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Abstract: Recent breakthroughs of deep learning algorithms in medical imaging, automated detection,
and segmentation techniques for renal (kidney) in abdominal computed tomography (CT) images
have been limited. Radiomics and machine learning analyses of renal diseases rely on the automatic
segmentation of kidneys in CT images. Inspired by this, our primary aim is to utilize deep semantic
segmentation learning models with a proposed training scheme to achieve precise and accurate
segmentation outcomes. Moreover, this work aims to provide the community with an open-source,
unenhanced abdominal CT dataset for training and testing the deep learning segmentation networks
to segment kidneys and detect kidney stones. Five variations of deep segmentation networks are
trained and tested both dependently (based on the proposed training scheme) and independently.
Upon comparison, the models trained with the proposed training scheme enable the highly accurate
2D and 3D segmentation of kidneys and kidney stones. We believe this work is a fundamental step
toward Al-driven diagnostic strategies, which can be an essential component of personalized patient
care and improved decision-making in treating kidney diseases.

Keywords: semantic segmentation networks; kidney segmentation; kidney detection; kidney stone
segmentation; kidney stone detection; computed tomography

1. Introduction

Chronic kidney disease (CKD) causes a gradual loss of kidney functions and affects
26 million patients in the US [1]. Nephrolithiasis (the process of forming kidney stones-
renal calculi) is also a highly prevalent kidney disorder affecting approximately one in
eleven people [2]. Kidney or urinary stones occur when urine minerals separate and crys-
tallize due to a chemical imbalance [3]. The prevalence of nephrolithiasis is increasing [4],
and imaging modalities such as unenhanced computed tomography (CT), enhanced CT,
magnetic resonance imaging (MRI), and ultrasound are essential for accurate and timely
diagnosis. Recently, artificial intelligence (Al) and computer vision (CV) algorithms have
been applied to these imaging modalities [5,6], which play a promising role in triaging
cases [7] and improving workflow in emergencies [8]. These algorithms are essential for
renal disease detection and monitoring, giving insight into renal function and various renal
pathologies [9]. Among these techniques, segmentation of medical images is a crucial step
in gathering anatomical information for diagnosis or intervention planning [10].

Medical image segmentation seeks to connect a pixel with a label in a medical image
without the need for human initialization. Similarly, segmentation extracts renal volume or
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a urinary stone from CT images and provides typical samples for nephrologists. Clinical
diagnosis, radiation planning, and interventional guiding all benefit from medical image
segmentation of organs. In recent years, there has been a significant increase in the de-
velopment of computer-assisted technologies to aid therapists with this time-consuming
activity [11]. The pixel-level semantic information helps intelligent systems to grasp spa-
tial positions or make important judgments. Many real-world applications, including
computer-aided diagnosis, benefit from this task [12,13].

Therefore, this article aims to address the automatic segmentation of kidneys and
kidney stones in unenhanced CT images using five state-of-the-art deep learning algorithms.
However, the success of segmentation algorithms depends on the availability of high-
quality, well-annotated, and balanced imaging datasets provided by experts [14,15]. To
address the data scarcity, we constructed a well-annotated abdominal CT dataset for
segmentation of kidneys and kidney stones and made it public to the research community.
To the best of our knowledge, we are the first to open-source our composed abdominal CT
dataset of kidney and kidney stones for further research. Our experimental results also
show that training deep semantic segmentation models with a proper strategy improves
segmentation outcomes in abdominal CT images.

2. Related Work

There have been various segmentation tasks associated with kidneys, such as kidney
segmentation [16], cyst segmentation [17], tumor segmentation [18], and cortex segmen-
tation [19]. Manual kidney segmentation, such as region-of-interest (ROI) border trac-
ing [20] or stereology [21] by experienced and qualified professionals, is considered the
gold standard. However, because of the comparable signal intensities across the kidneys’
surrounding organs, and imaging artifacts, these manual methods are time-demanding
(lasting 15-30 min) and might be skewed by investigator judgment [22]. An automated
deep learning system that provides automatic segmentation would be a valuable support-
ing tool for clinicians [23,24]. Recently, artificial intelligence (Al) and deep learning (DL)
methods such as convolutional neural networks (CNNs) have achieved promising results
with the detection of abnormalities in a variety of medical imaging modalities, including
X-ray, CT, positron emission tomography (PET), dermoscopy, ultrasound, and MRI [25-29].

