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Abstract: Multiple Sclerosis (MS) is a disease attacking the central nervous system. According
to MS Atlas’s most recent statistics, there are more than 2.8 million people worldwide diagnosed
with MS. Recently, studies started to explore machine learning techniques to predict MS using
various data. The objective of this paper is to develop an ensemble approach for diagnosis of MS
using gene expression profiles, while handling the class imbalance problem associated with the
data. A hierarchical ensemble approach employing voting and boosting techniques is proposed.
This approach adopts a heterogeneous voting approach using two base learners, random forest
and support vector machine. Experiments show that our approach outperforms state-of-the-art
methods, with the highest recorded accuracy being 92.81% and 93.5% with BoostFS and DEGs for
feature selection, respectively. Conclusively, the proposed approach is able to efficiently diagnose
MS using the gene expression profiles that are more relevant to the disease. The approach is not
merely an ensemble classifier outperforming previous work; it also identifies differentially expressed
genes between normal samples and patients with multiple sclerosis using a genome-wide expression
microarray. The results obtained show that the proposed approach is an efficient diagnostic tool
for MS.

Keywords: ensemble learning; multiple sclerosis; diagnosis; gene expression; differentially expressed genes

1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory disease that attacks the central
nervous system. MS is characterized by lesions in the brain and spinal cord, which cause
various neurological symptoms, including, but not limited to blindness, double vision,
muscle weakness, and changes in sensation and balance [1]. Multiple sclerosis ranges
from the relapsing form, where attacks are over long intervals, to the progressive form,
where symptoms progressively get worse over time. It is classified into Clinically Iso-
lated Syndrome (CIS), Relapsing–Remitting MS (RRMS), Primary Progressive MS (PPMS),
and Secondary Progressive MS (SPMS) [2]. To the present date, there is no known cure for
MS, nor the causes of the disease. Some mention the cause to be the destruction by the
immune system or the failure of cells that produce myelin to protect the nerves; others
mention genetics or viral infection [3].

Multiple sclerosis is known to be one of the most common auto-immune disor-
ders. The reports about the global burden of disease [4] revealed that, in 2015, about
2.3 million people were diagnosed as MS patients, with about 18,900 deaths, as opposed to
12,000 deaths from MS in 1990.

In [5], a study involving patients with Pediatric-Onset MS (POMS) was carried out to
evaluate changes in the prognosis of POMS over time with associated therapeutic changes.
It was shown that the risk of persistent disability was reduced by 50% to 70% in recent
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diagnosis epochs. Furthermore, in [6], Late-Onset Relapsing–Remitting MS (LORRMS) and
Young-Onset Relapsing–Remitting MS (YORRMS) were studied, and it was shown that the
male population with LORRMS reached severe disability faster than those with YORRMS.
Moreover, [7] studied more symptoms associated with MS. The study showed that severe
disease course is associated with a higher risk of neuropathic pain. Furthermore, as shown
in [8], dysphagia is one of the frequent MS symptoms.

This work is motivated by the fact that patients have an increased risk of being poorly
diagnosed, hence increasing the risk factors and deterioration due to attacks. In addition
to the availability of data and the increased diagnostic performance achieved by machine
learning, machine learning has recently shown promising results for many neurological dis-
orders. Proposed methods have successfully distinguished healthy subjects from patients
with high accuracy. However, none of the proposed diagnostic methods have achieved
reliable levels of accuracy to identify the genes associated with the disease as a basis for
diagnosis. Moreover, none of the work in the literature has addressed the class imbalance
nature of most of the MS expression data samples. Furthermore, most of these studies rely
on data that are rarely used in clinical routine. In addition to that, ensemble learning has
proven to be an effective approach for improving disease diagnosis accuracy.

Many researchers addressed the problem of multiple sclerosis prediction from different
perspectives. However, the literature still lacks efficient predictive models that benefit from
all the available data. In this section, the most cited and recent work in multiple sclerosis
is summarized. Furthermore, the section briefly covers the work related to the imbalance
dataset problem in diseases. Some work in the literature addressed the association of
certain genes with the disease. Random forests were used in [9] to identify new genes
associated with MS.

Weygandt et al. [10] used SVM to classify Relapsing–Remitting MS (RRMS) patients.
The highest accuracy reported on 44 patients and 26 healthy controls was 95% using brain
lesions, given that lesions are much more frequent in MS patients than in healthy controls,
and also, normal-appearing tissue can be affected by microstructural changes [11].

Bendefeldt et al., in [12], employed Support Vector Machines (SVMs) to perform binary
classification in MS to classify patients with a short disease duration (less than 5 years)
and a long disease duration (more than 10 years), low T2 lesion load (less than 1 mL) and
high T2 lesion load (more than 10 mL), and benign MS (with an Expanded Disability Status
Scale (EDSS) less than or equal to 3) and non-benign MS (EDSS more than 3). The accuracy
reported was 85%, 83%, and 77%, respectively.

Chen et al. [13] proposed the Voxelwise Displacement Classifier (VDC); a classifier
based on Fisher’s linear discriminant analysis, SVM, Random Forest(RF)and Adaboost
when using displacement fields as features. The study was tested on 29 Relapse–Remitting
MS (RRMS), 8 Secondary Progressive MS (SPMS), 4 CIS, and 1 Primary Progressive MS
(PPMS) patients and 36 healthy controls. The proposed VD classifier consistently outper-
formed other methods, reaching up to 100% accuracy.

Other methods used gene expression data for diagnosing multiple sclerosis. The
study [14] proposed a classification model for gene selection using gene expression data,
The method proposed was applied on a total of 44 samples, 26 multiple sclerosis patients
and 18 individuals with other neurological diseases (control). An accuracy of 86% was
achieved using an analytical framework integrating feature ranking algorithms and a
support vector machine model for selecting genes associated with multiple sclerosis.

