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Abstract: Melanoma, a very severe form of skin cancer, spreads quickly and has a high mortality
rate if not treated early. Recently, machine learning, deep learning, and other related technologies
have been successfully applied to computer-aided diagnostic tasks of skin lesions. However, some
issues in terms of image feature extraction and imbalanced data need to be addressed. Based on
a method for manually annotating image features by dermatologists, we developed a melanoma
detection model with four improvement strategies, including applying the transfer learning technique
to automatically extract image features, adding gender and age metadata, using an oversampling
technique for imbalanced data, and comparing machine learning algorithms. According to the
experimental results, the improved strategies proposed in this study have statistically significant
performance improvement effects. In particular, our proposed ensemble model can outperform
previous related models.

Keywords: melanoma; feature extraction; transfer learning; imbalanced data; oversampling techniques;
machine learning

1. Introduction

Malignant melanoma (MM) is the most severe form of skin cancer; although rare, it
has a high mortality rate. According to GLOBOCAN statistics, in 2020, there were approx-
imately 325,000 cases of melanoma skin-cancers worldwide, and melanoma accounted
for 1.7% of the all-sites global cancer diagnoses. The calculations for the global age-
standardized incidence rates show that the rate is 3.8/100,000 for males and 3.0/100,000 for
females. The cumulative lifetime risk for males was 0.42% and for females was 0.33% [1].
MM easily spreads throughout the body, causing other cancers, such as brain, liver, and
kidney cancers. Once it has spread, the survival rate will be less than 50%. The 5-year
survival rate of patients is as high as 90 to 99%, if discovered early and resected; however,
if detected late, the survival rate drops to approximately 15 to 20%. The actual cause of
MM is unclear. At present, the medical community recognizes that exposure to ultraviolet
light is a risk factor for the cancer. The frequency of MM in Asians is minimal, although it
is more common on the palms/soles of the hands and feet, which are nonirradiated parts
and hence unrelated to ultraviolet exposure. Recently, the incidence and mortality of MM
have been increasing. Mortality caused by the cancer is common in young age groups,
unlike the other types of cancer. Furthermore, a delay in medical treatment worsens the
prognosis, causing metastasis, and even death; therefore, early diagnosis and treatment are
essential [2,3].

In clinical diagnosis, it is difficult for dermatologists to identify early MM from a mole.
South Queensland, Australia, has the highest global MM frequency. Edith Cowan Univer-
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sity in Australia developed a blood test for MM antibodies, with an accuracy of 79% [4];
however, there are still testing and time cost limitations. Dermoscopy is a paramount tech-
nique for the initial diagnosis of MM. Therefore, if the development of artificial intelligence
(AI) models of computer-aided diagnosis (CAD) systems can help dermatologists interpret
the dermoscopy images, it will help to reduce medical costs.

Machine learning (ML) classifiers have been employed for the automatic diagnosis
methods of skin lesions. Before modeling, these classifiers are input a set of handcrafted
image features, such as the skin lesions-related features that dermatologists pay attention to.
Recently, in most computer vision tasks, deep learning (DL) convolutional neural networks
(CNNs) can automatically extract high-level image features and significantly improve the
classification performance. Therefore, CNN-based CAD systems have been recently used
to detect various diseases [5,6].

According to the latest review paper [7], on the topic of using neural networks to
detect melanoma, the relevant architectures published in 2018–2021 were classified into
the following four techniques. 1. Using a convolutional neural network; 2. Using multiple
convolutional neural networks; 3. Using a convolutional neural network combined with
other classifiers; 4. Using other techniques, such as combining ABCDE rules with traditional
machine learning algorithms.

To test the performance of the AI models on dermoscopy images, there are many
researchers who use public databases (such as PH2, MED-NODE, and ISIC). This article
reviewed a total of 25 recent articles on MM CAD, published between 2016 and 2022, and
listed the lowest and highest of the six indicators for the evaluation of efficacy, as shown in
Table 1.

Table 1. Performance evaluation test results on the models’ melanoma binary classification.

Authors Dataset AUC ACC SEN SPE PRE F1

[8–10] PH2 NA 0.861~0.975 0.790~0.981 0.925~0.938 NA NA
[11] Subset of PH2 NA 0.950 0.925 0.966 NA NA
[12] ISIC 2016 0.766 0.818 0.818 0.714 NA 0.826

[12–14] ISIC 2017 0.870~0.964 0.857~0.933 0.490~0.933 0.872~0.961 0.940 0.813~0.935
[14–21] ISIC 2018 0.847~0.989 0.803~0.931 0.484~0.888 0.957~0.978 0.860~0.905 0.491~0.891
[22,23] Subset of ISIC 2018 0.970 0.880~0.910 0.920~0.960 NA 0.840~0.910 0.880~0.910
[14,20] ISIC 2019 0.919~0.991 0.896~0.924 0.483~0.896 0.976~0.977 0.907 0.488~0.898

[11] Subset of ISIC 2019 NA 0.930 0.925 0.933 NA NA
[16,17,24,25] Combined 0.880~0.960 0.803~0.950 0.851~0.930 0.844~0.950 NA NA