Several segmentation methods related to kidneys and the renal tract were investigated
by utilizing various imaging modalities. For example, an automated kidney segmentation
task [29] was performed on MRI images using the Mask R-CNN [30]. The proposed work
focused on validating a Mask R-CNN for the automated segmentation of kidneys. In
one study, a 2D convolutional neural network was applied to an MRI modality to seg-
ment left and right kidneys in healthy and chronic kidney disease subjects [22]. Timothy
et al. developed a convolutional neural network to apply an automated deep learning
approach for cyst segmentation in MRI images [31]. The proposed system differentiated
and analyzed renal cysts in patients. Adaptive sub-regional evolution level set modelling
(ASLSM) is a method introduced for kidney tumor segmentation in ultrasound images [32].
The authors claimed that ASLSM was more accurate in kidney tumor segmentation than
traditional ultrasound segmentation methods. Will et al. used MRI scans to perform
automatic segmentation and volumetry analysis of the entire kidneys and their internal
structures (cortex, medulla, and pelvis) [33]. The kidneys were separated into compart-
ments using an automated technique based on thresholding and shape detection. Their
findings showed that precise automatic segmentation of the kidneys and their interior
components is possible. Similarly, several published studies used ultrasound imaging to
segment kidneys [32,34-38], and a few detected kidney stones [39].

Apart from MRI and ultrasound images, another choice for segmentation is the CT
imaging modality. CT scans, which may be performed with or without contrast, can provide
more information about the renal tract. Renal CT images are used for various segmentation
tasks, such as renal segmentation [40,41], urinary bladder segmentation [42], renal tumor
segmentation [43], renal vessels segmentation [44], and renal stone segmentation [4]. In one
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study, active shape models (ASMs) with non-rigid image registration were used to segment
kidneys [40]. Khalifa et al. proposed a new 3D segmentation approach to segment kidneys
using CT images [41]. To distinguish between the inside and outside of the urinary bladder,
a deep-learning convolutional neural network (DL-CNN) segmentation was introduced [42].
Zhao et al. presented a multi-scale supervised 3D U-Net (MSS U-Net) to segment kidneys
and kidney tumors from CT images [43]. The architecture produced results superior to
state-of-the-art techniques, with the Dice coefficients of kidney and tumor up to 0.969 and
0.805, respectively. Taha et al. developed a kidney vessels segmentation network with
a training scheme that handled unbalanced data, reduced false positives, and enabled
high-resolution segmentation with a limited memory usage [44].

A closely related work focused on the accuracy of a cascading CNN for urinary stone
detection on unenhanced CT images [4]. It evaluated the performance of pre-trained models
enriched with labeled CT images. The proposed model developed two CNNs: CNNT1 for
urinary tract detection and CNN2 for urinary stone detection. However, they borrowed the
pre-trained weights from ImageNet and fine-tuned them on GrayNet (an in-house-built
dataset). The GrayNet pre-trained model was then used for weight initialization of the
CNN models for urinary tract identification and stone detection. In one study, the authors
applied a 3D U-Net model to segment the kidneys, followed by gradient-based anisotropic
denoising, thresholding, and region growing [45]. A 13-layer convolutional neural network
classifier was then applied to distinguish kidney stones from false positive regions. For
patient-level classification, the system achieved sensitivity of 0.88 and specificity of 0.91 on
an external validation set. In contrast, our work proposes a two-stage replaceable scheme
(dependent segmentation), uses a combination of state-of-the-art algorithms with a new
training strategy, and improves segmentation performance.