Sweeney et al.[15] compared a supervised machine learning techniques using different
feature vectors extracted from MRI images to predict MS. The research concluded that the
choice of the feature vector has a higher impact on the predictive performance than the
machine learning algorithm used.

A method for the diagnosis of multiple sclerosis using combined clinical data with
lesion loads and magnetic resonance metabolic features was presented in [16]. Three
classifiers were used in the study, Linear Discriminant Analysis (LDA), Support Vector
Machines (SVMs), and Random Forest (RF). The results reported in the paper suggest
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that metabolic features obtain good results to discriminate between relapsing–remitting
and primary progressive forms, while lesion loads are better at discriminating between
relapsing–remitting and secondary progressive forms. Therefore, combining clinical data
with magnetic resonance lesion loads and metabolic features can improve the discrimination
between relapsing–remitting and progressive forms.

Margineau et al. [17] used four binary classifiers to classify multiple sclerosis courses
using features extracted from Magnetic Resonance Spectroscopic Imaging (MRSI) combined
with brain tissue segmentations of gray matter, white matter, and lesions. Values of
the area under the curve ranged between 68% and 95%, with the highest percentage
recorded for Support Vector Machines with a Gaussian kernel (SVM-rbf) applied on MRSI
features combined with brain tissue segmentation features. According to their comparison,
their work concluded that combining metabolic ratios with brain tissue segmentation
percentages obtained high classification results for Clinically Isolated Syndrome (CIS),
Relapsing–Remitting (RR), and Primary Progressive (PP) patients. The best results were
obtained with SVM-rbf, and therefore, building complex architectures of convolutional
neural networks does not add any improvement over classical machine learning methods.

Ostemeyer et al. [18] used statistical learning to diagnose immune diseases. Their
method was a repertoire-based statistical classifier for diagnosing Relapsing–Remitting
Multiple Sclerosis (RRMS) with an accuracy up to 87%. Moreover, this method points
to a diagnostic biochemical motif in the antibodies of RRMS patients. Zhao et al. [19]
used SVMs and compared them to logistic regression on 1693 CLIMB patients using
demographic, clinical, and MRI data. The study showed that SVMs improved predictions
and outperformed linear regression in most cases.

In [20], machine learning techniques were employed on microarray datasets to identify
defective pathways related to MS. The analysis resulted in a list of highly discriminatory
genes, where the most discriminatory genes were related to the production of Hemoglobin.
The analysis also revealed coincidences of MS with some viruses, such as Epstein–Barr
virus, Influenza A, Toxoplasmosis, Tuberculosis, and Staphylococcus Aureus infections.

MS could also be diagnosed with some biomarkers as shown in the work in [21].
The biomarkers suggested in [21] are the plasma levels of Tumor Necrosis Factor (TNF)-
α, soluble TNF Receptor (sTNFR) 1, sTNFR2, adiponectin, hydroperoxides, Advanced
Oxidation Protein Products (AOPPs), nitric oxide metabolites, total plasma antioxidant
capacity using the Total Radical-trapping Antioxidant Parameter (TRAP), Sulfhydryl (SH)
groups, and serum levels of zinc. Support vector machines were used on 174 MS patients
and 182 controls and achieved a training accuracy of 92.9% and a validation accuracy of
90.6%. The results showed that MS is characterized by lower levels of zinc, adiponectin,
TRAP, and SH groups and higher levels of AOPPs.

In 2020, Zhao et al. [22] extended the work performed in 2017 in [19] and used
724 patients from the Comprehensive Longitudinal Investigation in MS at Brigham and
Women’s Hospital (CLIMB study) and 400 patients from the EPIC dataset, University of
California, San Francisco, to continue the study on MS prediction. This paper used SVM,
logistic regression, and random forest, in addition to the ensemble learning approaches
XGBoost, LightGBM, and Meta-learner L. The research concluded that ensemble methods
give higher predictive performance of MS disease.

In [23], support vector machines were used to diagnose MS using the plasma levels
of selenium, vitamin B12, and vitamin D3. The study used 99 MS patients and 81 healthy
controls. The supervised machine learning methods used were the support vector machine
algorithm, decision tree, and K-nearest-neighbor. The highest accuracy, 98.89%, was
achieved using support vector machines.

Shang et al. [24] used gene expression data to uncover genes associated with MS. the
authors performed bioinformatics analysis to identify differentially expressed genes and
also explored the potential SNPs associated with MS. The study provided identified genes,
SNPs, biological processes, and cellular pathways associated with MS.
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Another important aspect considered in this paper is imbalanced data. A dataset is
considered to be imbalanced when the number of samples representing one class is signifi-
cantly fewer than the other classes. The class with the fewest number of samples is called
the minority class, and the others are the majority classes. Handling the class imbalance
data problem is of great interest, as shows in many real-world problems, especially medical
diagnosis and disease prediction. Training classifiers on these datasets makes the classifiers
more biased towards the majority classes, as the rules that predict the majority class sam-
ples are positively weighted, whereas the rules that predict the minority class are usually
treated as noise or ignored. This leads to the conclusion that the minority class samples are
prone to misclassification [25]. Class-imbalance-aware methods either modify the standard
classifiers used or incorporate a data-driven approach in the training process to deal with
the different class sample sizes. Under-sampling and over-sampling are the data-driven
techniques most commonly used for handling class imbalance datasets. Recently, much re-
search has been presented to handle this problem. For instance, Garcia et. al. [26] presented
a data-level ensemble approach for class imbalance data based on GACE meta-heuristics
and feature space adaptive partitioning. From the results, this system was able to reduce
the time complexity and improve the imbalanced classification accuracy. An approach
presented by K. Pasupa et. al. [27] modified the stander classification process for the Convo-
lutions Neural Network (CNN). A focal loss function for a classification task was employed
to handle the data imbalance problem in a CNN deep learning model. Comparing the focal
loss function with the cross-entropy function proved that the focal loss function can enable
the deep learning model to be less biased towards the class with majority samples.