[26] MED-NODE 0.810 NA 0.810 0.800 NA NA
[27] Subset of ISBI 2017 0.891 0.866 0.556 0.785 NA NA

NA = Metrics not mentioned in the paper

For example, Warsi et al. [9] used a 3D color texture feature (CTF) and a multilayer
neural network model for the binary classification of MM diseases by a total of 200 der-
moscopy images in the PH2 dataset. Based on the holdout method, 70% of the images were
used as the training set, 15% of the images were used as the validation set, and 15% of the
images were used as the test set. Their results showed the best performance in the PH2
dataset and reached 97.5% accuracy (ACC), 98.1% sensitivity (SEN), and 93.84% specificity
(SPE). Iqbal et al. [14] proposed a new deep convolutional neural network (DCNN) model
with multiple filter sizes: classification of the skin lesions network (CSLNet) architecture.
Through data pre-processing and the data augmentation of ISIC-17, ISIC-18, and ISIC-19
images, it achieved 96.4% AUC, 93.25% ACC, 93.25% SEN, 90.64% SPE, 93.97% precision
(PRE), and 94.47% F1 in the ISIC 2017 dataset, using the 7:1:2 holdout method.

To evaluate the performance of the MM prediction models using an oversampling tech-
nique, Kalwa et al. [28] used 200 dermoscopy images for the MM binary classification. By
combining image feature extraction (FE), SVM, and synthetic minority oversampling tech-
nique (SMOTE) methods, the AUC was increased from 0.720 to 0.850. Magalhaes et al. [29]
used 287 infrared thermography skin images for MM binary classification. Using an ensem-
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ble model of image FE, random forest (RF), SVM, and SMOTE methods, the recall increased
from 0.473 to 0.696.

The contributions of this study are listed as follows:

1. Dermoscopy images (2299) were used for MM CAD, a dermatologist handcrafted
feature method was used as a comparison base, and four classification efficiency
improvement strategies were proposed: (1) a comparison of different transfer learning
techniques for automatic image FE; (2) the addition of the metadata of gender and age;
(3) a comparison of the class balance of the training data with different oversampling
techniques; and (4) a comparison of the classification performance of different ML
algorithms. According to the experimental results, the four proposed strategies are
statistically significant for MM detection;

2. We combined the DL and ML methods to automatically extract the features directly
from the dermoscopy images and perform benign and MM diagnosis. The experimen-
tal results show that our proposed model combining metadata, K-means SMOTE, and
an extreme gradient boosting (XGB) classifier can achieve higher classification and
predictability than using only the MELA-CNN feature extractor.

2. Methods
2.1. MM Dataset

In this study, we integrated the ISIC Challenge 2018 (ISIC2018) and the ISIC Chal-
lenge 2019 (ISIC2019) datasets [30–33] for the binary classification of benign and MM. The
ISIC2018 dataset contains five handcrafted features provided by dermatologists: pigment
networks; negative networks; streaks; globules; and milia-like cysts. Meanwhile, the
ISIC2019 dataset contains two pieces of basic patient data: age and gender. There are
2299 records in this dataset, including 1849 benign and 450 MM. Because of the imbalanced
data, subsequent processing is performed using oversampling techniques.

2.2. FE Techniques

FE is a preprocessing procedure in data mining. To evaluate the impact of the dermatol-
ogist handcrafted features [30] and automatic DL FE [34] on the classification performance
of an ML algorithm for predicting MM, we compared the following five FE techniques.

(1) Handcraft: We employed five handcrafted characteristics provided by dermatolo-
gists [30]: pigment networks; negative networks; streaks; globules; and milia-like
cysts. A pigment network is a grid comprising many brown lines crossing each other;
a negative network is a curve formed by many hyperpigmented cell connections; a
streak comprises pigmented projections surrounding a melanocytic lesion; a globule
comprises multiple brown circles; a milia-like cyst comprises many white, yellowish
circles or ovals;

(2) VGG16: VGG16 is a DL CNN model proposed by Karen Simonyan et al. [35]. They
used the ImageNet dataset of one million images to classify one thousand classes.
VGG16 takes 224 × 224 RGB images as the input and comprises 13 convolutional
layers and 3 fully connected layers, as well as a nonlinear activation function—rectified
linear unit (ReLU). All of the layers used three × three small convolution kernels, to
avoid too many parameters. This DL model can automatically extract 512 features
from the dermoscopy images;

(3) InceptionV3: InceptionV3 is a CNN-based DL model of the inception series. The
inception series includes InceptionV1, InceptionV2, InceptionV3, InceptionV4, and
InceptionResNet series. InceptionV3 was proposed by Szegedy et al. [36] as an
improved InceptionV2. They used the ImageNet dataset of one million images to
classify one thousand classes. InceptionV3 takes 224 × 224 RGB images as input
and comprises 47 layers. In addition, this model adopts the batch normalization of
InceptionV2 to accelerate the model training. This DL model can automatically extract
2048 features from dermoscopy images;
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(4) InceptionResNetV2: InceptionResNetV2 is an Inception module-based DL model. It
uses 299 × 299 RGB images as input. In addition, it replaces the pooling layers in the
Inception modules A, B, and C, with ResNet connections to accelerate the training [37].
This DL model can automatically extract 1536 features from dermoscopy images;

