
����������
�������

Citation: Legnar, M.; Daumke, P.;

Hesser, J.; Porubsky, S.; Popovic, Z.;

Bindzus, J.N.; Siemoneit, J.-H.H.;

Weis, C.-A. Natural Language

Processing in Diagnostic Texts from

Nephropathology. Diagnostics 2022,

12, 1726. https://doi.org/

10.3390/diagnostics12071726

Academic Editor: Masayuki Tsuneki

Received: 31 May 2022

Accepted: 12 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Natural Language Processing in Diagnostic Texts
from Nephropathology

Maximilian Legnar 1,2,*,† , Philipp Daumke 3, Jürgen Hesser 2,4, Stefan Porubsky 5 , Zoran Popovic 2,†,
Jan Niklas Bindzus 2,†, Joern-Helge Heinrich Siemoneit 2,† and Cleo-Aron Weis 2,6,*

1 Mannheim Institute for Intelligent Systems in Medicine (MIISM), Medical Faculty Mannheim,
Heidelberg University, 68167 Mannheim, Germany

2 Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
juergen.hesser@medma.uni-heidelberg.de (J.H.); zoran.popovic@medma.uni-heidelberg.de (Z.P.);
jan.bindzus@stud.uni-heidelberg.de (J.N.B.); siemoneit@stud.uni-heidelberg.de (J.-H.H.S.)

3 Averbis GmbH, 79098 Freiburg, Germany; philipp.daumke@averbis.com
4 Data Analysis and Modeling, MIISM, Medical School, Interdisciplinary Center for Scientific Computing

(IWR), Central Institute for Computer Engineering (ZITI), CZS Heidelberg Center for Model-Based AI,
Heidelberg University, 69117 Heidelberg, Germany

5 Institute of Pathology, Medical Faculty Mainz, University Hospital Mainz, 55131 Mainz, Germany;
stefan.porubsky@unimedizin-mainz.de

6 Institute of Pathology, Medical Faculty Heidelberg, 69120 Heidelberg, Germany
* Correspondence: maximilian.legnar@medma.uni-heidelberg.de (M.L.);

cleo-aron.weis@medma.uni-heidelberg.de (C.-A.W.); Tel.: +49-621-383-4072 (C.-A.W.)
† Current address: Institute of Pathology, Medical Faculty Mannheim, Heidelberg University,

69117 Heidelberg, Germany.

Abstract: Introduction: This study investigates whether it is possible to predict a final diagnosis based
on a written nephropathological description—as a surrogate for image analysis—using various NLP
methods. Methods: For this work, 1107 unlabelled nephropathological reports were included. (i) First,
after separating each report into its microscopic description and diagnosis section, the diagnosis
sections were clustered unsupervised to less than 20 diagnostic groups using different clustering
techniques. (ii) Second, different text classification methods were used to predict the diagnostic group
based on the microscopic description section. Results: The best clustering results (i) could be achieved
with HDBSCAN, using BoW-based feature extraction methods. Based on keywords, these clusters
can be mapped to certain diagnostic groups. A transformer encoder-based approach as well as an
SVM worked best regarding diagnosis prediction based on the histomorphological description (ii).
Certain diagnosis groups reached F1-scores of up to 0.892 while others achieved weak classification
metrics. Conclusion: While textual morphological description alone enables retrieving the correct
diagnosis for some entities, it does not work sufficiently for other entities. This is in accordance with a
previous image analysis study on glomerular change patterns, where some diagnoses are associated
with one pattern, but for others, there exists a complex pattern combination.

Keywords: NLP; text analysis; nephropathology; text classification; topic modelling; BERT;
transformer encoder; machine learning; deep learning

1. Introduction

Due to complex histomorphological change patterns and diagnoses, nephropathology
is a challenging sub-discipline of surgical pathology [1]. This field is hard to learn for
beginners, which is reflected, among other things, in a steep learning curve. However,
after such a learning process, many assessments by experts in the field show strong inter-
observer agreement between results. The high-level specialization of such pathologists
is achieved by long, tedious training, which makes them as rare as they are necessary [2].
One idea for assisting novices in the learning process is to utilise machine learning (ML)
tools to assist in reaching plausible differential diagnoses or even the correct diagnosis [3,4].
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For instance, there were several works from the field of image analysis or respectively
computational pathology published by many different groups in recent years [5,6]. In
this context, we have also recently published a paper on the classification of glomerular
changes in histological images by means of convolutional neural networks (CNNs). Based
on a defined small number of change patterns, we were able to diagnose entities defined
by only a small number of patterns [7]. For instance, on the basis of images of a patients
glomeruli, amyloidosis and diabetic glomerulopathy are easy to predict [1,7,8]. A diagnosis
like lupus nephritis, which can show a plethora of patterns over time and space (within one
biopsy), is in contrast not predicable solely based on one glomerular change pattern [1,7,8].
Demonstrating that only a part of kidney tissues (in our case glomeruli) is not enough to
make a correct diagnosis is not surprising. It seems logical that at least the entire tissue
needs to be taken into account; if not, disease models or pathophysiological contexts would
have to be included in the diagnostic classification task.