One of the flaws of these algorithm-based methods is that they require specific modi-
fications to the classification algorithm, which makes it lack generality and a systematic
approach for evaluating the performance of different classifiers. Classification methods
are developed to predict the class of the future samples based on the assumption that the
training samples are good examples of the future samples, where matching the frequency
of classes in training data would warrant a realistic performance. Moreover, data-driven
down-sampling methods lead to missing some of the majority class samples, which could
have significant information for the classifier.

It is concluded from the background and related work discussed in the Introduction
above that the diagnosis of MS is an extensible process with variable possible types of data
that can be used, as well as several techniques. In the proposed model, we relied on gene
expression data to diagnose MS based on the fact that gene expression identifies a unique
group of genes in a cell that occurs as a result of an altered or unaltered biological process
or pathogenic medical condition. As most of the expression profile datasets available for
MS are imbalanced, our proposed model adapts an over-sampling technique to handle
class imbalance expression data.

In this paper, a hierarchical ensemble approach that employs voting and boosting
ensemble techniques is proposed. Ensemble methods are used to improve the predic-
tive classification performance of the constituent classifiers by using multiple learning
algorithms [28]. Two ensemble techniques are used, voting, where several base models
are trained and the decision is made based on the votes of each estimator, and boosting,
which is mainly used to reduce bias and variance in order to make the estimators stronger.
The proposed method adapts a heterogeneous voting approach using two base learners,
random forest and support vector machine. The classification probabilities of the these
base learners are combined to develop a voting ensemble technique based on the majority
vote of class probability to obtain the final accuracy for the ensemble approach. In training
each base learner, a boost approach is employed to improve the learners’ accuracy and
reduce the false prediction rate. To the best of our knowledge, very few prior studies in
gene expression analysis have tried to employ an over-sampling technique to handle the
class imbalance problem. Therefore, in our approach’s boosting step, each learner is trained
in a balanced subset from the samples, selected from the original majority class and the
over-sampling produced for the minority class. The proposed approach performance is
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evaluated and compared with the base learner and one of the most recently published
ensemble algorithms on five KEEL imbalanced datasets, as well as the MS expression
data [29]. For MS diagnosis, the experiments are carried out to evaluate the methods’
performance with all feature sets, differentially expressed genes, and reduced feature sub-
sets from three Feature Selection (FS) algorithms. The FS algorithms employed are the
Chi-squared algorithm [30], as one of the most used algorithms for feature selection, Recur-
sive Feature Elimination with Support Vector Clustering (RFE-SVC), as a gold standard
wrapper algorithm that outweighs other FS algorithms [31], the Extreme Gradient Boosting
(XGBoost) for feature selection (BoostFS) [32], and DEGs generated from the linear model of
the Limma package [33]. Limma is an R package developed for microarray data differential
expression analysis. Moreover, Gene Ontology and KEGG Pathway enrichment analysis
are performed for the identified DEGs, using the EnrichR 2.0 package [34] to reveal their
functional relation to MS pathways. Accuracy, the Matthew Correlation Coefficient (MCC),
Root-Mean-Squared Error (RMSE), F-score, Receiver Operating Characteristic (ROC) curve,
and Area Under the Curve (AUC) are used as the evaluation metrics. Experimental results
show that the proposed method achieves the highest accuracy of 92.81% and 91.8% with
BoostFS and DEGs, respectively.

The contributions of this paper are summarized in the following points:

• Proposing a hierarchical ensemble approach to improve the classification accuracy for
multiple sclerosis patients.

• Handling the class imbalance problem using over-sampling to improve the classifier
performance when predicting the minority class.

• Applying three different feature selection algorithms, in addition to selecting genes
using bioinformatics analysis on differentially expressed genes, to select relevant genes
based on their importance to overcome the low number of samples compared to the
number of features (microarray genes set).

• Identifying the differentially expressed genes between normal and multiple sclerosis
patients’ expression profiles to use as one of the selected feature sets for evaluating
our proposed approach.

• Evaluating the proposed ensemble approach to analyze the predictive accuracy on
each selected feature set from the FS algorithms and DEGs. The evaluation metrics
calculated are the accuracy, MCC, RMSE, F-score, AUC, and ROC curve.

The remainder of this paper is organized as follows. Section 2 presents the proposed
framework. Following the methods, all experiments, the dataset, and results are given in
the Results Section 3. Finally, a discussion, conclusions, and future directions are given in
Section 4.

2. Materials and Methods

In this section, the methods and data used to conduct the study are discussed.

2.1. Multiple Sclerosis Data Description

The GEO database (https://www.ncbi.nlm.nih.gov/geo (accessed on 26 April 2022))
provides open access to many gene expression microarray datasets. The gene expression
profile from GSE41850 [35], GSE24427 [36], GSE19285 [37], and GSE13732 [38] raw and
series matric data was downloaded and analyzed in this paper. The platform for this
study was established using Affymetrix Human Exon 1.0 ST Array. The GSE41850 dataset
contains 816 whole-blood transcription profiling samples for 195 MS patients and 66 normal
individuals. MS patient samples were taken at three stages of the disease: at the discovery
stage (baseline), after one year of follow-up, and after two years of follow-up. The control
samples were taken from the healthy individuals at two time points. The GSE24427,
GSE19285, and GSE13732 microarrays were sampled in the same fashion as the first dataset.
In order to combine the features/genes from the two datasets, the gene IDs from the two
datasets were converted to the gene-symbol, and the genes that were common in both
datasets were extracted to obtain 18,122 shared genes as our study features set. Table 1

https://www.ncbi.nlm.nih.gov/geo
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shows the classes in the two datasets used for evaluating MS classification using the
proposed approach. In the performance evaluation of the proposed method, the dataset
was divided into two segments, 80% for training and 20% for testing.

