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Abstract: Infarct volume (FIV) on follow-up diffusion-weighted imaging (FU-DWI) is only moderately
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We assessed the performance of three classifiers in predicting functional independence for the MR
CLEAN-NO 1V trial cohort based on: (1) FIV alone, (2) the most important features obtained from a
trained convolutional autoencoder (CAE), and (3) radiomics. Furthermore, we investigated feature
importance in the radiomic-feature-based model. For outcome prediction, we included 206 patients:
144 scans were included in the training set, 21 in the validation set, and 41 in the test set. The
classifiers that included the CAE and the radiomic features showed AUC values of 0.88 and 0.81,
respectively, while the model based on FIV had an AUC of 0.79. This difference was not found to
be statistically significant. Feature importance results showed that lesion intensity heterogeneity
received more weight than lesion volume in outcome prediction. This study suggests that predictions
of functional outcome should not be based on FIV alone and that FU-DWI images capture additional

prognostic information.

Keywords: acute ischemic stroke; functional independence; follow-up DWI; infarct core image

features; infarct core segmentation; support vector machine

1. Introduction

Acute ischemic stroke (AIS) has a major impact on patients’ lives: the majority of
AIS patients do not return to functional independence or their functional status before
experiencing AIS—even with adequate treatment [1]. Accurate estimations of functional
outcome after treatment could help to guide patients in setting realistic expectations and
deciding on the focus of the rehabilitation process [2].

Follow-up infarct volume (FIV) as measured by radiological follow-up imaging has
been suggested as a prognostic marker for functional outcome [3]. However, previous
studies have indicated that FIV is only moderately associated with functional outcome:
only 12% of functional outcomes are explained by FIV [3]. It has been suggested that current
imaging techniques—such as computed tomography (CT), CT perfusion, and diffusion-
weighted imaging (DWI)—are not able to accurately predict or measure infarcted tissue [4].
A complicating factor is the fact that progression from severely ischemic tissue to actual
infarction is likely not constant over time and not always clearly visible on CT or DWI scans.
In addition, cells within the ischemic region may potentially remain viable, depending on
their tolerance to ischemia [4]. A previous study showed that ischemic lesions may still
evolve in the subacute phase even after successful treatment, resulting in smaller or larger
lesions after 1-week follow-up [5].

Previous studies have suggested that tissue estimated as infarcted on radiological
imaging may contain additional prognostic information that could improve outcome
prediction for AIS. For example, intensity heterogeneity on images in infarcted regions
may reflect a variance in tissue vulnerability to ischemia and may represent the degree of
ischemia [6]. In addition, Wang et al. showed that textural features, including heterogeneity,
assessed based on T2 FLAIR and ADC images were associated with follow-up NIHSS and
modified Rankin Scale (mRS) scores [7]. Moreover, the shape of the lesion may contain
important information on the potential progression from ischemia to infarcted tissue [8].

Previous studies have demonstrated the potential of machine learning (ML) to use
automatically extracted imaging biomarkers for outcome prediction in AIS. For example,
Qiu et al. [9] trained a support vector machine (SVM) to show that thrombus radiomic fea-
tures were more predictive for recanalization in patients treated with intravenous alteplase
than manually extracted thrombus features. In addition, Hilbert et al. [10] showed that
features automatically extracted by an autoencoder combined with a dense layer outper-
formed ML models trained on handcrafted imaging biomarkers in predicting successful
reperfusion and functional outcome at 90 days after stroke onset.

We hypothesized that infarct volume alone, as measured by DWI, is not sufficient
to represent the pathological changes in the ischemic brain region and that DWI data
may contain additional prognostic information that is still unknown. We compared the
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performance of an ML model based on FIV alone with a radiomic-features-based model
and a model based on features obtained from a deep learning autoencoder network in the
prediction of favorable functional outcome.

2. Materials and Methods

Figure 1 shows the workflow of this study, which can be split up into two stages:
feature extraction and outcome classification. Before we were able to extract features from
the study dataset, we used an external dataset to train the CAE and a deep learning network
for the delineation of the infarct lesions.
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Figure 1. Study workflow for functional outcome prediction. Three different feature sets were
extracted: follow-up infarct volume, features extracted by a convolutional autoencoder, and radiomic
features. Each feature set was split into a training (80%) set and a test (20%) set. A support vector
machine (SVM) was trained on the training set to classify favorable outcome. The SVMs were tested
on the test set. The results were evaluated for each SVM.