An analysis tool for all kidney tissue compartments, e.g., by combination of a segmen-
tation model to obtain the compartments of interest and subsequent classification, needs to
be trained on larger and diverse data sets. Typically, such image data sets are very sparse or,
respectively, not easy to create. The problem is not so much the preparation of a compilation
of final diagnoses and images, but rather the laborious generation of correct annotations.
As an example, in our recent publication, three experts spent several weeks classifying
individual images in order to generate a sufficiently large data set [7]. For a segmentation
task, where every part of the images needs to be labelled, the effort is significantly higher.

In contrast to this image data scarcity, there is plenty of high-quality text data in the
field of nephropathology. For every kidney biopsy, there is a medical report that contains a
short description of the histology. These texts are each written by a professionally trained
but most likely not-always-available nephropathologist. Furthermore, as mentioned above,
for many entities, there is high agreement between these experts. In summary, most image
data is not very well annotated; however, the quality of most diagnosis text is presumably
very high.

This leads to the idea of using the diagnosis text for analysis, in contrast to our recent
work on image data [7]. In a sense, this text analysis is a surrogate for non-existent image
data and image analysis tools. Analysing texts instead of images, of course, requires
methods of natural language processing (NLP).

Like image analysis, NLP includes a wide range of methods for many different areas
of application. In the medical field, the analysis and especially classification of surgical
pathology report texts is a well-known application. For instance, there are cancer registries
that rely on information extraction from pathology reports or on the classification of such
reports. The manual information extraction from (bio-)medical free-text documents and
especially pathology reports is very time consuming and requires the commitment of
specialists. Automatic, pre-existing NLP-approaches provide a solution to overcome this
obstacle. For the described cancer registry task, Schulz et al. combined several different
classification techniques to extract a particularly large quantity of different information
such as cancer type (by e.g., support vector machine (SVM) or tumor morphology (by e.g.,
convolutional neural network (CNN) with embeddings) from German texts [9]. Besides
this mentioned example, there are already numerous other works for the classification
of medical texts. Fabacher et al. trained an SVM as a binary text-classfier for French
texts [10]. And Oleynik et al. trained an SVM to classify pathology reports according to
the International Classification of Diseases for Oncology (ICD-O) code [11,12]. The aim in
a recent work by Lopprich et al. [13] was to make a manual documentation process more
efficient by using methods of NLP for multiclass classification of diagnostic reports to
automatically document the diagnosis and status of disease of myeloma patients.

Against this background, the main aim of this work was to test if the textural descrip-
tion of the entire kidney tissue in (German) nephropathology reports can be used to make
a diagnosis or respectively assign the report text to the correct diagnosis. For this purpose,
each nephropathological report was divided into two parts, each of which belonged to each
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other: Part one is the microscopic description section; and part two is the corresponding
diagnosis section. As for image data, manual annotation of the cases is sparse. There-
fore, we use a two step approach: (i) First, the text-classification task was preceded by a
topic modelling task in order to summarize the many given, each individually formulated
diagnosis sections into less than 20 diagnosis clusters, where each cluster is a collection
of thematically related documents, representing a certain diagnostic group. By doing so,
we avoid manual labelling. (ii) Second, different text classification methods were used to
predict the corresponding diagnostic group, obtained in step (i), on the basis of the given
description section. This tests whether the text description (as a surrogate of the image
analysis) contains all the information necessary to generate the correct diagnosis.

For the steps (i) and (ii), different text clustering- and text classification-methods
were applied. Overall, we experimented with simple Bag-of-Words (BoW)-based methods
(Sections 2.3.1 and 2.5.1) as well as with techniques based on distributed representations
(Sections 2.3.2 and 2.5.2) to solve the given NLP problems.

2. Materials and Methods
2.1. Data Collection

Anonymized medical reports (n = 1185 from the years 2018–2021, memory size: 5 MB)
were retrieved from the electronic archive of the Institute of Pathology, Medical Faculty
Mannheim, Heidelberg University. Only the plain texts are used without information on
patient age, gender, clinical course, etc. The data collection and all experiments were con-
ducted in accordance with a vote of the ethics commission II of the Heidelberg University
(vote 2020-847R). The total corpus consists of 152,650 words, with each report consisting of
136 words on average.

2.2. Overview

An overview of what has been done in the underlying work is provided by Figure 1.
We started with a corpus consisting of 1185 nephropathological reports. Each report

was then divided into its diagnosis section and microscopic description section (Figure 1:
data preparation). This was done based on German section tags or keywords usually placed
at the beginning of a section, like “Klinische Angaben” (Engl. clinical information) for the
clinical information section, “Mikroskopie” (Engl. microscopy) for the description section,
and “Beurteilung” (Engl. conclusion) for the diagnosis section. The diagnosis section is
later used for the text clustering task (i), and the description section is later used for the
text classification task (ii).

Below is an example of a conclusion text with its associated microscopic descrip-
tion section:

Example of a microscopic description section (translated from German to English):
Renal medulla and cortex with 18 glomeruli. These were inconspicuous by light microscopy, specifically
without evidence of necrosis or extracapillary proliferation. Arcuate artery and interlobular artery with mild
subendothelial fibrosis. Arterioles unremarkable.
Tubulointerstitium with only small areas of atrophic tubules and interstitial matrix proliferation. Percentage of
chronically damaged tubulointerstitium: 5%.