Table 1. MS datasets’ description.

Datasets Classes Features
(Genes)

Patients
Samples

Control
Samples

GSE41850 Two classes:
control or patient

18,722 691 126

GSE13732 Control or
patient 21,653 85 28

GSE24427 Only patient
samples 22,653 250 –

GSE19285 Only patient
samples 21,147 144 –

In Figure 1, the proposed framework is shown. The framework starts by a data prepro-
cessing step in order to deal with the missing features and normalize the gene expression
values; this is explained in the Data Preprocessing Section. Following preprocessing, we
estimate the over-samplings, and then, the feature selection algorithms are used to select
significant feature attributes. Three feature selection algorithms were used, as illustrated in
the Feature Selection Section, namely Chi-squared, Recursive Feature Elimination using
Support Vector Clustering (RFE-SVC), and feature importance with the XGBoost ensemble
algorithm (BoostFS). Moreover, bioinformatics analysis on differentially expressed genes
was used as a method for feature selection. Finally, the classification is explained in the
Classification Section. An ensemble learning approach is proposed for MS diagnosis to
improve the accuracy of prediction. The suggested ensemble approach uses Random Forest
(RF) and Support Vector Machine (SVM) as the base learner. The proposed approach uses
both voting and boosting techniques, with RF and SVM for the voting step and LighBoost
in the boosting step. The reason for using RF, SVM, and LighBoost will be justified in the
Base Learner Subsection.

Figure 1. Proposed model framework.
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2.2. Data Preprocessing

Preprocessing is a necessary stage for ML algorithms to account for missing values
(NAN) and to standardize the data range by normalization so that all features would have
the same value range (between 0 and 1). Missing data could be handled in many ways,
among which are weighted K-nearest-neighbor, expectation maximization, or local-least-
squares approaches. In this study, missing data were replaced by the mean value of their
represented class, as many studies proved that using the mean or median to replace missing
values in gene expression datasets performs as well as other more complex strategies [39].

Imbalanced Class Data Handling

In most of the existing methods, under-sampling techniques are often used with
gene expression datasets to balance the data. Under-sampling leads to missing important
data; hence, the proposed approach adopts an over-sampling, specifically selective over-
sampling based on the SPIDER algorithm presented by J. Stefanowski and S. Wilk [40].
The new samples are created using the k-nearest-neighbors (KNNs) of the minority class
samples. KNN is a similarity-based algorithm in which the nearest neighbors are used
to determine the class of each instance by identifying the group for the closest neighbors.
KNN uses the Euclidean distance to estimate the sum of the absolute differences among the
opposite samples in vectors x and y, where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
as shown in Equation (1).

D(x, y) =

√
n

∑
i=1
|xi − yi|2 (1)

The algorithm consists of two steps. The first step is recognizing the instances of the
minority and majority classes as misclassified by KNN, then labeling these samples as
noisy and excluding them or their nearest neighbors from generating the new samples. In
the second step, the rest of the minority class samples are divided into weak and strong
samples. Then, the new samples are generated by selecting from their nearest neighbors.
The selection strategy differs for the weak and strong samples. Algorithm 1 shows the
detailed algorithm for handling the class imbalance problem. Using this technique for
over-sampling can ensure solving the class imbalance problem in gene expression datasets,
by generating new samples through random interpolation of the minority and majority
samples, which can avoid the overfitting problem. Algorithm 1 uses the following functions:

• Perfect (D, s, k)—returns true or false based on the classification result of a sample s
using its k-nearest-neighbors in set D for correct and incorrect classification.

• Label (D, c, f)—returns a subset of samples from set D ∈ class c and labeled as f .
• Knn (D, s, k, c, f)—identifies the samples among the k-nearest-neighbors of s ∈ set D

∈ class c and labeled as f .
• Increase (D, x, k, c, f)—adds to sample s by finding its knn (D, s, k, c, f) and adding

this subset to set D.
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Algorithm 1: Imbalanced class data handling.
Input : original dataset (Du), minority class (Cm), combined all majority classes

(Cj), over-sampling (os) option (strong and weak)
Output : classes balanced dataset

Recognition step
foreach sample s ∈ Du do

Knn = number of nearest neighbors (s)
if perfect(D, s, k) then

label s as pass
end
else

label s as fail
end
Dj := all sample s ∈ Du labeled as fail

Sample generation
if os == strong) then

foreach s ∈ label(Du, Cm, pass) do
increase(Du, s, Knn, Cj, pass)

end
foreach s ∈ label(Du, Cm, fail) do

if perfect(D, s, k+2) then
increase(Du, s, k, Cj, pass)

end
else

increase(Du, s, k+2, Cj, pass)
end

end
else

foreach s ∈ label(Du, Cm, fail) do
increase(Du, s, K, Cj, pass)
foreach x ∈ Knn(Du, s, k Cj, fail) do

change class of x to Cm
Dj = Dj \x

end
end

Du := Du \ Dj

2.3. Feature Selection

In this section, the estimation of the differentially expressed genes is outlined, as well
as the three methods used for feature selection, namely Chi-squared, RFE-SVC, and feature
importance with the XGBoost ensemble algorithm (BoostFS).