(5) MELA-CNN: Based on the transfer learning technique [34], we used the Inception-
ResNetV2 architecture as the backbone to develop MELA-CNN (Figure 1). After
retrieving the feature maps of the average pooling layer of InceptionResNetV2, a fully
connected layer of 256 nodes is added, and ReLU is used. Further, batch normalization
and Sigmoid layers are introduced, and MELA-CNN trained weights are obtained
after the fine-tuning process using the target dataset. This DL model can automatically
extract 256 features from dermoscopy images.
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2.3. SMOTE

Because our datasets are from the medical field, the feature of a considerable numeri-
cal imbalance in the number of negative and positive samples is common. Therefore, we
employed a data oversampling method to solve the imbalance in the number of data cate-
gories to avoid misjudgment of the classifier during training. Chawla et al. [38] proposed
SMOTE, which randomly selects the k-nearest neighbor samples to increase the number of
transactions in minority categories to the same number as the number of transactions in
the majority category, to solve the problem of data imbalance. Because the SMOTE sam-
pling technique is prone to generate noise and affect the classifier prediction performance,
Douzas et al. [39] proposed K-means SMOTE, which is based on SMOTE and k-means
clustering, for data oversampling. First, the data are grouped using the k-means method,
and the clusters with minority classes accounting for less than 50% are selected. Then, the
number of samples to be generated is calculated, and more samples are assigned to the
clusters with sparse samples. Finally, SMOTE is performed in this cluster, and the number
of minority samples is increased to the same number as the majority samples, solving the
problem of data imbalance, and improving the shortcoming that SMOTE is prone to noise.

2.4. XGB

XGB, proposed by Tianqi Chen et al. [40], is based on the concept of gradient boosting
decision tree (GBDT). GBDT is a gradient boosting algorithm based on a decision tree.
Gradient boosting is an ensemble learning model that mainly trains the multiple weak clas-
sifiers, assembling them into a stronger classifier. The goal is to minimize the loss function
and increase the weight of the misclassified classes by computing negative gradients to
improve the next iteration of the training.

Compared with GBDT, XGB adds a regularization method, to make the loss function
smoother, reduce the model complexity, and avoid overfitting. In addition, an approx-
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imation algorithm is used to find the optimal solution for splits, optimize the gradient
boosting, and increase the efficiency and scalability. Further, considering the processing of
missing or sparse values, it can be designated as a specific branch to improve the efficiency
of an algorithm. Finally, to accelerate the model operation, XGB also supports a parallel
operation and an early stop. When the prediction result reaches the optimum, the tree can
be stopped in advance to increase the training speed. XGB can also improve the model
classification accuracy.

2.5. Evaluation Metrics

To evaluate the performance of the different models for binary classification, we em-
ployed the confusion matrix to calculate the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN), as well as deriving the following five evaluation indicators:

Accuracy (ACC): The proportion of correct diagnoses in all of the samples.

ACC =
TP + TN

TP + TN + FP + FN
(1)

Precision (PRE): The proportion of individuals who are positive in the group diagnosed
with the disease.

PRE =
TP

TP + FP
(2)

Recall (REC): The proportion of positive diagnosis results that are true positive, which
is also called the true positive rate (TPR).

REC =
TP

TP + FN
(3)

F1-score: The harmonic mean of PRE and REC.

2
F1

=
1

PRE
+

1
REC

(4)

AUC: The AUC of TPR and FPR. FPR is the false positive rate, which refers to the
proportion of false positives in the actual disease-free population.

FPR =
FP

TN + FP
(5)

The higher the value of the above five indicators, the better the classification perfor-
mance of the model. Because of the use of ACC and PRE to evaluate the class-imbalanced
dataset, the model may be biased due to numerous FNs. In this study, we aimed to develop
a model that can effectively detect patients with MM. Therefore, we used REC, F1-score,
and AUC as the main evaluation criteria for the model performance.

2.6. Stratified K-Fold Validation

We employed a stratified K-fold method for the 10-fold stratified cross-validation,
which is an improvement of the K-fold cross-validation method. The K-fold cross-validation
method divides the data into mutually exclusive k groups of equal sizes, and then repeats
the training and testing k times. Each time, one group is used as the test data, and the
others are used as the training data to verify the accuracy. Finally, the average of k times the
accuracy is used as the final accuracy. The innovation of the stratified K-fold method is that
each fold is extracted according to the category ratio for training and testing. Because the
method ensures that the proportion of two categories in each fold is equal to the original
dataset, it is suitable for imbalanced data classification.
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2.7. Paired T-Test

To evaluate whether the difference in the MM detection ability using the proposed
enhancement strategy is statistically significant, we used the paired t-test to compare the
predictive performance of the two models:

p =
d

Sd/
√

n
(6)

where d denotes the mean of the difference between paired data; Sd denotes the standard
deviation of the difference between paired data; and n denotes the number of pairs of data.
The null hypothesis is a 10-fold validated REC or F1-score mean difference of 0 between
the two models. When p < 0.05, it means that there is a statistically significant difference in
the classification performance between the two models.