Example of corresponding diagnosis section (translated from German to English):
Mild arteriosclerosis. Unremarkable chronic tubulointerstitial damage (5% of the cortex). Conventional
microscopy moreover an unremarkable finding with no evidence of glomerular necrosis or extracapillary
proliferation. The results of the further immunohistochemical examination will be reported afterwards.

UMLS! (UMLS!) [14] was used for the translation (German to English) in order to use
internationally standardized medical terms if possible.
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Figure 1. Flowchart, describing the general procedure of the project. After splitting each nephropatho-
logical report into its diagnosis and description section (data preparation), we first applied the cluster-
ing task (i) to the diagnosis texts in order to summarize them into less than 20 clusters. After labelling
each cluster of diagnosis texts with a corresponding diagnostic group, we applied the classification
task (ii) to the description texts in order to find out if it’s possible to predict the correct diagnostic
group of a given description text with NLP techniques.

Some reports (78) did not meet all requirements and could therefore not be divided
into the two sections and were excluded. After that, 1107 reports are left, consisting of one
diagnosis and one description text.

After data preparation, two main tasks were performed: In the clustering task (i),
diagnoses were assigned to the description texts. In the second step, the classification task
(ii), the aim was to predict the correct diagnosis for each (morphological) description text,
using different text classification methods.

Here are more detailed descriptions of the two main tasks:

(i) Clustering and topic modelling
The diagnostic segments (example above) are clustered using different approaches (as
described below in Section 2.3). The results of the various clustering methods are then
compared to select the best method, which can be used for the topic modelling task
of the corpus. The clusters of the winner are then analyzed in more detail to assign
a suitable diagnostic group name for each cluster. After that, we obtained a labelled
corpus, where each report is labelled with one diagnostic group that can be identified
using the associated cluster index.
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(ii) Classification
The classification part (Section 2.5) involves testing how accurately the labelled micro-
scopic description texts can be classified using different text classification methods
(as described below in Section 2.5). The aim is to find out whether the descriptive
texts contain enough information to predict the diagnosis. For the classification task,
different text classification methods were tested, to compare how they differ from each
other in terms of performance.

All text processings, analyses, and evaluations performed in this thesis were conducted
with German texts. In principle, the analyses shown here can be applied to reports written
in any other language. More about this is mentioned in Section 4.3. Furthermore, only
freely available software was used in this work. All python libraries used are referenced in
the appropriate places (via hyperlink and or citation). The code for this work is available
on GitLab (see section Data Availability Statement).

2.3. Clustering and Topic Modeling

We tested and compared seven different clustering approaches to cluster the diagnosis
sections of the given reports. The resulting clusters were then used as labels for the classifi-
cation task (ii). Here, a trade-off was necessary between too few clusters (or respectively
labels or diagnostic groups) having a high intra-cluster heterogeneity and too many clusters
with low intra-cluster heterogeneity but only a few cases. Too few clusters would generally
be easier for a prediction model. With too many, on the other hand, the low number of
cases per group would be problematic. To balance this, the amount of clusters was set to a
minimum of 10 and a maximum of 20.

The used clustering methods can be divided into two main categories: BoW-based
approaches (Section 2.3.1) and approaches with distributed representations (Section 2.3.2),
where we make use of word embeddings and pre-trained transformer encoder models.

2.3.1. Clustering with Bag-of-Words Approaches

The clustering methods used in the underlying work, which are based on BoW repre-
sentations [15], are listed here:

• k-means
K-means clustering, using scikit-learn’s [16] python implementation.

• LDA
LDA! (LDA!) clustering, using the implementation shown in [17]

• HDBSCAN
HDBSCAN! (HDBSCAN!), as shown in [18], using the supplied python library hdb-
scan. Before applying HDBSCAN, we first reduced the dimensionality of the doc-
ument vectors as the HDBSCAN clustering algorithm handles high dimensionality
poorly. We used Uniform Manifold Approximation and Projection (UMAP) [19] for
the dimensionality reduction.

• GSDPMM
GSDPMM! (GSDPMM!) model for text clustering [20].

For text vectorization, term frequency–inverse document frequency (tf–idf) has been
used (using scikit learn’s implementation). Moreover, the text has been pre-processed inten-
sively to keep the vocabulary small, which results in smaller document vectors. We used
stop word filtering, with general purpose German stop words, using the nltk.corpus [16]
package (slightly customized by removing words like “no” or “none” from the prede-
fined stop words list and adding words like “approx”), as well as lemmatization with
the (German) Hanover Tagger [21]. We expanded this lemmatizer with custom word
replacements, to adapt it to our specific nephropathological language. Moreover, we used
a multi-word expression tokenizer (nltk.tokenize.mwe), to merge multi-word expressions,
like “Lupus␣Nephritis” (Engl. lupus nephritis) or “tubulointerstitieller␣Schaden”

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://hdbscan.readthedocs.io/en/latest/index.html
https://hdbscan.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://www.nltk.org/
https://github.com/wartaal/HanTa
https://www.nltk.org/api/nltk.tokenize.mwe.html
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(Engl. tubulo-interstitial damage), into single tokens. We used an elbow-method-based
approach to find the optimal number of clusters (k) for each cluster method. We removed
numbers like dates, quantities, or report identification numbers to prevent reports from
being clustered only by irrelevant numerical values. Furthermore, we used uncased texts,
and we removed punctuation.