2.3.1. Estimating Differentially Expressed Genes

In order to obtain the DEGs, we first downloaded the raw data for the GSE41850 [35]
and GSE24427 [36] raw and series metric data. The datasets were combined, and preprocess-
ing was preformed. Preprocessing included background correction, probe summarization,
and normalization, using the R package PreProcess (http://oompa.r-forge.r-project.org
(accessed on 26 April 2022)). Following the preprocessing step, the limma Bioconductor
package [33] was used to map the probes to genes. There are cases where multiple probes of
the same genes are merged by their mean values. The linear model for the Limma package
was used to discover the DEGs. The MS patient dataset was divided into three subsets
to conduct the differential expression analysis. These subsets were baseline (at the first
diagnosis of the disease), the first-year follow-up, and the second-year follow-up. Then,
the analysis was performed between the samples of different subsets.

http://oompa.r-forge.r-project.org
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2.3.2. Chi-Squared

The Chi-squared test [30] is a non-parametric hypothetical test for counting data with
a wide range. It mainly compares between two or more sample rates and estimates the
correlation analysis of the two-variable category. In feature selection, the Chi-squared test
estimates stats between each feature (genes) and the classes (MS patient or normal). Then,
a score is used to select features with the highest values for the test from the dataset. This
algorithm results in excluding the features that are likely to be irrelevant for the classes.

2.3.3. Recursive Feature Elimination using SVC

RFE-SVC is a non-linear kernel algorithm used to rank features, and ranking results
could be interpreted in terms of the degree of association between the features, their
association with the target (classes: patient or normal), as well as the association magnitude.
In this study, Sanz et al.’s [31] estimation of the position of the features of a classification
problem was used. Although RFE-SVC is time consuming, the time decreases as the number
of iterations is scaled down, and it outperforms most of the existing RFE-based algorithms.

2.3.4. Feature Importance with Ensemble Algorithm (BoostFS)

EXtreme Gradient Boosting (XGBoost) is one of the dominant machine learning tech-
niques. It implements gradient boosted decision trees designed to speed up and enhance
the classification performance. In the training process of XGBoost, the importance score
of each feature is calculated in order to improve the efficiency of trees’ generation [41].
In this study, the XGBoost algorithm was used to classify all features by estimating the
Feature Importance (FI) and sorting them in descending order. Next, the algorithm filters
the features with their FI score using different cut-off values. The selected features are
finally fed to the classifier to obtain the most significant feature set for MS classification.

2.4. Classification

In this paper, we propose an ensemble learning approach that combines two main
techniques, voting and boosting. The voting technique is based on using multiple models of
different learners to obtain predictions for each data point. The predictions by each model
are considered for voting, and the final prediction is chosen based on the majority of the
models, the average of predictions from all models, or the weighted average predictions.

On the other hand, boosting is a sequential process on the data, where each subsequent
model attempts to correct the errors of the previous model. In the boosting technique,
the weighting of the samples changes over time to allow the technique to optimize its
decision by considering the results from the samples in proportion to their (positive) impact
on overall system accuracy. Initially, the samples are equally weighted, and after each
iteration, the samples that are correctly assigned are weighted lower than the incorrectly
assigned samples. The proposed approach merges the idea of voting and boosting. Random
Forest (RF) and Support Vector Machine (SVM) are used as the base learners for the voting
models in each iteration of the voting step. Figure 2 represents the voting process in
our model.

In each voting step, the boosting technique is applied on each learner. The boosting
starts by selecting a subset from the original dataset. All data points are assigned equal
weights. Then, two base learners are trained on the subsets and used to make predictions
on the whole dataset. The prediction errors are estimated, and the data points that are
incorrectly predicted are given higher weights. The widely used boosting approaches
are XGBoost [32], LightBoost [42], and AdaBoost [43]. In the implementation of the pro-
posed approach, LightBoost was employed due to its faster training speed with large
datasets, lower memory usage, and higher prediction accuracy compared to other boosting
algorithms [44].
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Figure 2. Proposed method in voting stage.

The Base Learner Algorithm

In the proposed ensemble approach, two base classifiers were employed, namely
random forest and support vector machine. The implementation details and parameters
optimization for these techniques are explained below.

The Random Forest (RF) algorithm is an extension of decision trees [45]. Decision
trees work by constructing a tree structure that works on a set of conditions. Each internal
node carries a test attribute, and the branches have conclusions for this test. Every leaf
node represents a class label. The major challenge of decision trees is choosing an attribute
for the nodes at every level. The best known metrics used for selecting attributes are the
Gini index and information gain [46]. A weak point of decision trees is their poor accuracy;
this is due to the fact that they fragment datasets and prefer majority classes. To overcome
this problem, RF builds a forest of decision trees on the samples, then obtains the prediction
from each tree and selects the most-voted result as the final prediction. Each individual tree
takes its input from the samples in the initial dataset, then randomly selects the features to
grow the tree at each node. The trees are pruned at the end of the process when reaching a
prediction. RF achieves a better performance by voting for the best result from multiple
trees. In this study, the RF parameters are estimators = 100 and randomstate = 15, based
on exterminating with the datasets. This means that its forest consists of 100 trees and each
tree is built with 10 randomly selected attributes.

Support Vector Machines (SVMs) can be used for both regression and classification
problems [47]. The SVM algorithm draws each sample as a point in an N-dimensional
space, where N is the number of features. The prediction is performed by discovering an
exact hyper-plane that can define the target classes. An optimal plane is one that achieves
the largest margin between the classes. SVM is best known for its scalability for large
datasets, flexibility due to adjustment via a broad class of kernel functions, and its low
computational complexity. In this study, SVM hyperparameters were optimized using
the BayesSearchCV Scikit Optimize library [48], which performs Bayesian optimization of
the model.