3. Proposed Framework

In this study, we integrated the ISIC2018 dermoscopy image data [30,31] and the
ISIC2019 patient age and gender basic data [32,33] to form a research dataset for devel-
oping an MM detection model. The overall research architecture is shown in Figure 2.
First, the five FE methods were implemented on the dermoscopy images—VGG16, Incep-
tionResNetV2, Inception V3, MELA-CNN, and the dermatologist handcrafted method.
Then, we merged the optimal image features and metadata. Finally, we compared dif-
ferent oversampling techniques with different ML algorithms to find the optimal MM
detection model.
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The proposed model architecture is shown in Figure 3. Based on the transfer learning
technique [34], MELA-CNN is developed to automatically extract image features. In
Figure 3, the first, second, and third block diagrams depict InceptionResNetV2, MELA-
CNN, and the optimal MM detection model proposed in this study. The overall architecture
of the proposed model is based on InceptionResNetV2 as the backbone and applies a
fine-tuning process to train MELA-CNN for automatic image FE. Then, by combining two
sets of metadata with the optimal image features, 258 features are obtained. In addition,
we used K-means SMOTE for class balance. Finally, we employed XGB for MM detection.
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4. Experimental Result

In this study, 2299 images were manually annotated by dermatologists in the ISIC2018
and ISIC2019 datasets to train and test the optimal classification model. In the process, the
stratified K-fold method was used for 10-fold cross-validation, and data were extracted
according to the proportion of categories. Then, we put them into each fold, performed
10 rounds of training and testing, and obtained the following results.

4.1. FE Techniques

Five techniques were used for the FE of dermoscopy images—the dermatologist
handcrafted method, VGG16, InceptionResNetV2, Inception V3, and MELA-CNN—and
the number of features after extraction was 512, 1536, 2048, and 256, respectively.

Table 2 summarizes the results of the five techniques combined with XGB to compare
their performance differences. Clearly, MELA-CNN was the most efficient method, with
an F1-score value of 0.756. Meanwhile, the dermatologist handcrafted method had the
worst performance, with an F1-score value of only 0.064. The F1-score values of VGG16,
InceptionResNetV2, and Inception V3 are up to 0.282, 0.309, and 0.295, respectively. Figure 4
shows the performance comparison chart of the F1-score of the five FE techniques combined
with XGB. Clearly, MELA-CNN significantly outperforms the other techniques.
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Table 2. Performance evaluation of five feature extraction techniques.

Feature Extract Features ACC PRE REC AUC F1

Handcrafted 5 0.800 0.401 0.036 0.613 0.064
MELA-CNN 256 0.913 0.837 0.693 0.830 0.756

VGG16 512 0.814 0.569 0.189 0.738 0.282
InceptionResnet V2 1536 0.822 0.655 0.204 0.752 0.309

Inception V3 2048 0.819 0.641 0.198 0.746 0.295
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4.2. Metadata

To evaluate the dermoscopy image features by adding metadata, including age and
gender, for the difference in the predictability of the diagnostic model, we employed XGB
for the model training and used the F1-score as the main evaluation metric. The results
in Table 3 show that the F1-score of the five symptoms obtained using the dermatologist
handcrafted method, after adding metadata, can reach 0.415. Compared with the results
without metadata, the F1-score increased by 35.1%. After adding metadata, the F1-score
increased from 0.756 to 0.800, i.e., a 4.4% increase, for the 256 image features extracted
by MELA-CNN. Figure 5 shows the F1-score performance comparison chart of 5 and
256 features with metadata. This figure clearly shows the relevance of the metadata. The
classification performance of both of the models—the dermatologist handcrafted method
and MELA-CNN—improved.

Table 3. Performance evaluation of adding metadata.

Features ACC PRE REC AUC F1

5 0.800 0.401 0.036 0.613 0.064
7 0.821 0.582 0.327 0.789 0.415

256 0.913 0.837 0.693 0.830 0.756
258 0.926 0.844 0.764 0.865 0.800



Diagnostics 2022, 12, 1747 9 of 19Diagnostics 2022, 12, 1747 10 of 22 
 

 

 

Figure 5. F1-score comparison of adding metadata. 

4.3. SMOTE 

Because of the problem of class imbalance in our datasets, we used 10 oversampling 

techniques to balance the classes of binary data with XGB, to assess the difference in per-

formance. In this study, the oversampling technique was used only for the training set, 

and the test set was maintained in its original composition. The results in Table 4 represent 

the difference in performance on the test set that compared 10 oversampling techniques 

with the original no-sampling technique for model training. The results show that the 

original F1-score was only 0.800 without an oversampling technique. After using K-means 

SMOTE, which is the optimal oversampling method, the F1-score reached 0.861. The F1-

score values of the other oversampling techniques are as follows. Random Over Sampler: 

0.840; SMOTE: 0.839; SVMSMOTE: 0.835; SMOTETomek: 0.835; BorderlineSMOTE: 0.834; 

SMOTE-RandomUnderSampler: 0.831; SMOTENC: 0.830; SMOTEENN: 0.822; ADASYN: 

0.814. Figure 6 shows the performance comparison chart of the F1-score under the 258 

features obtained using the 10 oversampling techniques. Clearly, K-means SMOTE shows 

the most obvious improvement in the test performance of the original imbalanced training 

dataset. 

