy obtained with different numbers of preprocessing operations. It shows that
the studies that pre-processed input MR images collectively obtained higher classification
accuracies than the studies that performed no preprocessing methods. However, it is not
obvious that more steps led to better performance.
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As previously stated, data augmentation can create variations in the images that
can improve the generalization capability of the models to new images, and different
data augmentation techniques have been widely explored and applied to increase both
the amount and the diversity of training data. Figure 13 illustrates the overall accuracy
obtained with different numbers of data augmentation operations. It can be seen that
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studies that performed five data augmentation techniques achieved higher and more stable
classification performance than the studies that performed fewer operations.

Diagnostics 2022, 12, 1850 33 of 41 
 

 

 

Figure 12. Classification accuracy by number of preprocessing operations. 

As previously stated, data augmentation can create variations in the images that can 

improve the generalization capability of the models to new images, and different data 

augmentation techniques have been widely explored and applied to increase both the 

amount and the diversity of training data. Figure 13 illustrates the overall accuracy ob-

tained with different numbers of data augmentation operations. It can be seen that studies 

that performed five data augmentation techniques achieved higher and more stable clas-

sification performance than the studies that performed fewer operations. 

 

Figure 13. Classification accuracy by number of data augmentation operations. 

The accuracy data do not support the use of any single data augmentation method. 

It is interesting to ask whether data augmentation techniques were implemented specifi-

cally in those studies that lacked training data. However, on average, there is little differ-

ence between the 59 studies including or the 27 omitting a data augmentation step. On 

average, the former included 233 cases or 4743 images, and the latter included 269 cases 

or 7517 images. Curiously, the number of studies employing data augmentation has fallen 

as a proportion among those published in 2022, both compared to the total and compared 

to those using pre-processing methods. 

Figure 14 indicates the cumulative impact of factors that are not fully reported or 

considered in the studies reported in Table 4. Articles with multiple analyses for which 

factors differed were scored 1 (i.e., missing). Data are derived from Table 4, with the 
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The accuracy data do not support the use of any single data augmentation method. It
is interesting to ask whether data augmentation techniques were implemented specifically
in those studies that lacked training data. However, on average, there is little difference
between the 59 studies including or the 27 omitting a data augmentation step. On average,
the former included 233 cases or 4743 images, and the latter included 269 cases or 7517
images. Curiously, the number of studies employing data augmentation has fallen as a
proportion among those published in 2022, both compared to the total and compared to
those using pre-processing methods.

Figure 14 indicates the cumulative impact of factors that are not fully reported or con-
sidered in the studies reported in Table 4. Articles with multiple analyses for which factors
differed were scored 1 (i.e., missing). Data are derived from Table 4, with the following
exceptions: “Explainability considered” means that there was some analysis within the
article on the information used to come to a diagnosis. Out-of-cohort testing occurred
when CNN testing was performed on a cohort that was not used in the training/validation
phase (i.e., different hospital or scanner). Author affiliations were derived from the author
information in the DOI/CrossRef listed in the bibliography. An author was considered
to have a clinical affiliation if their listed affiliations included a department of radiology,
clinical neurology, neurosurgery, or oncology.

From the figure, the category other performance criteria performed means that per-
formance criteria other than accuracy were reported. Validation was considered to be not
properly reported if it was not performed or if the methods used in the validation step were
not clearly described. Training patients/images properly reported means that the number
of patients/images in each category used for training/validation is explicitly defined. Both
factors are relevant as separate images from the same patient and are not fully independent.
Public data used means that the data used are available to other researchers. In practice, all
of the public data used were gathered in other studies, and no non-public data were made
available by any of the studies identified.
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5.5. The Effect of Other Factors

Beyond showing accuracy gains, the surveyed articles rarely examined their gen-
eralization capability and interpretability. Only very few studies [73,120] tested their
classification models on an independent dataset, and only one study [122] investigated the
Black-Box characteristic of CNN models for brain tumor classification to ensure that the
model they obtained was looking in the correct place for decision-making rather than at
noise or unrelated artifacts.

A limitation of this survey arises from the challenge of making comparisons in an
objective manner between studies to analyze how each degrading factor affects the classi-
fication performance. One reason is that some studies worked on the same classification
task but utilized different datasets, preprocessing methods, or classification techniques.
Another reason lies in the variety of performance metrics reported. While accuracy was the
most popular performance metric, it was not universally reported. Based on the difficulties
encountered in the preparation of the present review, we suggest that at the very least,
all deep learning studies for classification clearly report the classification accuracy of the
models constructed and the numbers of images/subjects of each class used for training,
validation, and testing purposes.