2.3.2. Clustering with Distributed Representations

Distributed representations of documents and words led to a considerable break-
through in NLP due to their ability to capture the semantics of words or even word
sequences. Word embeddings, or contextual word embeddings from transformer encoder
models, can provide a certain language or textual context understanding, which is required
for many NLP tasks and is also useful for clustering and topic-modelling problems [22–24].

• top2vec
top2vec [24], uses distributed representations, obtained with word2vec [25] and
doc2vec [26], to measure the semantic similarity of documents.

• BERT-based clustering
Since the break through of the Bidirectional Encoder Representations from Transform-
ers (BERT) model [27], a huge collection of pre-trained transformer encoder models
have become available for various domains. Most of them are freely available on
platforms such as huggingface.co [28]. We used different pre-trained transformer
encoder models to embed the diagnostic texts in 512-dimensional document vectors
(as shown in [29], using the supplied sentence_transformers library). After reducing
the dimensionality of the document vectors (bidirectional, contextual embeddings)
with UMAP [19], we clustered the documents using HDBSCAN! [18].
The following BERT-based models were used in this work:

– German-BERT
There are some promising pre-trained transformer encoder models for the bio-
medical domain [30–32], but these models have only been trained with English
texts. Since we are dealing with German bio-medical language, we used bert-base-
german-cased (henceforth called German-BERT) which has been pre-trained with
German wikipedia articles, the OpenLegalData dump and news articles. German-
BERT comes with BERTs WordPiece tokenizer [27] (30,000 token vocabulary) which
is able to divide unknown words into known subwords. Therefore it can be
used for a wide range of domain-specific languages without getting many OOV!
(OOV!) cases. Only one OOV case appeared during the tokenization of the entire
corpus with German-BERT with OOV! token “q:”.

– Patho-BERT
In order to adapt German-BERT to our specific nephropathological vocabulary,
we pre-trained it with a masked language modelling) (MLM) objective, using
the whole nephropathological corpus and 1607 additional nephropathological
reports as training data. The resulting model was then saved as ger-patho-bert
(henceforth called Patho-BERT) and used as another transformer model for further
clustering attempts as well as for classification tasks in Section 2.5.

When working with distributed representations, little to no text pre-processing is
usually required [33]. However, irrelevant numbers have been filtered out to prevent
clustering based on numerical values only, as explained in Section 2.3.1.

2.4. Evaluation of Clustering Results

Each clustering method divides the included 1107 diagnosis texts into less than 20 clusters.
In other words, each clustering method generates a set of clusters, henceforth called cluster-set.
Now the question arises how we can evaluate the quality of such a cluster-set. For this we

https://huggingface.co/
https://www.sbert.net/
https://huggingface.co/bert-base-german-cased
https://huggingface.co/bert-base-german-cased
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have taken into account the shape of the cluster-set as well as its texts contained in each cluster
in order to find the most homogeneous and diagnostically meaningful clusters.

2.4.1. Clustering Metrics

There is still no perfect standard way to evaluate the quality of a cluster-set. In
some publications, metrics like purity or NMI! (NMI!) are used to evaluate and compare
clustering results [20,34–36]. However, a so-called golden cluster-set is required for such
metrics, which is not available in our case. The present work generated clusters using
different methods without ground truth data. This significantly limits the number of
cluster metrics that can be used. The following methods were used to measure the overall
clustering quality:

• silhouette score
The mean silhouette coefficient of all samples, using scikit-learn’s implementation.
This metric is generally higher for convex clusters and is therefore not suitable for
every cluster-set.

• relative entropy
The entropy of the documents, relative to the clusters. It is a measure of how much
the documents differ from all other documents in the same cluster (regarding term
frequency). A small value means that the documents of a cluster are similar in terms
of vocabulary (on average). We calculated the relative document entropy as follows:

meanm
j=1(mean

n
i=1(entropy(tf(doci,j), tf(clusterj))))

where tf is the term frequency (calculated with scikit learn’s CountVectorizer) and
entropy(tf(doci,j), tf(clusterj)) is the entropy of the i-th document of cluster j,
relative to all other documents of cluster j. The entropy was calculated with scipy’s
entropy function, which uses the Kullback–Leibler divergence.

• classification accuracy (cls accuracy)
The idea is to test how well a simple SVM! (SVM!) can classify a given cluster-set, as it
was also done in [35] to compare different topic models. The diagnosis sections of the
reports are the input of the SVM and the labels to be guessed are the corresponding
clusters.

2.4.2. Visual Presentation of Clustering Results

We visualized the data points of each cluster-set with UMAP! (UMAP!) [19] in order to
get an impression of how well the clusters are separated from each other.