Table 4. Performance evaluation of 10 oversampling techniques. 

Oversampling Technique ACC PRE REC AUC F1 

Original 0.926 0.844 0.764 0.864 0.800 

K-Means SMOTE 0.946 0.873 0.853 0.970 0.861 

RandomOverSampler 0.939 0.862 0.822 0.964 0.840 

SMOTE 0.937 0.833 0.849 0.966 0.839 

SVMSMOTE 0.934 0.825 0.851 0.967 0.835 

SMOTETomek 0.934 0.829 0.844 0.967 0.835 

BorderlineSMOTE 0.933 0.811 0.862 0.967 0.834 

SMOTE- RandomUnder-

Sampler 
0.933 0.821 0.844 0.966 0.831 

SMOTENC 0.932 0.820 0.849 0.968 0.830 

SMOTEENN 0.924 0.770 0.889 0.967 0.822 

ADASYN 0.924 0.788 0.847 0.966 0.814 

Figure 5. F1-score comparison of adding metadata.

4.3. SMOTE

Because of the problem of class imbalance in our datasets, we used 10 oversampling
techniques to balance the classes of binary data with XGB, to assess the difference in
performance. In this study, the oversampling technique was used only for the training set,
and the test set was maintained in its original composition. The results in Table 4 represent
the difference in performance on the test set that compared 10 oversampling techniques with
the original no-sampling technique for model training. The results show that the original
F1-score was only 0.800 without an oversampling technique. After using K-means SMOTE,
which is the optimal oversampling method, the F1-score reached 0.861. The F1-score
values of the other oversampling techniques are as follows. Random Over Sampler: 0.840;
SMOTE: 0.839; SVMSMOTE: 0.835; SMOTETomek: 0.835; BorderlineSMOTE: 0.834; SMOTE-
RandomUnderSampler: 0.831; SMOTENC: 0.830; SMOTEENN: 0.822; ADASYN: 0.814.
Figure 6 shows the performance comparison chart of the F1-score under the 258 features
obtained using the 10 oversampling techniques. Clearly, K-means SMOTE shows the most
obvious improvement in the test performance of the original imbalanced training dataset.

Table 4. Performance evaluation of 10 oversampling techniques.

Oversampling Technique ACC PRE REC AUC F1

Original 0.926 0.844 0.764 0.864 0.800
K-Means SMOTE 0.946 0.873 0.853 0.970 0.861

RandomOverSampler 0.939 0.862 0.822 0.964 0.840
SMOTE 0.937 0.833 0.849 0.966 0.839

SVMSMOTE 0.934 0.825 0.851 0.967 0.835
SMOTETomek 0.934 0.829 0.844 0.967 0.835

BorderlineSMOTE 0.933 0.811 0.862 0.967 0.834
SMOTE- RandomUnderSampler 0.933 0.821 0.844 0.966 0.831

SMOTENC 0.932 0.820 0.849 0.968 0.830
SMOTEENN 0.924 0.770 0.889 0.967 0.822

ADASYN 0.924 0.788 0.847 0.966 0.814

4.4. ML Algorithms (Classifiers)

In this study, we compared the performance of 13 ML algorithms for MM classification,
using the optimal results obtained using K-means SMOTE: XGB classifier, histogram-based
gradient boosting (HistGB classifier), SVM, gradient boosting, RF, multilayer perceptron
(MLP), Gaussian naive Bayes (Gaussian NB), logistic regression, bagging classifier, stochas-
tic gradient descent logistic regression (SGD-LR), adaptive boosting (AdaBoost), decision
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tree, and K-neighbors classifier. Table 5 summarizes the results of the 13 ML algorithms
for MM diagnosis. The F1-score of XGB is 0.861, which is the optimal classification per-
formance. Figure 7 shows the F1-score performance comparison chart of the algorithms.
Clearly, XGB significantly outperforms all of the other ML algorithms.
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Table 5. Performance evaluation of 13 classifiers with K-means SMOTE.

Classifiers ACC PRE REC AUC F1

XGB Classifier 0.946 0.873 0.853 0.970 0.861
Logistic Regression 0.941 0.841 0.864 0.969 0.852
Gradient Boosting 0.940 0.851 0.842 0.965 0.845
Bagging Classifier 0.939 0.837 0.851 0.965 0.845

SVM 0.939 0.859 0.833 0.968 0.844
HistGB Classifier 0.939 0.861 0.822 0.968 0.839
Random Forest 0.936 0.837 0.842 0.964 0.838

MLP 0.937 0.862 0.811 0.963 0.834
AdaBoost 0.929 0.806 0.844 0.961 0.823

K-Neighbors Classifier 0.925 0.808 0.816 0.922 0.809
SGD-LR 0.922 0.783 0.836 0.956 0.806

Decision Tree 0.911 0.759 0.804 0.871 0.780
Gaussian NB 0.766 0.452 0.867 0.846 0.593
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5. Discussion
5.1. Effect of FE and Metadata

In this study, the dermatologist handcrafted method was used as a comparison basis
to discuss the differences in the improvement of the performance for MM detection by four
strategies: (1) using the automatic image FE method; (2) adding metadata; (3) using SMOTE;
and (4) using different ML algorithms. Figures 8 and 9 show the ROC and PRE–REC (PR)
curves for four comparison FE techniques.