2.1. Datasets

The external dataset included patients from the HERMES collaboration [11] with
available diffusion-weighted imaging (DWI) at 24 h; it also included DWI images from
patients with subacute lesions from SISS ISLES 2015 [12]. The HERMES collaboration
was formed to pool patient-level data from seven randomized, controlled clinical trials
that showed the efficacy of endovascular treatment (EVT) over best medical management
alone for patients with an occlusion of arteries of the proximal anterior circulation (ICA,
M1, and M2) [11]. Each trial in the HERMES collaboration was approved by the relevant
national or local medical ethical committee. All imaging data and clinical reports were
anonymized, and informed consent was obtained for each patient according to each trial
protocol. Patients included in these trials consented to participation in the individual trials
as well as the use of their data for future research.

The study dataset included patients from the MR CLEAN-NO 1V trial with available
DWTI at 24 h post-treatment. The MR CLEAN-NO 1V trial was a randomized clinical trial in
which the effect of immediate endovascular treatment (EVT) on 90-day functional outcome
in patients with AIS was compared to that of intravenous treatment with alteplase (IVT)
followed by endovascular treatment [13]. Patients who were directly admitted to an EVT-
capable hospital were included if they were eligible for IVT and EVT and over the age of
18 with a proximal occlusion of the anterior circulation. Informed consent was obtained
following a deferred consent procedure in accordance with national legislation in the three
participating countries [14].

Since imaging was acquired in a multicenter and international setting, scanner types
and image acquisition parameters varied. Images were acquired with a field strength of 1.5
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or 3 Tesla. The slice thickness ranged from 3 to 6 mm. For this study, patients were excluded
if DWI images contained motion artifacts or in cases with unsolvable registration errors.

2.2. Pre-Processing and Image Analysis
2.2.1. Image Registration

All DWI images were transformed to standard MNI space via non-rigid registration
using the SPM8 toolbox [15], resulting in isotropic voxel dimensions of 1 mm. Intensities
were normalized using the white stripe normalization toolbox [16]. Images processed by the
CAE were additionally subsampled to an isotropic voxel spacing of 3 mm before analysis.

2.2.2. Lesion Segmentation

To delineate the infarct lesions for the MR CLEAN-NO IV population, we trained a
Deepmedic network [17]. Deepmedic is a multi-scale 3D convolutional neural network
with a fully connected conditional random field and has been shown to be computationally
efficient; it performed best at brain lesion segmentation in the ISLES 2015 challenge [12].
We trained the network on the HERMES DWI images for which lesion segmentations
were available [3]. Images were split into a training set (70%), a validation set (10%),
and a test set (20%). The trained network was applied to the MR CLEAN-NO 1V image
dataset. Each resulting segmentation was checked by one of two experienced observers
(authors J.W.H. and M.L.T.) and manually adjusted, in cases of erroneous segmentation,
using ITK-SNAP [18]. Hemorrhagic transformation was included within the lesion. For
cases where no consensus could be reached, the segmentations were assessed by two
expert neuroradiologists (authors C.B.M. and M.S.K., with >20 and >5 years of experience,
respectively) to reach a consensus.