2.4.3. Keywords Extraction

In order to determine the topics of the individual clusters, the most relevant words
(henceforth called keywords, or topic words) have to be extracted from the clusters. Two
methodologically different approaches were used for this purpose. First, term frequency–
inverse document frequency (tf–idf) as term frequency-based method was used. Here,
keywords are identified based on their different frequencies in the clusters. Second, we used
an “SVM-based” topic words extraction method, which is based on the model explainability
of an SVM!. After training a linear SVM to predict the clusters of each diagnosis text, we
applied a weight analysis to the SVM, in order to get the ten words which make the SVM
most likely to predict a particular cluster (using the eli5 module). Only the documents
predicted correctly by the SVM were included in the analysis.

2.4.4. Cluster Naming Based on Keywords

After keyword extraction, medical experts (JNB and CAW) then mapped proper
diagnostic group names for each cluster (see Section 3.1.2).

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
https://eli5.readthedocs.io/
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2.5. Classification

In the previous section, we clustered the diagnosis sections of the reports into different
cluster-sets with different clustering methods (bag of word-based and embedding-based).
The hypothesis is that each cluster represents a diagnostic group (e.g., Lupus nephritis),
which should hypothetically result from the associated microscopic description section of
the same report.

To test this hypothesis, we tested how well these microscopic descriptions can be
classified to the corresponding diagnostic group (represented by the clusters of a given
cluster-set), with machine learning techniques. Therefore, we trained and tested different
text classifiers which are typically used in NLP! (NLP!). These again include simple
BoW! (BoW!)-based methods (Section 2.5.1) as well as more advanced techniques, based
on embeddings and transformer encoder models (Section 2.5.2).

2.5.1. Classification with Bag-of-Words Approaches

First, the description texts are pre-processed and tokenized with the same techniques,
as for the BoW!-based clustering in Section 2.3.1. The tf–idf-vectorized description-texts
are then passed to one of four different classifiers for the final prediction:

• SGD-classifier
SVM! (SVM!) with SGD! (SGD!) learning.

• MLP-lassifier
MLP! (MLP!) classifier with Adam optimization.

• Logistic Regression
Logistic regression (aka logit, MaxEnt) classifier with regularization and multinomial
loss fit.

• Multinomial NB
Multinomial NB! (NB!) classifier.

All BoW!-based classifiers are implemented with scikit-learn [16].

2.5.2. Classification with Distributed Representations

In addition to BoW!-based classification, we also made use of classification methods,
which are based on distributed representations. Bidirectional recurrent neural networks and
convolutional neural networks with word embeddings, as well as BERT-based transformer
encoder models were tested:

• RNN + embeddings:
RNN! (RNN!), consisting of a bidirectional LSTM! (LSTM!) layer, trained together
with word2vec word embeddings as input.

• CNN + embeddings:
CNN! (CNN!), trained together with word2vec word embeddings as input, as shown
in [37]. The 1D convolution layer has been trained with 32 kernels with a size of
3, followed by a max pooling layer and two fully connected layers to get one final
prediction value for each class. We used the ReLU! (ReLU!) activation function for the
convolution layer, as well as for the first dense layer. For the last dense layer, we used
a softmax activation function.

• German-BERT:
The transformer model bert-base-german-cased, fine-tuned with our text classification
problem.

• Patho-BERT:
Our pre-trained Patho-BERT transformer, as introduced in Section 2.3.2.

Both, the RNN!- and the CNN!-approaches are implemented with tensorflow [38].
We used the transformers package from huggingface [28] for the implementation of all

https://scikit-learn.org
https://huggingface.co/bert-base-german-cased
https://huggingface.co/docs/transformers/index
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transformer-based methods and trained the models with the included pytorch [39] Trainer
API, which uses an adam optimizer with weight decay regularization as introduced in [40].

The texts were pre-processed using the same techniques, as mentioned in Section 2.3.2.

2.6. Evaluation of Classification Results

To evaluate and compare different classifiers with one another, we measured various
metrics such as accuracy, precision, recall, F1-score (the harmonic mean of precision and
recall), and the cohen’s kappa coefficient [41]. Each metric value was determined using
ten-fold cross-validation. In order to examine the classification ability of a classifier in more
detail, confusion matrices were plotted and analyzed.

3. Results
3.1. Topic Moelling Based on Text Clustering on the Diagnosis Section of Nephropathological
Reports (Ad Task I)

Before documents can be classified, the number of possible classes should be reduced.
To accomplish this, the text-classification task was preceded by a topic modelling task
(task i). This was done by testing different text-clustering approaches to find the one
resulting in the most homogeneous and diagnostically meaningful clusters.

3.1.1. What Are the Differences of the Tested Clustering Methods?

In the present work, BoW!-based approaches and embedding-based approaches were
used to cluster the given diagnosis texts into several diagnostic groups. As a metric for the
clustering quality, we used the s-score! (s-score!), relative entropy, and the classification
accuracy. The silhouette-score assumes convex cluster shapes and is therefore not well-
suited for clusters of other shapes. To be independent of the cluster shape, the SVM!-
classification-based cls accuracy! (cls accuracy!) (as described in Section 2.4 above) is
used as additional clustering metric. Table 1 shows the measured metric values for each
clustering approach and Figure 2 shows the UMAP-representations of the respective cluster-
sets.