3. Materials and Methods
3.1. Data Acquisition and Annotations
3.1.1. Data Acquisition

Around 500 unenhanced abdominal CT scans from 2018 to 2020 were collected from
the First Affiliated Hospital of Guangzhou Medical University. After data desensitization
and data cleaning, 260 CT scans were selected for data annotations. A total of 119 scans
had a thickness of 2.50 mm, 101 scans had a thickness of 1.25 mm, 31 scans had a thickness
of 2.00 mm, 7 scans had a thickness of 0.62 mm, and 2 scans were 0.42 mm thick. The range
of XY space was [0.371, 0.977], and the XY shape was 512 x 512. There were 209 scans
with stones and 51 scans without stones. This work is a retrospective study and has been
granted a waiver by the Ethics Committee of the First Affiliated Hospital of Guangzhou
Medical University.

3.1.2. Data Processing

The collected CT data was in DICOM format which contained patients” personal
information. To protect patient privacy and simplify labeling, it is essential to clean the
data. For this purpose, SeriesID was used in the DICOM header as a reference to remove
the duplicate data. Next, a Python script was implemented to delete patient personal
information and saved the DICOM CT data in NIfTI format which is a standard format for
storing medical images. Furthermore, due to certain constraints, the labeled cases were
renamed and assigned unique identification numbers, for example, “wd0001”, “wd0011”,
“wd0111”, as in the work of Heller et al. [46].

3.1.3. Data Annotations

The clean NIfTT images of abdominal CT scans were annotated based on clinical
requirements and image segmentation needs. Two labels (“kidney” and “kidney stone”)
were considered for masking and labeling. The 3D Slicer [47] tool was used to mask the CT
scans. The data annotations process comprised three stages. In the first stage, 30 students
from biomedical engineering and computer science disciplines were trained to add the
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annotations. In the second stage, experienced instructors reviewed the annotations in
detail, indicated potential errors, and modified them immediately. Finally, ten professional
urological radiologists inspected the annotated data and suggested further modifications.
The annotated data were repeatedly modified until the radiologists approved. By the
end, 260 masked unenhanced CT scans were obtained in NIfTI format. Figure 1 shows
abdominal CT images (original /unlabeled, labeled, and 3D labeled) from four different
patients in the annotated dataset. Because the location, size and shape of kidneys and
kidney stones vary considerable across patients, the segmentation of kidneys and kidney
stones in CT images is challenging.

Unlabeled Labeled 3D Labeled

Figure 1. A few of the samples in both 2D and 3D from our annotated dataset of unenhanced
abdominal CT images (kidney: yellow; kidney stone: green).

3.1.4. Data Split and Preparation

The annotated data was divided into training and test sets in a 7:3 ratio with 5-fold
cross-validation. After data splitting, the number and volumes of all kidney stones in
both the training and test sets were calculated. At the same time, based on the clinical
experience, the stones were classified into small (0-6 mm), medium (6-20 mm), and large
(>20 mm) sizes. Their corresponding volumes range from 0-28 mm? for small, 28-315 mm?
for medium, and >315 mm? for large stones. A detailed statistical analysis of the stones
and their sizes is illustrated in Figure 2.

3.1.5. Data Augmentation

To increase the model’s robustness and generalization, data augmentation was applied
to the input data. However, to balance positive and negative samples, the data augmen-
tation was only applied to labeled cubes. For instance, the first stage applied three types
of data augmentation procedures to those cubes which were clipped and labeled. These
procedures obtained 10,874 cubes of size 196 x96x96 as input for the first segmentation
network. Next, for the second stage, 3492 labeled cubes of size 160 x160x 64 were gener-
ated by applying the same three data augmentation techniques. These techniques include
random affine transformation, horizontal inversion, and horizontal inversion + random
affine transformation. The angle of the random affine transformation was 0 & 10°, and the
probability of horizontal inversion was 1.