MELA-CNN is an automatic image FE technique; it could achieve the optimal classi-
fication performance because it performed the fine-tuning process on the target dataset.
Compared with the handcrafted method, MELA-CNN has 31.9% and 47.2% increases in
the AUC and the PR curve area, respectively. The results show that using MELA-CNN
improves the predictability of the model compared with the handcrafted method.

Moreover, adding the metadata with 256 features could further improve the predictabil-
ity of the model. The AUC and PR curve area increased to 0.865 and 0.827, respectively.
Age and gender had a good resolution in the MM diagnosis. Finally, K-means SMOTE was
used to tackle the problem of prediction bias, due to the imbalance of the data categories,
and the AUC improved by as much as 0.970. These results once again show that the four
proposed improvement strategies can effectively improve MM predictability.
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5.2. Effect of Oversampling Techniques

As mentioned above, using MELA-CNN for FE and adding the metadata with 258 fea-
tures can improve the prediction performance. Therefore, this method is used as the
basis, and K-means SMOTE, SMOTE, and RandomOverSampler are used as representative
methods to compare the impact of the different oversampling techniques on classification
performance. Compared with SMOTE, which randomly selects the k-nearest neighbor sam-
ples for oversampling without grouping, K-means SMOTE is a method for oversampling
samples with denser minority classes in clusters. Using K-means SMOTE yields better re-
sults; its AUC and PR curve area can reach 0.970 and 0.924, respectively. Figures 10 and 11
depict the ROC and PR curves for the performance comparisons of three oversampling
methods. The results show that K-means SMOTE has the best classification and discernibility.
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5.3. Effect of ML Algorithms (Classifiers)

As mentioned above, using 258 features with K-means SMOTE technology can achieve
an optimal performance. Based on K-means SMOTE, we compared the differences in the
prediction performance of different classifiers. Figures 12 and 13 depict the ROC and
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PR curves for the performance comparison of three classifiers. Clearly, XGB has the best
predictability and discernibility.

XGB, an ensemble learning classifier that combines multiple ML techniques, uses
boosting to continuously train and revise weak learners to improve the prediction perfor-
mance. It uses non-replacement random sampling to generate the different training subsets
from the original training dataset and votes or averages for each training result to make the
final prediction. Compared with the Gaussian NB and K-neighbors classifier, XGB has the
best performance, with an AUC of 0.970 and a PR curve area of 0.924.
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5.4. Significance Test for Performance Improvement

To assess whether the four improvement strategies proposed in this study are statis-
tically significant, we employed XGB with the stratified 10-fold cross-validation method
for five handcrafted features provided by dermatologists, 256 extracted features by MELA-
CNN, 258 features obtained after adding the metadata of age and gender, and 258 features
obtained by K-means SMOTE.
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Tables 6–8 summarize the REC paired t-test results for the number of features of
5 versus 256, 256 versus 258, and 258 versus 258+K-means SMOTE, respectively. Besides,
Tables 9–11 lists the corresponding F1-score paired t-test results. The null hypothesis is
that the difference in 10-fold REC or F1-score between two models is 0. From Tables 6–11,
a significant p-value of less than 0.05 was obtained for all of the test results, thereby con-
firming the following three findings. (1) The use of the MELA-CNN feature extractor has a
significant performance improvement over the dermatologist handcrafted method; (2) After
adding the metadata of age and gender, the improvement in classification performance was
also statistically significant; (3) Finally, there is also a statistically significant improvement
in the predictive power of the model using K-means SMOTE.

Table 6. Paired t-test of recall for 5 Features vs. 256 Features.

Fold 5 Features REC 256 Features REC Difference
between REC Paired t-Test

1 0.022 0.578 0.556

p = 1.81 × 10−9

Average difference
between REC

0.658

2 0.111 0.622 0.511
3 0.044 0.756 0.712
4 0.044 0.644 0.600
5 0.044 0.800 0.756
6 0.044 0.600 0.556
7 0.000 0.733 0.733
8 0.022 0.689 0.667
9 0.000 0.756 0.756

10 0.022 0.756 0.734

Table 7. Paired t-test of recall for 256 features vs. 258 features.

Fold 256 Features REC 258 Feature REC Difference
between REC Paired t-Test

1 0.578 0.844 0.267

p = 2.03 × 10−2

Average difference
between REC

0.071

2 0.622 0.756 0.133
3 0.756 0.778 0.022
4 0.644 0.644 0.000
5 0.800 0.778 −0.022
6 0.600 0.756 0.156
7 0.733 0.733 0.000
8 0.689 0.778 0.089
9 0.756 0.733 −0.022

10 0.756 0.844 0.089

Table 8. Paired t-test of recall for 258 features w/wo K-Means SMOTE.