Boosting Stage with LightBoost (LB): The purpose of the training boosting algorithms
is to learn the best combination of class centroids and ensemble weights that minimizes
a specific objective function [44], given a set of base learners L1, L2, . . . Ln. The LighBoost
algorithm is employed to solve this optimization problem. LB is a high-performance
gradient boosting algorithm based on decision trees [42]. In general, gradient boosting
algorithms sequentially add trees, one at a time, to the ensemble and fit them to correct
the prediction of prior models. The proposed approach employs hyperoptimized gradient
boosting (hgboost) [49], which is a python package for hyperparameter optimization for
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LB. Furthermore, a stochastic gradient boosting is adopted, where at each iteration, the
base learners are trained on a subset of the training data samples. Data selection in each
boosting iteration is adjusted to handle the class imbalance, in order to prevent our models
from being biased towards the class with higher representation (MS patient samples).

3. Results

In this section, the results of the evaluation of the proposed approach are presented.
The dataset is explained in the Multiple Sclerosis Data Description Section, and the per-
formance metrics are outlined in the Performance Metrics Section. The experimental
results are then presented. A discussion of all results obtained is given with the results of
each experiment.

3.1. Performance Metrics

The diagnostic ability of each ML model was assessed using the metrics below.
Accuracy is calculated by dividing the number of correct predictions by the total

number of samples to show how many times the model was correct. Accuracy is calculated
using Equation (2), where:

• True Positive (TP): the number of positive instances correctly classified as positive.
• True Negative (TN): the number of negative instances correctly classified as negative.
• False Positive (FP): the number of negative instances classified as positive.
• False Negative (FN): the number of positive instances classified as negative.

Accuracy = (TP + TN)/(TP + FN + TN + FP) (2)

Matthew’s Correlation Coefficient (MCC) estimates the correlation coefficient be-
tween the actual and the predicted value for binary classification. The MCC uses all the
values in the confusion matrix; this makes it a more reliable statistical measure, which yields
a high score in all the confusion matrix values when the classifier achieves good results.
The MCC value ranges from−1 to 1, where−1 signifies a completely false learning method
and 1 is considered a completely correct learning method [50]. The MCC is calculated as
shown in Equation (3).

MCC =
(TP× TN − FP ∗ FN)√

((TP + FN)× (TN + FP)× (TP + FP)× (TN + FN))
(3)

The Root-Mean-Squared Error (RMSE) represents the differences between the target
samples to be diagnosed and the predicted ones. The RMSE can be estimated by taking
the root of the Mean-Squared Error (MSE) for the average of the squares of the measured
errors. If x is the target variable to be predicted, y is the predicted variable, and n is the
total number of samples, then the RMSE is calculated as shown in Equation (4).

RMSE =

√
1
n ∑

i=1
n(xi − yi)2 (4)

The Area Under the curve (AUC) is a graph that shows the sensitivity (true positive
rate) plotted as a function of the specificity (false positive rate) using different cut-off values.
The AUC is used as a measure of how well a parameter can differentiate between two
classes (patient and normal cases). The AUC is a more accurate measure of the performance
compared to the accuracy, especially with class imbalance datasets. A value of 0.5 for the
AUC specifies random class prediction, while 0 is inverse class detection, and 1 represents
perfect class detection.

The F-score is calculated using Equation (5). where Precision = TP
TP+FP ,

Recall = TP
TP+FN

F− score = 2× Precision× Recall
Precision + Recall

(5)
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Experiments

In this section, the evaluation of the proposed method for imbalanced data handling
is presented, followed by the results of the selection of differentially expressed genes.
Then, the proposed method is evaluated using the different feature sets. Finally, the Gene
Ontology (GO) term, biological process, and KEGG Pathway enrichment analysis for the
discovered DEGs in our study are presented.

3.1.1. Evaluating the Imbalanced Data Handling Performance

To evaluate the proposed method for handling imbalanced data, five datasets were
selected from the KEEL imbalanced datasets. Table 2 shows the details of these datasets.
The datasets were selected based on the difference in the Imbalance Ratio (IR) between
the classes. The IR represents the ratio between the number of samples among the class,
where if IR = 2, it means one of the classes has a number of samples that is twice the other
class. Our proposed approach was compared with state-of-the-art methods, as well as
with one of the most recent ensemble methods for class imbalance problem introduced
by H. Guo et al.[51]. Tables 3–7 show the results of the proposed technique and other
techniques on the same data. Among all datasets, the proposed approach recorded the
highest accuracy and AUC, while it achieved a slightly lower RMSE for some of the datasets.
For classification purposes, the proposed approach is considered to outperform existing
methods regrading the accuracy. As shown in the tables, our proposed approach performs
well compared to the others, achieving a 95%, 96%, 94%, 95%, and 9% accuracy, with an
IR of 1.87, 3.25, 5.14, 8.60, and 9.28, respectively. Even with a very high imbalance ratio,
where the majority class samples are nine-times the minority class, the proposed approach
achieves high accuracy and a low error rate, 92% and 0.051, for the accuracy and RMSE,
respectively. The proposed approach proves its stability with a high IR as its performance
metrics did not deteriorate as in other methods, such as SVM and KNN, where their
performance deceased significantly with the the increase in the IR value.

Table 2. Benchmark datasets: the KEEL imbalanced datasets.

Dataset Imbalance Ratio No. of Samples No. of Features

Pima 1.87 768 8

vehicle0 3.25 846 18

new-thyroid2 5.14 215 5

ecoli3 8.60 336 7

ecoli-0 9.28 257 7

Table 3. Evaluation results for the proposed algorithm to handle the imbalanced class problem—
random forest.