Diagnostics 2022, 12, 1788

50f17

700 - . .
Test Stone's sizes in the Cohort
Train
6004 [ ] All
500
(0]
C
o]
o 400
“—
(o]
2300
IS
3
< 200 4
100 -
0 1 1 1
Large (>315) Middle (28-315) Small (0-28)
Size(mm?3)

Figure 2. The number of kidney stones and their sizes in the training and test sets.

3.2. Proposed Two-Stage Training Scheme

The intended segmentation system consists of a two-stage segmentation scheme
(dependent segmentation) based on replaceable segmentation networks such as 3D U-
Net [48], Res U-Net [49], SegNet [50], DeepLabV3+ [51], and UNETR [52]. Various pre-
and post-processing procedures were used for the proposed training scheme, including
resampling the original CT scans at a low resolution and then cropping the center regions of
those CT images. The cropped CT region was then used as an input to the first segmentation
network for coarse kidney segmentation. Note that the obtained segmented coarse region
(containing both the coarse kidneys) was resampled to its original resolution. Next, a 3D
cube containing each kidney was cropped from the original image according to the first
stage’s prediction. Each cropped cube then became the input to the second segmentation
network for fine kidney segmentation and kidney stone detection. Lastly, the predicted
masks of the kidney and kidney stone were overlaid in the final output image. Our
proposed two-stage training scheme is illustrated in Figure 3.

3.2.1. Preprocessing

Due to the image size, voxel spacing, and class ratio variation, setting up three-
dimensional (3D) biomedical imaging data for task-specific design and configuration
of a method requires high levels of expertise and experience [53]. Thus, as an initial
preprocessing step, the CT intensities in Hounsfield units (HU) were adjusted to a range of
—135 to 215 or training and validation sets. The motivation behind this step was to alter
the appearances of the images and highlight particular structures [8] inside the images. In
addition, we analyzed the spacing distribution of the CT images and found different z-axis
spacings between cases in the range [0.42-2.5 mm]. To equalize the z-axis spacing between
each case, the z-axis spacing was adjusted to 1.25 mm.

Additionally, min-max normalization was employed to normalize the HU intensities.
As the proposed training scheme consisted of two stages, in the first stage to segment the
kidney, the x- and y-axes of the input data were resized to size (256, 256). Likewise, in
the second stage to segment the kidney and kidney stone, the respective regions of the
preprocessed images (512, 512) were cropped according to the predicted labels (masks)
which were obtained from the first stage and provided as input to the second segmentation
network. We used a similar approach in our previous works [54,55] which was quite
successful for kidney, tumor, and cyst segmentation.
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Figure 3. The proposed training scheme consists of two segmenting stages. In the first stage, the
original image has been resampled and cropped into a single region covering both the kidneys. This
cropped region is further clipped into cubes for the first segmentation network. The second stage
receives the input based on the first stage and original image, which the second segmentation network
could use for the fine kidney segmentation and kidney stone detection.

3.2.2. Coarse Kidney Segmentation (Stage 1)

This stage is designed to extract total kidney volumes because the dataset contains
more than one class (i.e., “kidney” and “kidney stone”). However, it is not easy to directly
detect or segment the kidney and kidney stone. Therefore, the masks of individual kidneys
and kidney stones were changed into a single class (e.g., “kidney”), and the entire region
was cropped using the center crop on the x- and y-axes with the shape (1, z, 192, 192),
with the z-axis remaining unchanged. Next, the subsequent 3D cubes were clipped to
a length of 96, stride 48, and shape (1, 96, 192, 192). For this purpose, the regionprops
function was used to analyze all the input data’s kidney regions and various shape sizes
were tested. The shape size (1, 96, 192, 192) was a perfect range to cover both kidney regions
entirely, as shown in Figure 4. Lastly, a replaceable segmentation architecture was used
with the proposed training scheme for coarse kidney segmentation, which predicted the
total kidney volumes.