Fold 258 Features REC
258 Features

with K-Means
SMOTE REC

Difference
between REC Paired t-Test

1 0.844 0.933 0.089

p = 7.07 × 10−4

Average difference
between REC

0.089

2 0.756 0.867 0.111
3 0.778 0.778 0.000
4 0.644 0.844 0.200
5 0.778 0.911 0.133
6 0.756 0.889 0.133
7 0.733 0.844 0.111
8 0.778 0.800 0.022
9 0.733 0.800 0.067

10 0.844 0.867 0.022
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Table 9. Paired t-test of F1-score for 5 Features vs. 256 Features.

Fold 5 Features F1 256 Features F1 Difference between F1 Paired t-Test

1 0.042 0.658 0.616

p = 4.56 × 10−10

Average difference
between F1

0.692

2 0.185 0.718 0.533
3 0.083 0.810 0.727
4 0.083 0.773 0.690
5 0.083 0.818 0.735
6 0.077 0.692 0.615
7 0.000 0.767 0.767
8 0.042 0.713 0.671
9 0.000 0.810 0.810
10 0.043 0.800 0.757

Table 10. Paired t-test of F1-score for 256 features vs. 258 features.

Fold 256 Features F1 258 Features F1 Difference between F1 Paired t-Test

1 0.658 0.826 0.168

p = 3.40 × 10−2

Average difference
between F1

0.040

2 0.718 0.791 0.073
3 0.810 0.833 0.024
4 0.773 0.734 −0.039
5 0.818 0.795 −0.023
6 0.692 0.810 0.117
7 0.767 0.759 −0.009
8 0.713 0.814 0.101
9 0.810 0.815 0.005
10 0.800 0.826 0.026

Table 11. Paired t-test of F1-score for 258 features w/wo K-Means SMOTE.

Fold 258 Features F1 258 Features with
K-Means SMOTE F1

Difference
between F1 Paired t-Test

1 0.826 0.913 0.087

p = 3.35 × 10−4

Average difference
between F1

0.061

2 0.791 0.813 0.022
3 0.833 0.843 0.010
4 0.734 0.874 0.139
5 0.795 0.891 0.096
6 0.810 0.870 0.060
7 0.759 0.817 0.059
8 0.814 0.857 0.043
9 0.815 0.857 0.042
10 0.826 0.876 0.050

5.5. Performance Comparison with Previous Related Studies

We compare five of the evaluation metrics of our research results and two previ-
ous studies [28,29] (as shown in Tables 12 and 13). Based on the 7:3 holdout method,
Kalwa et al. [28] performed only the binary MM classification for 200 dermoscopy images,
combined with image FE, SVM, and SMOTE, the AUC can increase from 0.720 to 0.850.
In this study, the binary MM classification was performed on 2299 dermoscopy images,
and the proposed model was constructed by combining MELA-CNN, metadata, K-means
SMOTE, and XGB and compared with five handcrafted image features provided by derma-
tologists, 1536 features extracted by the traditional transfer learning, 256 features extracted
by MELA-CNN, and 258 by adding metadata. As a result, the AUC increased from 0.585 to
0.971, the F1-score increased from 0.056 to 0.890, and the REC increased from 0.030 to 0.867.
Using the 8:2 holdout method, Magalhaes et al. [29] performed a binary classification of
MM for 287 infrared thermography images. After combining image FE and the integrated
model of RF and SVM with SMOTE, the REC can increase from 0.473 to 0.696. In this study,
the AUC increased from 0.621 to 0.981, the F1-score increased from 0.063 to 0.905, and the
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REC increased from 0.033 to 0.878. The results in Tables 12 and 13 confirm that the proposed
model can obtain better classification and predictability than previous related models.

Table 12. Performance comparison with Kalwa et al. [28].

Kalwa et al. (2019) [28] Proposed Model

SVM
(Kernel = RBF) XGB Classifier

Holdout (7:3) Holdout (7:3)

Original SMOTE Handcrafted DL-TL DL-FE DL-FE+
Metadata

K-Means
SMOTE

Number of samples 200 2299

Number of features 4 4 5 1536 256 258 258

ACC 0.860 0.880 0.804 0.836 0.914 0.923 0.958

AUC 0.720 0.850 0.585 0.780 0.936 0.948 0.971

PRE 0.125 0.667 0.500 0.720 0.806 0.820 0.914

REC 0.500 0.800 0.030 0.267 0.741 0.778 0.867

F1 0.200 0.727 0.056 0.389 0.772 0.798 0.890

Table 13. Performance comparison with Magalhaes et al. [29].

Magalhaes et al. (2021)
[29] Proposed Model

SVM +
Random Forest XGB Classifier

Holdout (8:2) Holdout (8:2)

Original SMOTE Handcrafted DL-TL DL-FE DL-FE+
Metadata

K-Means
SMOTE

Number of samples 287 2299

Number of features 40 40 5 1536 256 258 258

ACC 0.426 0.585 0.807 0.839 0.904 0.930 0.965

AUC 0.558 0.542 0.621 0.774 0.937 0.953 0.981

PRE 0.565 0.672 0.600 0.767 0.774 0.837 0.974

REC 0.473 0.696 0.033 0.256 0.722 0.800 0.878

F1 0.515 0.684 0.063 0.383 0.747 0.818 0.905

We also compared the performance of our proposed model with some other work
in the literature. Based on the dataset, the imbalanced ratio (IR) of Non-Me and Me (IR)
samples, the classification method, the validation method, and the performance of the test
set, a comparative summary of these techniques is provided in Table 14. Since the different
studies use different datasets and performance metrics, valid comparisons are difficult.
However, the method proposed in this study still exhibits excellent performance.