2.3. Feature Extraction
2.3.1. Convolutional Autoencoder

We developed and optimized a CAE for the reconstruction of DWI images (Figure 2)
using the Keras libraries [19]. By learning how to reduce the dimensions of the feature
space and reconstruct images from this low-dimensional feature space (latent space), the
CAE learns the most important features that describe the source image. A CAE consists of
several layers that downsample an image (encoder) to a compressed feature space (latent
space), followed by several upsampling layers (decoder) that reverse the downsampling
by upsampling the image to the original image dimensions. The encoder consisted of four
4 x 4 x 4 convolutional layers with stride 2 and rectified linear unit activation. Since each
convolutional layer divides the feature space dimensions in half, it was favorable to use
input dimensions that were powers of 2. Therefore, we first zero-padded the input image
to the dimensions of 64 x 80 x 64. For each subsequent convolutional layer, the number
of filters was doubled, starting at 16. Each convolutional layer was followed by group
normalization to reduce the chance of overfitting. After the final convolutional layer of
the encoder, the feature space was flattened, and a dense layer was added to reduce the
number of features in the latent space to 100. The decoder reversed the encoder by first
upsampling the feature space by a factor 2, followed by the use of a convolutional layer
with stride 1 to maintain the feature space dimensions. The number of filters in the first
four convolutional layers of the decoder was equal to the number in the encoder but in the
opposite direction. Again, each convolutional layer was followed by group normalization.
After the fourth convolutional layer, three additional convolutional layers were added
to gradually reduce the fourth dimension of the feature space to 1, resulting in the input
image dimensions. After the last convolutional layer, the output image was cropped to
the original image dimensions. The loss function of the CAE was the mean squared error
(MSE) between the source image and the resulting image.
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Figure 2. The convolutional autoencoder architecture. The dimensions of the input image were
64 x 80 x 64. The encoder consisted of four 4 x 4 x 4 convolutional layers with stride 2 and rectified
linear unit activation. For each subsequent convolutional layer, the number of filters was doubled,
starting at 16. Each convolutional layer was followed by group normalization. After the final
convolutional layer of the encoder, the feature space was flattened, and a dense layer was added. The
decoder contained the same components as the encoder in the opposite direction, except that the
feature space was upsampled first by a factor of 2, and the stride of the convolutional layers was kept
at 1. After the fourth convolutional layer, three additional convolutional layers reduced the fourth
dimension of feature space to 1, resulting in the original image dimensions.

For the development and optimization of the CAE, the data from the HERMES and
ISLES challenges were combined and divided into a training (80%) set and a validation
set (20%). To increase the number of training samples available, we performed data
augmentation for the training set by flipping the images over the z-axis. The network was
trained for 200 epochs with a batch size of 2. We used the validation set to optimize the
CAE. After optimization, we extracted features from the MR CLEAN-NO IV DWI dataset.

2.3.2. Radiomics

Radiomic features extracted from medical images aim to identify and quantify patho-
logical effects that may be invisible to the human eye [20]. Radiomic features are extracted
from a region of interest (ROI), in our case, the infarct lesion, and include first-order statis-
tics, shape, and textural features (Figure 3). Examples of first-order statistics are minimum,
maximum, and mean intensity within the lesion. Shape features contain both 2D metrics,
such as the maximum diameter within a slice of the ROI, and 3D metrics, including the 3D
volume of the ROI. Textural features are computed using filtering methods and matrices
that capture the relationships between multiple voxels. An example of these matrices is
the gray-level size zone matrix (GLSZM), which represents the number of neighboring
pixels with the same intensity. Metrics computed from this matrix represent coarseness
and homogeneity within the lesion. In total, 100 radiomic features were extracted using the
PyRadiomic Toolkit [20].
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Figure 3. Illustration of the three radiomic feature classes. Radiomic features consist of shape, texture,
and first-order statistics features. Shape features describe the 2D and 3D size and shape of the
lesion. Textural features describe the intensity distribution and relations between neighboring voxels.
First-order statistics describe the intensity distributions of the lesion.

2.4. Classification

An SVM classifier was optimized based on FIV, radiomic, and CAE features. The
SVM classifier separated different outcome groups by optimizing a hyperplane that de-
scribed the boundary with maximal distance between the features that belonged to the
different outcome groups. We assessed its performance at accurately predicting functional
independence, defined as an mRS score of 0-2, at 90 days. For the implementation of the
SVM, we used the scikit-learn toolkits [21]. The optimization and testing were performed
similarly for both feature sets. From the MR CLEAN-NO IV DWI dataset, 80% of the
DWI images were used for 5-fold cross-validation. The remaining 20% of the images were
used to test the performance of the final classifier. Before optimizing the SVM, all features
were normalized with the scikit-learn ‘RobustScaler’ function, which scales each feature
based on its median and interquartile ranges. To optimize the SVM, we performed a grid
search to find the most optimal kernel type and coefficient (gamma) and regularization
parameter (C). The following options were used: linear kernel type, radial basis function,
polynomial or sigmoid, and gamma of 1 x 1072 to 1 x 10° per order of magnitude. The
performance of the classifiers was evaluated based on the area under the receiver operating
characteristic curve (AUC) computed for the test set. The AUCs were pairwise compared
and tested for statistically significant differences, with the highest AUC as a reference,
using deLong’s test [22]. Classification accuracy, precision, and recall were also reported.
For the radiomics-based classifier, we investigated feature importance based on the Shapley
additive explanation (SHAP) values [23]. For the CAE, we visualized a representative
predicted validation image and compared it to the original validation image.
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3. Results
3.1. Study Population

From the 307 patients with FU-DWI images in the HERMES dataset, we excluded
55 patients due to poor image quality. No images were excluded from the ISLES dataset
(n = 64), which resulted in a total dataset of 316 images. From these images, 253 DWI
images were included in the training set and 63 in the validation set.