3.2.3. Fine Kidney and Kidney Stone Segmentation (Stage 2)

For the fine kidney and stone segmentation, the regions of interest of the input pre-
processed images (512, 512) were cropped according to the predicted labels (masks) from
the first segmentation stage. Again, the center crop was used for cropping each particular
region on the x and y-axis with the shape (1, z, 160, 160). In the subsequent step, the
respective 3D cubes were clipped to a length of 64, stride 32, and shape (1, 64, 160, 160) and
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provided as input to the second segmentation network. Note that the same regionprops
function was utilized to choose the cropping range. The proposed kidney cropping and 3D
cubes clipping procedure is shown in Figure 5.

96Xl92><l92

134x192x192

Z-axis

_/ X-axis \

134x256x256

Figure 4. Each cropped cube with shape (1, 96, 192, 192) as input to the first segmentation network
for coarse kidney segmentation.
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Figure 5. Each cropped cube with shape (1, 64, 160, 160) as input to the second segmentation network
for fine kidney and stone segmentation.

3.3. Adopted Segmentation Networks

For the intended training scheme, five state-of-the-art segmentation algorithms, 3D U-
Net [48], Res U-Net [49], SegNet [50], DeepLabV3+ [51], and UNETR [52] were considered
for training. Initially, these algorithms were trained along with the proposed training
scheme. Later on, these models were trained independently based on the provided settings.
Before the training procedure, a short overview of each segmentation network concerning
their network architecture as follows.

The 3D U-Net is an end-to-end learning network that segments a 3D volume from
sparsely annotated volumetric images employing semi- and fully automated setups. The
proposed network treats 3D volumes as input and processes them with the corresponding
3D operations, particularly 3D convolutions, 3D max pooling, and 3D up-convolutional
layers. The 3D U-Net avoids bottlenecks in the network architecture and uses batch
normalization for faster convergence. The 2D U-Net [54] inspired the proposed architecture,
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replacing all 2D operations with their 3D counterparts. The proposed network has proven
the ability of 3D segmentation for the analysis of medical images.

Res U-Net proposes to extract a road from images. The network was built with
residual units and gained adaptability from the U-Net architecture with twofold benefits.
For instance, taking advantage of the residual units, the training of deep architectures is
simplified. Secondly, the presence of rich skip connections within the network ensures
information propagation, which is helpful to design such networks with fewer parameters
and without sacrificing the model’s performance.

SegNet is a fully convolutional neural network architecture for semantic pixel-wise
segmentation. SegNet’s core trainable segmentation network consists of an encoder and
decoder network followed by a pixel-wise classification layer. For the pixel-wise classifi-
cation, the decoder network maps the low-resolution encoder feature maps to full input
resolution feature maps. Thus, it has been considered the main novelty of the SegNet.

DeepLabV3+ uses two types of neural networks for semantic segmentation by propos-
ing the spatial pyramid module and the encoder—decoder structure. The spatial pyra-
mid captures rich contextual information through pooling operations at different reso-
lutions, and the encoder—-decoder architecture gradually obtains clear object boundaries.
DeepLabV3+ is based on the Xception model [56]. It applies deep separable convolution
to atrous spatial pyramid pooling (ASPP) and the decoder module, which results in a
faster and more effective encoder—-decoder network. Note that the original DeepLabV3+
architecture is 2D.

U-Net TRansformers (UNETR) is a novel architecture that uses a transformer as an
encoder to learn the sequence representations of the input volume. The proposed archi-
tecture successfully captures the global multi-scale features while adhering to the famous
“U-shaped” network for the encoder and decoder modules. The transformer encoder is
linked directly to a decoder through skip connections at various resolutions to compute the
final semantic segmentation outputs. The proposed architecture has been validated on state-
of-the-art benchmarks and has yielded an excellent semantic segmentation performance.

3.4. Segmentation Network Training with Proposed Training Scheme

All segmentation networks (3D U-Net, Res U-Net, SegNet, DeepLabV3+, and UNETR)
were trained for 200 epochs with AdamW [57] with batch size 8 and weight decay 0.001. The
reason for using AdamW was that it exhibited better optimizing effects than conventional
Adam. ReduceLROnPlateau was used to adjust the learning rate (the initial learning rate
was 0.001). The Dice and cross-entropy were combined and used as a loss function. After
training, the best models were selected based on validation loss. The training loss and
validation loss of all models are shown in Figures 6-9.