Random Forest

Dataset ACC RMSE AUC

Pima 95% 0.069 0.94

vehicle0 94% 0.068 0.91

new-thyroid2 92% 0.047 0.89

ecoli3 90% 0.063 0.88

ecoli-0 91% 0.067 0.90
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Table 4. Evaluation Results for the proposed algorithm to handle the imbalanced class
problem—SVM.

SVM

Dataset ACC RMSE AUC

Pima 93% 0.051 0.94

vehicle0 95% 0.056 0.92

new-thyroid2 94% 0.041 0.95

ecoli3 89% 0.053 0.88

ecoli-0 90% 0.076 0.89

Table 5. Evaluation results for the proposed algorithm to handle the imbalanced class
problem—KNN.

KNN

Dataset ACC RMSE AUC

Pima 94% 0.092 0.85

vehicle0 89% 0.071 0.87

new-thyroid2 90% 0.077 0.84

ecoli3 90% 0.079 0.89

ecoli-0 90% 0.072 0.90

Table 6. Evaluation results for the proposed algorithm to handle the imbalanced class problem—
Guo et al.

Guo et al [51]

Dataset ACC RMSE AUC

Pima 95% 0.081 0.91

vehicle0 92% 0.069 0.89

new-thyroid2 91% 0.064 0.88

ecoli3 92% 0.090 0.91

ecoli-0 87% 0.097 0.84

Table 7. Evaluation results for the proposed algorithm to handle the imbalanced class problem—
proposed method.

Proposed Method

Dataset ACC RMSE AUC

Pima 95% 0.029 0.94

vehicle0 96% 0.046 0.95

new-thyroid2 94% 0.065 0.95

ecoli3 95% 0.048 0.94

ecoli-0 92% 0.051 0.91

3.1.2. Selection of Differentially Expressed Genes

The microarray dataset used contains 816 samples of MS patients and 126 control
ones. Following the raw data preprocessing steps, the differential gene expression analysis
was filtered using the FDR adjusted with p < 0.005. Based on the analysis of the DEGs
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in three different MS stages, baseline (first time of diagnosis), the first-year follow-up,
and the second-year follow-up, for up-regulated and down-regulated genes, the DEGs of
each MS stage were identified. The Venn diagram for the numbers of DEGs of the three
stages is presented in Figure 3. As shown in the diagram, 365 genes were found to be
differentially expressed in the three stages, among which 176 were up-regulated and 189
were down-regulated. These DEGs were used as the selected genes set, and their expression
profiles were fed to the the proposed approach for training and testing the classifier.

Figure 3. Venn diagram for Differentially Expressed Genes (DEGs) of MS for three stages; Control vs.
Patient (C-vs-P), Baseline to the first-year follow-up (B-1-fu), and first-year follow-up to second-year
follow-up (1-2-fu). (A) shows the Venn diagram of up-regulated and (B) shows the Venn diagram of
down-regulated genes in the three MS stages.

3.1.3. Evaluation of the Proposed MS Detection Approach

The proposed approach was evaluated on five different feature sets. Those sets are
all features or feature sets selected using the chi-squared approach, RFE-SVC, BoostFS, as
well as with deferentially expressed genes. For each set of features, the proposed ensemble
approach was compared to random forest, KNN, and SVM. Table 8 shows the results
obtained for all feature sets using different classifiers. The proposed approach recorded
the highest accuracy, specifically 89.61%, 89.5%, 90.90%, 92.81%, and 91.8%, for all features,
the chi-squared feature set, the RFE-SVC feature set, BoostFS, and with DEGs, respectively.
Regarding the classification accuracy, the proposed approach increased the accuracy of
existing methods by up to 9% among all feature sets. Moreover, the MCC of the proposed
approach significantly outperformed existing methods, with an increase of up to 11%.
The MCC achieved was 89% and 88%, for all features and the chi-squared feature set,
while it achieved 91% for the RFE-SVC feature set, BoostFS, and with DEGs, respectively.
The measures of the MCC indicate high agreement between the predicted and observed
values in the proposed method. The RMSE achieved was also lower in most of the cases for
the proposed approach, and the high f1-score achieved by the proposed method indicates
better performance in terms of precision and recall.
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Table 8. Proposed MS detection approach evaluation.

Classification Algorithm Feature Selection Accuracy MCC RMSE F1 Score

SVM

All Features 82.41% 82% 0.058 0.79

Chi-Squared 82.50% 83% 0.064 0.81

RFE-SVC 83.30% 84% 0.065 0.85

BoostFS 84.81% 85% 0.061 0.86

With DEGs 86.81% 87% 0.023 0.86

KNN

All Features 84.61% 84% 0.075 0.84

Chi-Squared 86.50% 85% 0.056 0.86

RFE-SVC 87.53% 87% 0.099 0.87

BoostFS 88.81% 89% 0.091 0.89

With DEGs 89.50% 86% 0.089 0.88

Random Forest

All Features 84.61% 85% 0.084 0.84

Chi-Squared 88.50% 88% 0.056 0.88

RFE-SVC 89.50% 90% 0.072 0.89

BoostFS 90.81% 91% 0.063 0.90

With DEGs 90.17% 89% 0.043 0.89

Proposed Ensemble Method

All Features 89.61% 89% 0.081 0.88

Chi-Squared 89.50% 88% 0.043 0.89

RFE-SVC 90.90% 91% 0.079 0.91

BoostFS 92.81% 93% 0.067 0.93

With DEGs 93.54% 94% 0.059 0.93

The Area Under the Curve (AUC) was calculated based on the ROC curve for each
model to describe the quality of the work, which provides more accurate visual interpre-
tation for the prediction performance. Figure 4 shows the ROC curve for our proposed
approach with different feature selection algorithms. The curves show better performance
for the proposed approach over BoostFS and DEGs. This indicates the ability of the pro-
posed approach to distinguish between positive and negative cases correctly.