Table 1. Metrics of different cluster-sets.

Cluster Method s-Score cls Accuracy rel Entropy Clusters Corpus Size

HDBSCAN 0.587 0.951 0.588 16 906
German-BERT 0.576 0.856 0.618 13 759
top2vec 0.545 0.372 0.780 18 1026
Patho-BERT 0.536 0.848 0.531 17 757
LDA 0.517 0.581 0.611 7 1107
k-means 0.038 0.905 0.612 10 1107
GSDPMM 0.033 0.805 0.675 14 1107

We used the silhouette score (s-score), relative entropy (rel entropy) and the SVM! (SVM!)-based classification
performance (cls accuracy) to evaluate and compare different cluster-sets, generated with different cluster methods
(far left column). The entry clusters indicate how many clusters were generated by which method. Corpus size
indicates how many reports remained after clustering, since several reports were identified as outliers and sorted
out. HDBSCAN! (HDBSCAN!) has the best silhouette score as well as the best cls accuracy score. Although
top2vec has an acceptable silhouette score, it is notable for its very poor predictability (cls accuracy: 0.372).
Although k-means and GSDPMM! (GSDPMM!) have low silhouette scores, they are well predictable.

Compared by visual inspection to all other tested clustering methods, the clusters of
k-means (Figure 2g) and GSDPMM! (Figure 2h) seem to be much more poorly separated,
which is also reflected in their low silhouette scores in Table 1. Interestingly, HDBSCAN!,
a BoW!-approach, achieved the highest silhouette-score, the highest cls accuracy and the
second best entropy value. Moreover, it turned out that a reasonably shaped cluster-set
is not necessarily easier to predict with a support vector machine: Although top2vec has
achieved a good silhouette-score (s-score: 0.545) and shows well separated clusters in
its UMAP!-representation (Figure 2d), an SVM! can’t predict the clusters very well (cls

https://huggingface.co/docs/transformers/v4.16.2/en/main_classes/trainer#transformers.Trainer
https://huggingface.co/docs/transformers/v4.16.2/en/main_classes/trainer#transformers.Trainer
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accuracy: 0.372). Top2vec has with 0.780 the highest relative entropy value, which hints
to a low intra-cluster heterogeneity. This heterogeneity could be one reason why top2vec-
clusters are so difficult to predict. On the other hand, k-means and GSDPMM achieved
the lowest silhouette-scores, but are quite well predictable with a cls-accuracy of 0.905
(k-means) and respectively of 0.805 (GSDPMM). Both methods also have lower entropy
values with 0.612 and respectively 0.675 than top2vec.

For LDA, k-means and GSDPMM, no outlier detection has been implemented. Con-
trary, outliers can be detected for the other clustering techniques and subsequently be
removed from the further analysis. Especially in the case of Patho-BERT and German-
BERT, several documents were identified as outliers, which reduced the amount of left
documents-the corpus size-noticeably from 1107 documents to less than 760.

A fairly imbalanced cluster distribution can be found in almost every cluster-set.
However, such uneven distributions of cases is nothing unusual in this domain, as some
diseases occur much less frequently than others.

Figure 2. UMAP! (UMAP!) and PCA! (PCA!) of different cluster-sets. UMAP representations
of the cluster-sets generated with (a) LDA! (LDA!), (c) HDBSCAN! (HDBSCAN!), (d) top2vec,
(e) German-BERT, (f) Patho-BERT, (g) k-means and (h) GSDPMM! (GSDPMM!). The LDA! cluster-
set is also shown as PCA! (PCA!) in (b). Each data point represents a diagnosis section of a report.
The data points are coloured according to the respective clusters. Black points represent outliers
that were not assigned to any cluster. Above all, the clusters of top2vec and HDBSCAN! appear
particularly tidy and separated. The clusters of k-means and GSDPMM! appear less well separated,
which is probably also due to the fact that no data points are sorted out here.
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3.1.2. Can the Clusters Be Named on Basis of Keywords?

All cluster metrics used so far have the disadvantage that one cannot derive diag-
nostically comprehensible clusters from them. These methods only give a metric for the
intra-cluster homogeneity.

To give the produced clusters meaningful names, we first used different keyword
extraction methods (described in Section 2.4.3 above). The extracted topic words of the
HDBSCAN cluster-set (translated from German to English) can be found in Tables 2 and 3.
The original (German) topic word tables can be found in Appendix A and the extracted topic
words of all other cluster-sets can be found at https://doi.org/10.11588/data/KS5W0H
(accessed date 14 July 2022). As explained in Section 2.4, the ten (by each keyword extraction
approach identified) most relevant words per cluster are shown in these topic word tables.

Second, two medical experts (JNB as medical student and CAW as board-examined
pathologist) analyzed these tables to find out how well the topic words of each cluster fit
together and whether the topic words of a cluster fit to a certain diagnostic or topic group
(henceforth called cluster name).