1.0 4 Training Loss DeeplabV3+
09 SegNet
—— 3D U-Net
0.8 4 — UNETR
07 Res U-Net
0.6
@
& 0.5+
i}
0.4 -
0.3
0.2
0.1
0.0 T T T T T T T 1
0 25 50 75 100 125 150 175 200

Figure 6. Training loss of segmentation networks trained with the proposed training scheme.
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Figure 7. Training loss of segmentation networks trained independently.
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Figure 8. Validation loss of segmentation networks trained with the proposed training scheme.
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Figure 9. Validation loss of segmentation networks trained independently.

4. Results and Discussion

To train the segmentation networks independently (one-step direct segmentation)
and dependently (two-step coarse-to-fine segmentation), we utilized 260 CT scans of our
annotated dataset. Additionally, we applied data augmentation to produce more training
samples. As mentioned above, we used 5-fold cross-validation with a batch size of 8 due to
the high memory requirements. Our implementation was in Python, using the PyTorch



Diagnostics 2022, 12, 1788 10 of 17

framework (version 1.9.0) to train the model and inference the predictions. All training
experiments were conducted on a GPU server with specifications of 64 GB RAM, a 2.15 GHz
AMD EPYC 7742 CPU, and a Nvidia Tesla A100 GPU with 40 GB VRAM. To verify and
compare the effectiveness of all trained deep learned models, the performance analysis was
provided by various means. Initially, the quantitative values of the predictive models were
measured in terms of Dice, specificity, sensitivity, and accuracy. These metrics are all based
on True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) with
definitions as follows:

Dice = 20
2TP + FP 4 FN
s TN

SpeCIfICIty = m

Sensitivity = P

TP + FN

Accuracy = TP +1IN
TP + TN + FP + FN

To systematically compare the performance of these five segmentation networks with
our proposed training scheme, we trained them ten times and calculated the evaluation
metrics mentioned above. The mean and standard deviation of these metrics for ten evalu-
ations of each model are shown in Table 1. It shows that Res U-Net performs better than
U-Net, followed by the other trained models. The DeepLabV3+ and UNETR predictions
are not satisfactory, referring particularly to the kidney stone Dices. Assessing the per-
formances of the models trained independently, Table 2 has lower percentages than the
performances of the trained models with our proposed training scheme. Again, Res U-Net
surpassed all the other models in terms of evaluation metrics when trained independently.
Likewise, the quantitative performances of other independently trained models follow the
same performance order as training by the proposed training scheme. Further, each trained
model was validated by their training and validation loss. Figures 6 and 7 compare the
training losses of all segmentation networks trained dependently and independently. The
validation loss comparison of each trained network appears in Figures 8 and 9, verifying
the quantitative analyses provided in Tables 1 and 2.

Table 1. The performances of the networks trained ten times with the proposed training scheme.

Network Kidney (Mean =+ Std) Kidney Stone (Mean =+ Std)
Dice Specificity Sensitivity Dice Specificity Sensitivity
SegNet 95.04 + 1.18% 99.96 £ 0.02% 95.69 £ 0.94% 75.59 £ 2.23% 99.96 £+ 0.01% 73.43 £ 1.18%
DeepLabV3+ 81.73 £ 2.43% 99.89 £ 0.02% 82.52 £ 2.50% 33.36 £ 3.17% 99.96 £+ 0.01% 35.61 £ 3.28%
3D U-Net 96.05 % 1.68% 99.98 £ 0.01% 96.05 % 0.18% 80.04 £ 1.75% 99.98 £ 0.01% 80.21 £+ 1.81%
UNETR 93.35 4 1.45% 99.97 £+ 0.01% 93.09 £+ 0.82% 74.36 £ 0.80% 99.96 £+ 0.01% 76.26 £ 2.78%
Res U-Net 96.54 £ 1.06% 99.99 £ 0.01% 96.49 £ 0.08% 80.59 £ 1.28% 99.99 £ 0.01% 79.73 £ 1.90%

Table 2. The performances of the networks trained independently.