5.6. Future Directions

It is clear from the comparative analysis presented in Table 4b that CNN techniques
and algorithms have great power and ability to handle medical MR data, but so far, but none
of them are at the point of clinical usability. The challenges we have identified here must be
appropriately addressed if CNN research is to be translated into clinic practice. This review
has identified some common performance-degrading factors and potential solutions.

5.6.1. The Training Data Problem

An exorbitant number of training cases are required to train a deep learning algorithm
from scratch. With a limited number of training data, transfer learning with fine-tuning on
pre-trained CNNs was demonstrated to yield better results for brain tumor classification
than training such CNNs from scratch [45,116]. This is an efficient method for training
networks when training data are expensive or difficult to collect in medical fields. In
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addition, high hardware requirements and long training times are also challenges that
CNN-based CADx brain tumor classification systems face in clinical applications today. The
continued development of state-of-the-art CNN architectures has resulted with a voracious
appetite for computing power. Since the cost of training a deep learning model scales with
the number of parameters and the amount of input data, this implies that computational
requirements grow at the rate of at least the square of the number of training data [140].
With pre-trained models, transfer learning is also promising to address the difficulties
caused by high hardware requirements and long training times when adopting CNN-based
CADx systems for brain tumor classification in clinical practice. There are many issues
related to optimizing transfer learning that remain to be studied.

5.6.2. The Evaluation Problem

CADx systems are mainly used for educational and training purposes but not in
clinical practice. Clinics still hesitate to use CADx-based systems. One reason for this is the
lack of standardized methods for evaluating CADx systems in a realistic setting. The per-
formance measures described in Section 4.2 are a useful and necessary baseline to compare
algorithms, but they are all highly sensitive to the training set used, and more sophisticated
tools are needed. It would be useful to define a pathway towards in-use performance
evaluation, such as what was recently proposed for quantitative neuroradiology [141]. It
is notable that many of the papers reviewed did not include any authors with a clinical
background and that the image formats used to train the models were those typical of the
AI research community (PNG) and not those of the radiology community (DICOM, NIfTI).

5.6.3. Explainability and Trust

The Black-Box nature of deep CNNs has greatly limited their application outside of a
research context. To trust systems powered by CNN models, clinicians need to know how
they make predictions. However, among the articles surveyed, very few addressed this
problem. The authors in [142] proposed a prototypical part network (ProtoPNet) that can
highlight the image regions used for decision-making and can explain the reasoning process
for the classification target by comparing the representative patches of the test image with
the prototypes learned from a large number of data. To date, several studies have tested
the explanation model proposed in [142] that was able to highlight image regions used for
decision making in medical imaging fields, such as for mass lesion classification [143], lung
disease detection [144,145], and Alzheimer’s diseases classification [146]. Future research
in the brain tumor classification field will need to test how explainable models influence
the attitudes and decision-making processes of radiologists or other clinicians.

The lack of physician training on how to interact with CADx systems and how to
interpret their results to make diagnostic decisions is a separate but related technical
challenge that can reduce the performance of CADx systems in practice, something that is
not addressed in any of the papers included in the review. A greater role for physicians in
the research process may bring benefits both in terms of the relevance of research projects
and the acceptance of their results.

In summary, the future of CNN-based brain tumor classification studies is very promis-
ing and focusing on the right direction with references to the challenges mentioned above
would advance these studies from research labs to hospitals. We believe that our review
provides researchers in the biomedical and machine learning communities with indicators
for useful future directions for this purpose.

6. Conclusions

CADx systems may play an important role in assisting physicians in making decisions.
This paper surveyed 83 articles that adopted CNNs for brain MRI classification and ana-
lyzed the challenges and barriers that CNN-based CADx brain tumor classification systems
face today in clinical application and development. A detailed analysis of the potential
factors that affect classification accuracy is provided in this study. From the comparative
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analysis in Table 4b, it is clear that CNN techniques and algorithms have great power and
ability to handle medical MR data. However, many of the CNN classification models that
have been developed so far still are still lacking in one way or another in terms of clinical
application and development. Research oriented towards appropriately addressing the
challenges noted here can help drive the translation of CNN research into clinical practice
for brain tumor classification. In this review, some performance degrading factors and
their solutions are also discussed to provide researchers in the biomedical and machine
learning communities with indicators for developing optimized CADx systems for brain
tumor classification.
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