The MR CLEAN-NO 1V dataset contained 220 patients with available FU-DWI scans.
We excluded 11 patients due to poor image quality and 3 patients due to uncorrectable
registration errors. This resulted in 206 patients in the study population, from which
144 scans were included in the training set, 21 in the validation set, and 41 in the test set.
The baseline and follow-up characteristics for the MR CLEAN-NO IV subpopulation and
the overall study population are provided in the Supplemental Material, Table S1.

3.2. Autoencoder Image Reconstruction

The training MSE of the CAE was 2.0 x 1073 (arbitrary units), and the validation error
was 5.1 x 1073. Figure 4 shows the reconstruction of a validation image (left) established by
the CAE (middle) and the corresponding difference map (right). The difference map shows
small intensity differences in most of the healthy brain regions. The largest differences in
intensities were present at the transition between brain tissue and cerebral spinal fluid. It is
of note that some predicted voxels within the lesion and ventricles also differed in intensity
from the original. The CAE was able to reconstruct the lesion at a location similar to that of
the original image.

Original validation image Predicted validation image Abolute difference map 0.40

0.35
0.30
0.25
0.20
0.15
0.10

0.05

Figure 4. Example of imaging reconstruction using a trained convolutional autoencoder. (Left) An
axial slice of the original validation image. (Middle) The corresponding slice of the predicted image.
(Right) The absolute difference between the normalized original and predicted images.

3.3. Functional Outcome Prediction

Table 1 shows the results of the best-performing classifiers that were trained on FIV,
CAE-selected features, and radiomic features. We found the highest test accuracy for the
FIV-based SVM classifier (0.74). The precision was highest for the radiomic-features-based
SVM classifier (0.80), while the recall was highest for the SVM classifier based on FIV (0.73).
Based on the AUC (Figure 5), the SVM classifier trained on radiomic features showed the
best performance (0.88). However, this improved outcome prediction was not statistically
significant compared to the model based on FIV (p = 0.15) or the model based on the
CAE-trained SVM classifier (p = 0.37).
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Table 1. Training and testing accuracy, AUC, precision, and recall for the best-performing SVM
classifiers based on FIV, the autoencoder features, and the radiomic features. The p-values resulting
from deLong’s tests against the radiomic features are presented in the last column.

Feature Extraction  Training Accuracy  Testing Accuracy AUC Precision Recall deLong’s Test
Method (n =144) (n=41) (n=41) (n=41) (n=41) p-Value
FIV only * 0.73 0.74 0.79 0.78 0.73 0.15
Autoencoder ** 0.76 0.71 0.81 0.70 0.71 0.37
Radiomics *** 0.75 0.71 0.88 0.80 0.65

* SVM parameters: {C: 1000, gamma: 0.01, kernel: rbf}, ** SVM parameters: {C: 0.1, gamma: 0.01, kernel: linear},
*** SVM parameters: {C: 1, gamma: 0.001, kernel: sigmoid}.
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Figure 5. Receiver operating curves for the best-performing support vector machine model based
on three different inputs: features extracted by a convolutional autoencoder, radiomic features, and
follow-up infarct volume.

3.4. Radiomic Feature Importance

Figure 6 lists the 15 radiomic features with the largest impact on the outcome prediction
generated by the SVM classifier based on SHAP values. The majority of these features
consisted of textural features [24]. The two most important features were ‘large area of
high gray-level emphasis” and ‘large area of low gray-level emphasis’, which are both
based on the GLSZM matrix. These features represented the presence of large areas with
high or low intensities within the lesion and steered the classifier towards unfavorable
functional outcome classifications. The lesion volume features with the most impact on the
classification were mesh volume (volume based on the reconstructed 3D mesh based on
the delineation) and voxel volume (lesion volume based on voxel volume). These features
were in 9th and 10th place, respectively.
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Figure 6. SHAP summary plot showing the top 15 radiomic features (and their feature classes) in
terms of impact on the classification based on the SHAP values. Negative and positive SHAP values
represent unfavorable and favorable outcome classifications, respectively. The feature values are
represented by a color map, ranging from blue (low value) to red (high value). Abbreviations of
second-order radiomic feature classes in gray-level matrices: size zone (glszm), dependence (gldm),
and run length (glrlm).