Network Kidney Stone Dice  Kidney Dice  Specificity = Sensitivity Accuracy
SegNet 75.42% 95.50% 99.96% 97.50% 99.94%
DeepLabV3+ 41.09% 65.56% 99.75% 70.91% 99.59%
3D U-Net 77.63% 96.70% 99.97% 97.20% 99.96%
UNETR 61.92% 77.14% 99.82% 82.02% 99.72%
Res U-Net 79.83% 95.81% 99.97% 96.61% 99.95%

Next, the trained models were assessed using the success rate of the test set. The
success rate is the proportion of successful efforts to accomplish an operation or task. For
this purpose, the generated predictions were categorized into kidney and kidney stone
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segmentation predictions. The respective success rates of all independent and dependent
trained models are provided in Figures 10-13. Lastly, the final imaging outputs were
analyzed and compared. Figures 14 and 15 show the 2D segmented predictions, and
Figures 16 and 17 show the 3D visualizations of segmented kidneys and kidney stones.

Kidney segmentation success rate || DeepLabV3+

[__]SegNet
[_13D U-Net
[ JUNETR
10 - [ ]Res U-Net
0.8 | 0l
9
06 —
®
?
@
S04 H
=
w
02
00 ‘I.D - . . : r
0-075 0751 081 08-1 08-1 0851
Dice(%)
Figure 10.

Kidney segmentation success rate of segmentation networks with proposed
training scheme.

Kidney segmetation success rate D DeeplabV3+

[ ]SegNet
[ ]3D U-Net
[ JUNETR
104 [ |Res U-Net
0.8
g dl gn
06
®
0
@ i
[ ] -
§0.4 H
3
w
0.2
0-0.75 0751 0.8-1 0.85-1 0.9-1 0.95-1

Dice(%)
Figure 11. Kidney segmentation success rate of segmentation networks trained independently.
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Figure 12. Kidney stones segmentation success rate of segmentation networks trained with the
proposed training scheme.
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Figure 13. Kidney stones segmentation predictions success rate of segmentation networks
trained independently.
CT image Ground Truth Res U-Net 3D U-Net UNETR SegNet DeepLabV3+

Figure 14. The 2D visual analysis of segmented kidneys and kidney stones predicted by the models
trained dependently.

CT image Ground Truth Res U-Nnet 3D U-Net UNETR SegNet DeepLabV3+

Figure 15. The 2D visual analysis of segmented kidneys and kidney stones predicted by the models
trained independently.
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Ground Truth

Ground Truth

Res U-Net

Res U-Net 3D U-Net UNETR SegNet DeeplLabV3+

3D U-Net UNETR SegNet DeepLabV3+

Kidney Volume [N Stone [

Figure 16. The 3D visual analysis of predictions generated by the models trained dependently.

Figure 17. The 3D visual analysis of predictions generated by the models trained independently.

A comparison of Figures 14 and 15 shows that the models trained with the proposed
training procedure gave better segmented predictions. The Res U-Net showed the highest
performance, followed by other trained networks using test data. The 3D U-Net was a
close competitor to Res U-Net. Otherwise, DeepLabV3+, UNETR, and SegNet missed
some of the target regions belonging to kidneys and kidney stones. Both Figures 14 and 15
can be expanded to view the details more clearly. Figures 16 and 17 illustrate the 3D
visual quality evaluation of kidney and stone segments generated by the segmentation
networks trained dependently and independently. These visual evaluations illustrate that
the segmented images generated by the segmentation networks applied with the proposed
training method are more prominent than the 3D segments extracted by the independently
trained models. Similarly, Figure 10 shows that the most effective segmentation algorithms
were, again, Res U-Net and 3D U-Net, followed by SegNet, UNETR, and DeepLabV3+. The
3D segments produced by Res U-Net and 3D U-Net are quite close to respective ground
truth, while those produced by DeepLabV3+, SegNet, and UNETR yielded outputs with
missing or inaccurate predictions. Referring to Figure 11, which shows their visualized 3D
outputs, the performances of DeepLabV3+, SegNet, and UNETR are, again, considerably
defective compared to Res U-Net and 3D U-Net.