Table 14. A comparative summary of the existing techniques for melanoma binary classification.

Year Author Dataset Non-Me: Me (IR) Method Validation Test Result

2016 Nasr
et al. [26] MED-NODE 100:70 (1.429) DL Holdout (8:2)

full: 7650

ACC: 0.810
SE: 0.810
SP: 0.800

2018 Adjed et al. [8] PH2 160:40
(4)

Multiresolution
technique + ML

Repeat 1000 times
Holdout (7:3)

full: 200

ACC: 0.861
SE: 0.790
SP: 0.933
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Table 14. Cont.

Year Author Dataset Non-Me: Me (IR) Method Validation Test Result

2018 Li et al. [15] ISIC 2018 8902:1113 (7.998) DL + ML Holdout (7:1:2)
full: 10015

ACC: 0.853
PRE: 0.860
REC: 0.850
F1: 0.860

2019 Devansh
et al. [41]

Combine of
ISIC 2017, Edinburgh
data, ISIC 2018, PH2

3063:919 (3.333) DL Holdout (85:15)
full: 3982 AUC: 0.880

2019 Warsi et al. [10] PH2 160:40 (4) 3D color-texture
feature (CTF) + DL

Holdout (70:15:15)
full: 200

ACC: 0.970
SE: 0.981
SP: 0.925

2019 Abbes et al. [24] Combine of DermQuest
and DermIS 87:119 (0.731) FCM + DL Holdout (NA)

full: 206

ACC: 0.875
SE: 0.901
SP: 0.844

2019 Abbas et al. [25]
Subset of combining

Skin-EDRA, ISIC 2018,
DermNet, PH2

1420:1380 (1.029) DL + ML Holdout (1:1)
full: 2800

ACC: 0.950
AUC: 0.960

SE: 0.930
SP: 0.950

2020 Almaraz-Damian et al. [19] ISIC 2018 8902:1113 (7.998) DL + ML Holdout (75:25)
full: 10015 ACC: 0.897

2020 Daghrir et al. [42] Subset of ISIC archive NA DL+ML Holdout (8:2)
full: 640 ACC: 0.884

2022 Iftiaz A. Alf et al. [23] Subset of ISIC 2018 1800:1497 (1.202) DL and ML Holdout (8:2)
full: 3297

DL
ACC: 0.910
PRE: 0.910
REC: 0.920
AUC: 0.970

F1: 0.910
ML

ACC: 0.880
PRE: 0.840
REC: 0.920
F1: 0.880

2022 Our approach
(Holdout 8:2)

Subset of combining
ISIC 2018 and ISIC 2019 1849:450 (4.109) DL + ML Holdout (8:2)

full: 2299

ACC: 0.965
PRE: 0.974
REC: 0.878
AUC: 0.981

F1: 0.905

2022
Our approach

(Stratified 10-fold
Cross Validation)

Subset of combining
ISIC 2018 and ISIC 2019 1849:450 (4.109) DL + ML

Stratified 10-fold
Cross-Validation

full: 2299

ACC: 0.941
PRE: 0.870
REC: 0.822
AUC: 0.968

F1: 0.844

6. Conclusions

Recently, the incidence of skin cancer has increased globally. The accurate classification
of skin lesions directly influences the accurate and prompt diagnosis of skin cancer. MM is
a highly lethal skin cancer that can rapidly metastasize, and eventually cause death if not
detected early and treated properly.

Based on the method of expert manual annotation, an AI model for CAD of MM
was developed for 2299 dermoscopy images in this study. We proposed four improve-
ment strategies: (1) comparing different transfer learning techniques for automatic image
FE; (2) adding the metadata of gender and age; (3) comparing different oversampling
techniques for the class balancing of training data; and (4) comparing the classification per-
formance of different ML algorithms. According to the experimental results, the proposed
improvement strategies have a statistically significant effect on performance improvement.

After the analysis and comparison of the experimental results, we showed an effective
combination of DL and ML methods to automatically extract features from dermoscopy
images and perform benign and MM diagnoses. The experimental results also show that
the proposed model, using the MELA-CNN feature extractor plus metadata, combined
with K-means SMOTE and XGB, can obtain a better classification and prediction ability
than the previous related models. Both the statistics and tests performed in this study
confirmed that the proposed MM detection model has excellent classification performance.
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However, if future clinical applications are to be met, it is necessary to further test the
detection capabilities of a larger amount of case data and more categories of skin lesions
to optimize the AI model. Based on the method proposed in this study, developing a
computer-aided diagnosis system for melanoma with a user-friendly interface to support
the clinical practice of dermatologists and provide an interpretation mechanism after
automatic diagnosis is also the goal of the next stage of this study.
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