The medical experts annotated the topic word tables as follows: If a suitable name
was found for a cluster, the cluster name can be found next to the corresponding cluster
index (see Table 2, left column). A particularly large number of topic words strongly refer
to cluster names highlighted in green (strong cluster names). In the case of cluster names
marked in orange, only a few topic words indicated the specified cluster name (weak cluster
name). The same applies to the colour-coded topic words: topic words that strongly indicate
a cluster name are highlighted in green (strong topic words). Orange highlighted topic words
only weakly indicate a cluster name (weak topic words).

Especially in the case of HDBSCAN!, for many clusters the extracted keywords fit
thematically well together. In this case, diagnostically meaningful and comprehensible
cluster names based on the keywords could be assigned to 14 out of 16 detected clusters
(as shown in Tables 2 and 3). For instance, keywords like “lupus nephritis” or “chronicity
index” are characteristic for documents in the cluster “systemic lupus erythematosus”. Or
for “IgA-nephritis” words like “oxford” or “IgA” are typical.

3.1.3. Do the Authors of the Nephropathological Reports Have an Impact on
the Clustering?

With only three authors (CAW, SP and ZVP) writing in different combinations the
included reports, we wondered if the clustering is influenced by the different authors. It is
conceivable, for example, that one of the authors is an expert in a particular diagnosis and
at the same time has a characteristic wording. In this case, the clustering methods would
possibly be influenced by the wording.

To look for the authors, Figure A1 (see Appendix B) shows the same UMAP! plots as
Figure 2, but coloured according to the authors who wrote the respective reports. Some of
the reports were written by multiple authors, these are represented by black points. When
examining these figures, especially HDBSCAN!, k-means and GSDPMM! tend to form a
group for author 1 (orange dots) and author 2 (green dots) that is separate from author 0
(blue dots). This group is always located in the upper left area. Based on this, the question
arises whether these separations are due to the different writing styles of some authors or
whether the authors worked on different subject areas. In the manual cluster word analysis,
some clusters could be identified, which were probably mainly grouped according to the
language style of author 1, e.g., cluster 2 of the HDBSCAN cluster-set. The topic words of
this cluster refer only weakly to the topic tubulo-interstitial nephritis (see Tables 2 and 3).

https://doi.org/10.11588/data/KS5W0H
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Table 2. Annotated topic words (translated from German to English), extracted from the HDBSCAN!
(HDBSCAN!) cluster-set, using the tf–idf based extraction method. A particularly large number of
topic words strongly refer to cluster names (left column) highlighted in green (strong cluster names).
In the case of cluster names marked in orange, only a few topic words indicated the specified cluster
name (weak cluster name). The same applies to the colour-coded topic words: topic words that
strongly indicate a cluster name are highlighted in green (strong topic words). Orange highlighted
topic words only weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords According to tf–idf

0-systemic lupus erythematosus scale, chronicity_index, class, activity_index, nih, lupus_nephritis , iv, who, glomerular,
iii

1-rapid progressive glomerulonephritis
quantity, glomeruli, scarred , necrosis , fresh , proliferating_glomerulonephritis , ap-

prox, segmental_necrotizing, extracapillary , concerning

2-tubulo-interstitial nephritis approx, concerning, cortex, minor, immunostaining, damage, included, moderate, chronic,
supplementary

3-pauci immune glomerulonephritis
of_this, glomeruli, total_amount, intact, extracapillary , scarred , global, necrosis ,

proliferating_glomerulonephritis , tubulointerstitial_damage

4-IgA nephritis oxford , m1, e0, s1, t0, c0, classification, iga , glomerulonephritis, cell_count

5-FSGN
fsg , primary, distinction, focal, secondary, collapsing, chronic, glomerulosclerosis,

take_place, hint

6-thrombotic microangiopathy
microangiopathy , thrombotic , active, reparation, preglomerular , glomerular, located,

chronic, tubulointerstitial_damage, hypertension

7-multiple myeloma
nephropathy, kappa , cast , amyloidosis , myeloma_kidney , lcdd, a_notice, chronic,
no, tubulointerstitial_damage

8-kidney transplant
rejection , routinely, chronic, success, immunohistochemical, examination, toxicity, hint,

nephrosclerosis, mild

9-unremarkable finding
renal_parenchyma, unremarkable , left_over, mainly , normal , special, acute, tubu-
lar_damage, histological, glomerulonephritis

10
cut_level, hardly, noteworthy, chronic, tubulointerstitial_damage, deep, so_far, processing,
nephrosclerosis , mild

11 microscopy, conventional, requirement, result, renal_parenchyma, foresee, chronic,
nephrosclerosis, mild, examination

12 - membranous glomerulonephritis
pla2r , membranous, honorable, glomerulonephritis, stage, churg, chronic, tubulointersti-

tial_damage, positive, nephrosclerosis

13-diabetic glomerulosclerosis
diabetic_glomerulosclerosis , chronic, tubulointerstitial_damage, nodular,

light_microscopic, picture, nephrosclerosis , difficult, examination, consist

14-glomerulosclerosis
glomerulosclerosis , global, tubulointerstitial_damage, chronic, nephrosclerosis ,

focal_segmental , focal, moderate, take_place, secondary

15-tubulo-interstitial nephritis
a_mild, tubular_damage , acute, chronic, nephrosclerosis , tubulointerstitial_damage ,

mild, a_moderate, moderate, potentially_reversible
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Table 3. Annotated topic words (translated from German to English), extracted from the HDBSCAN!
(HDBSCAN!) cluster-set, using the SVM! (SVM!) based extraction method. A particularly large
number of topic words strongly refer to cluster names (left column) highlighted in green (strong
cluster names). In the case of cluster names marked in orange, only a few topic words indicated the
specified cluster name (weak cluster name). The same applies to the colour-coded topic words: topic
words that strongly indicate a cluster name are highlighted in green (strong topic words). Orange
highlighted topic words only weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords According to SVM