In addition, we show the Dice results by kidney stone size to establish whether the
size of the stone impacts the segmentation performance in Table 3. We prove that the results
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are better in segmentation for larger kidney stone. The experimental results prove that the
proposed two-stage training scheme performs much better than the segmentation networks
which are trained independently. The results also show that kidney stone detection is
harder for the segmentation networks due to varying sizes, diversity in appearance, small
shapes, and many negative samples in an abdominal CT scan. In the same way, entire
kidney detection and segmentation becomes challenging due to their deformable shapes
from slice to slice. Therefore, the two-stage segmentation networks strategy is ideal where
the entire kidney region has been extracted initially as an input for the first segmentation
network. The second stage includes cropping the kidneys separately and then providing
them as an input to the second segmentation network. The network ignores many irrelevant
features in abdominal CTs and thus simplifies kidney stone segmentation.

Table 3. The performances of different networks by kidney stone size.

Network Kidney Stone Dice (Mean =+ Std)
Small Middle Large
SegNet 34.38 £ 1.67 74.76 + 2.86 80.86 £ 4.51
DeepLabV3+ \ 5.61 4 2.48 4742 +2.70
3D U-Net 58.03 +1.42 81.56 +1.99 82.86 + 3.52
UNETR 5249 £2.13 76.54 +2.20 76.38 +1.85
Res U-Net 60.11 £ 0.84 76.08 + 3.46 83.39 + 2.33

A notable trade-off regarding the proposed two-stage training procedure is the heavy
requirement of computing resources. In addition, the second stage relies heavily on the
segmented outputs produced by the first stage’s segmentation network. For example, a
false positive can affect the entire kidney region’s cropping ability, leading to incorrect
predictions. However, the probability of such a scenario is quite rare as kidney extraction
is easier than kidney stone detection. Thus, to avoid such challenges, we intend that our
future prediction model will utilize a single segmentation network without scarifying the
finely segmented predictions.

5. Conclusions

Contemporary benchmark challenges are increasingly dominated by machine learning
and deep learning techniques with convolutional neural networks, such as the Kidney and
Kidney Tumor Segmentation (KiTS19) challenge, which appeared in the MICCAI 2019.
Recent machine automation trends have also extensively inspired and aided biomedical
engineering and clinical practices. There has been less attention paid to automatic kidney
segmentation and kidney stone detection using CT images. Consequently, this work
focused on performing kidney and kidney stone detection tasks and presented a replaceable
training procedure for 3D semantic segmentation algorithms. The segmentation algorithms
trained with the proposed training strategy performed considerably well in terms of Dice,
specificity, sensitivity, and accuracy. Moreover, this work contributes to an open-access
well-annotated abdominal CT dataset of kidneys and kidney stones for further research.
It would be among the primary works which address kidney segmentation and kidney
stone detection challenges using the CT images. We believe that this work will also have a
real-time impact, such as preoperative planning for percutaneous nephrolithotomy (PCNL).
Thus, such techniques could be extended for PCNL surgical intervention. However, to
fully leverage such techniques for PCNL surgical intervention, there is a need to explore
the kidney’s inner structure in more detail, such as by taking advantage of the enhanced
CT images and then training the intelligent models accordingly. Inspired by these goals,
our future work aims to annotate and segment the inner kidney’s structure using enhanced
CT images. This work also reveals that research on the topic is limited. To the best of
our knowledge, no work provides a well-annotated open-access CT image dataset both
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for kidney and kidney stone segmentation and detection. In conclusion, deep semantic
segmentation models are feasible and capable of accurately segmenting kidneys and
detecting kidney stones on unenhanced abdominal CT scans.
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