4. Discussion

We compared the predictive performance of ML models based on three different
feature sets: FIV, radiomic, and CAE features. We showed that the accuracy of favorable
outcome prediction based on radiological imaging characteristics was improved when
using automatically extracted imaging biomarkers from FU-DWI images. However, we
were unable to show statistically significant differences in independent data. We found
that intensity heterogeneity in the FU-DWI lesion was most important for functional
outcome prediction.

The model based on radiomic features most accurately predicted favorable functional
outcome, and our SHAP analysis showed that its most important features were related to
textural information. Thus, the SVM classifier weighted the decisions regarding predicted
outcome mostly on texture and, to a lesser extent, on lesion volume. The most important
textural features were related to intensity heterogeneity. This corresponds with the current
literature [7] and may reflect the heterogeneity in tissue vulnerability. Possibly, intensity
heterogeneity in our study population was related to the presence of hemorrhage, which
is negatively associated with functional outcome [25]. We performed an explorative anal-
ysis to study whether hemorrhage was present in patients with heterogeneous lesions.
Together with an expert neuroradiologist (C.B.M.), we visually inspected the DWI and
T2* images of the patients with high values for heterogeneity and negative SHAP values
(which corresponded to predictions of unfavorable outcome). Information about treatment
outcome was not provided. Hemorrhage could not be observed in these patients. This
study suggests that functional outcome predictions should not be based on FIV alone as an
imaging biomarker and that FU-DWI images capture additional prognostic information
about the ischemic tissue in patients with an LVO.

The radiomic-feature-based SVM outperformed the CAE-feature-based SVM and was
best at correctly classifying patients with favorable outcomes: 20% of the patients for whom
a favorable outcome was predicted by the radiomic-features-based SVM did not achieve
functional independence, compared to 25% for the CAE-feature-based SVM. However, the
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recall for the radiomic-feature-based classifier was only 65%, while for the CAE-feature-
based SVM, 73% of patients with favorable outcomes were selected. Considering these
results, we think that the CAE-feature-based SVM is more appropriate for clinical decision
making since patients with the potential for a favorable outcome should not be missed.

An advantage of the use of CAE features over radiomic features is that no lesion
delineations are required for feature extraction. In this study, lesion delineation required
manual annotations, which is time-consuming and introduces user dependency. In addition,
since the CAE features are based on the entire brain volume, information on surrounding
tissue relative to the lesion is incorporated. A disadvantage of using the CAE is that features
are less interpretable. Future studies could potentially perform activation visualization
to study which information about the brain was most important for the classifier [26]. In
addition, ischemic lesion location could be a feature of interest for predicting functional
outcome [27].

This study suffers from some limitations. First, selection bias might have occurred
since, for functional outcome prediction, we only included patients who complied with the
inclusion criteria of MR CLEAN-NO IV. Consequently, our results cannot be generalized to
ischemic stroke patients with more distal occlusions, posterior circulation occlusions, or
a stroke with minor symptoms. In addition, our results are not generalizable to patients
not eligible for IVT and/or EVT, or who present outside the treatment window or with a
baseline NIHSS < 2. In addition, in our healthcare system, a follow-up MRI for AIS patients
is mostly only acquired in a research setting. Therefore, we only included patients from
centers who participated in the MR CLEAN-NO 1V trial in whom a follow-up MRI was
performed as a secondary outcome measure as required by the trial protocol. Second, the
mRS score was used since it is a common endpoint in AIS trials for the assessment of inde-
pendence in daily activities. However, it is coarse and mainly focuses on motor function,
with less attention to the assessment of cognitive function and emotional processing. Third,
the performance of the CAE may have been hampered due to the optimization process of
the CAE itself. Improving the CAE, for example, by adding more data to the training set,
may improve the accuracy of classifications of functional independence by the SVM based
on CAE features.
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