Figure 4. ROC curve for the proposed approach with different feature algorithms.
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3.1.4. Evaluating the Feature Selection Algorithms

This section presents comparative experiments aiming to evaluate the feature selection
algorithms used in this study. The accuracy and AUC were calculated to test the algorithm
for the best features set selection on the final results reported in Table 8. A set of group
experiments was conducted on each algorithm with different cut-offs for selecting the
number of features, starting from 5 to 1000 with the step size equal to five. The selection
of five as the number of features to select first, as well as the step size, was because five
is relatively small and is likely to have an inauspicious effect on the feature selection
quality. The results for these experiments are reported in Figure 5. As revealed by the
figure, most of the algorithms’ performance stabilized when the number of features was
around 100 genes, while some algorithms’ performance deceased when the number of genes
selected increased, such as RFE-SVC, where the accuracy of the classifier reduced as the
number of selected features became more than 150. This is expected from a wrapper-based
FS algorithm, which suffers from computational complexity, as it uses recursive feature
elimination in combination with a support vector clustering (SVC) algorithm, to select
important features based on the minimal error of the SVC.

Figure 5. Comparison of the feature selection algorithms with different numbers of features.

3.1.5. Gene Ontology and Pathway Enrichment Analysis

The identified DEGs were analyzed by their enriched O term, biological functions,
and pathways using EnrichR R package version 2.0 [34], where GO terms and biological
function were selected from 2019 databases and KEGG Pathways from 2018 databases.
Here, GO terms, functional processes, and KEGG Pathways are considered significant if
their adjusted p-value is less than 0.05. EnrichR was used to to plot the bar diagram to show
the most enriched GO terms, as shown in Figure 6, and biological processes and pathway
analysis figures are shown in Supplementary Figures S1 and S2, respectively.

Supplementary Table S1 (DEGs.xlsx) shows the differentially expressed genes between
multiple sclerosis patients and normal samples and up- and down-regulation, with adjusted
p-values < 0.05.



Diagnostics 2022, 12, 1771 17 of 20

Supplementary Table S2 (KEGG_human_table.xlsx) presents the KEGG Pathways’
enrichment analysis for the DEGs in Supplementary Table S1, which revealed that the
identified DEGs are closely related to NOD-like receptor signaling and Salmonella infection
pathways with p-values < 0.05).

Supplementary Figure S1 (KEGG_Human_bar_graph.png) shows the top enriched
pathways in a bar graph.

Gene Ontology (GO) enrichment analysis for the identified DEGs in MS patient sam-
ples versus normal involved protein cytokine-mediated signaling and cellular response to
lipopolysaccharide processes is shown in Supplementary Table S3
(GO_Biological_Process_table.xlsx).

Supplementary Table S4 (GO_Molecular_Function_table.xlsx) presents the GO func-
tional analysis for the identified DEGs, which proves that these DEGs are related to MAP
kinase phosphatase activity and kinase tyrosine biological function with p-values < 0.05).

Supplementary Figure S2 (GO_Molecular_Function_bar_graph.png) shows the most
enriched biological function in a bar graph.

Figure 6. Enriched Gene Ontology terms in the identified DEGs.

4. Conclusions

This paper presented an ensemble approach using voting and boosting techniques for
the prediction of multiple sclerosis patients using gene expression profiles. Two base learn-
ers, namely random forest and support vector machine, were employed with the voting
and boosting techniques. Moreover, over-sampling was used to handle the class imbalance
problem in the gene expression data. The proposed method for the class imbalance problem
was evaluated on five KEEL imbalanced datasets, and the results obtained for the proposed
over-sampling approach showed a higher classification accuracy than existing methods.

The proposed classification approach for MS was tested with different feature sets,
namely all features, differentially expressed genes set, and reduced feature subsets using
three feature selection algorithms: Chi-squared, recursive feature elimination with support
vector regression, and Extreme Gradient Boosting (XGBoost) for feature selection (BoostFS),
as well as DEGs. The proposed method was compared to existing classifiers, namely
random forest, KNN, and SVM. Experimental results showed that the proposed method
achieved the highest accuracy of 92.81% and 91.8% with BoostFS and DEGs, respectively,
in the diagnosis of MS. Hence, the proposed method outperforms the classification accuracy,
MCC, AUC, and f1-score of all existing techniques.

To the best of our knowledge, not much work in the literature has been directed
towards the diagnosis of MS, especially using gene expression. Yet, the proposed approach
outperforms the prediction accuracy reported in [14–17], where they reported an accuracy
ranging from 68% to 95%, and not all methods concentrated on diagnosis, but some on
the correlation between different variables. The proposed approach reported the highest
accuracy of 92.81%, using a combination of DEGs and genes selected from recent wrapper
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selection methods, such as XGBoost, for a more accurate MS diagnosis. Gene expression
profiles pose a challenge for ML methods, as their high-dimensional data could lead to
ML algorithm over-fitting. Furthermore, most gene expression profiles’ data suffer from a
class imbalance, which adds more obstacles to the learning algorithm. In this paper, we
employed an over-sampling technique to solve the imbalance problem. This study could
be further expanded by proposing a novel over-sampling method and experimenting on
more base classifiers for our ensemble approach. Furthermore, another direction could
involve deeply mining the expression data of multiple sclerosis.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12071771/s1.
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