0-systemic lupus erythematosus
scale, chronicity_index, activity_index, class, -nih, iv, lupus_nephritis , component, iii,
who

1-rapid progressive glomerulonephritis
quantity, sclerosing, glomeruli, scarred , glomerulus, fresh , of_which1,
proliferating_glomerulonephritis , necrosis , sclerosed

2-tubulo-interstitial nephritis
tubular_epithelial_damage , moderate, minor, damage, none, completion, fibrosis, finally,

known, tubulointerstitial

3-pauci immune glomerulonephritis
of_this, total_amount, intact, pauci_immune_glomerulonephritis , necrotizing, glomeruli,

scarred , *, remaining, extracapillary

4-IgA nephritis oxford_classification, e0, s1, m1, t0, c0, iga_glomerulonephritis, s0, applicable, e1

5-FSGN
fsg , primary, distinction, look_together, secondary, segmental_glomerulosclerosis, col-

lapsing, at_most, continuing, patient

6-thrombotic microangiopathy
microangiopathy , thrombotic , reparation, preglomerular , glomerular, located, active,

glomerular_thrombotic, hypertension, overwhelmingly

7-multiple myeloma
cast_nephropathy, myeloma_kidney , lcdd, lambda, kappa , amyloidosis , followed_by,
light_chains, al-amyloidosis, light_chain_nephropathy

8-kidney transplant
rejection , routinely, success, examination, calcineurin_inhibitor_toxicity , ascending,

humorous, bacterial, urinary_tract_infection, follow-up_report

9-unremarkable finding
renal_parenchyma, unremarkable , normal , largely , left_over, for_now, furthermore,
special, iga-, pathological

10 hardly, cut_level, noteworthy, deep, so_far, processing, using, congo_red_coloring,
to_exclusion, cellularor

11 microscopy, conventional, requirement, foresee, mild, membranous, early,
cell_proliferation, result, g

12 - membranous glomerulonephritis
membranous, proteinuria, as_a_result, glomerulonephritis, pla2r , stage, churg, honor-
able, electron_microscopy, pla2r_positive

13-diabetic glomerulosclerosis
diabetic_glomerulosclerosis , consist, immune_complex_glomerulonephritis, nodular,

picture, light_microscopic, partly, arteriolohyalinosis, diabetic_glomerulosclerosis, addi-
tionally

14-glomerulosclerosis
global, focal_segmental , segmental_glomerulosclerosis, glomerulosclerosis , fo-
cal_global, diffusesegmental, incl, focal, tubulointerstitial_damage, scarring

15-tubulo-interstitial nephritis
tubular_damage , a_mild, mild, tubulointerstitial_damage , change, a_moderate, mild,

constantly, acute, malignancy

3.1.4. Which Clustering Method Is the Best?

Since the HDBSCAN!-clustered data set has a good clustering accuracy according
to the applied metrics (compare Section 2.4), since it has less outliers than German-BERT
or Patho-BERT, and, since it achieved decent results in the manual topic word analysis
(compare Section 2.4.3), it has been rated as the best clustering approach. Therefore, it, or
rather its cluster-set, has been used as the target for the classification task described in the
next section.
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3.2. Assignment of Nephropathological Description Sections to Specific Diagnostic Groups
(Ad Task Ii)

The second task is mapping the histomorphological descriptions to the diagnosis
sections or, more specifically, to the previously defined topics (task ii). Based on Section
3.1.1, HDBSCAN! was selected as the preferred clustering method on which basis different
classifications methods were tested.

3.2.1. Which Methods Can Be Used to Map Descriptive Sections to the Correct
Diagnostic Groups?

In summary, eight different text classification methods were used. Four of the classifi-
cation methods (here abbreviated called SGD-classifier, MLP!-classifier, logistic regression
and multinomial NB!) are bag-of-words approaches (compare Section 2.5.1). The other
four classification methods (here abbreviated as RNN + embeddings, CNN + embed-
dings, German-BERT and Patho-BERT) are in contrast based on distributed representations
(compare Section 2.3.2).

In Table 4 the performance of the different approaches for mapping the description
sections to the HDBSCAN clustered data set is shown. The performance is quantified by
calculating the F1-score and the Cohen’s kappa coefficient with ten-fold cross-validation,
as mentioned in Section 2.6.

Table 4. Performance of different classification models, trained with the HDBSCAN cluster-set.

Classifier F1-Score Cohen’s Kappa Coefficient

Patho-BERT 0.667 0.631
SGD-classifier 0.644 0.598
MLP-classifier 0.639 0.599
German-BERT 0.610 0.572

Logistic Regression 0.589 0.567
CNN + embeddings 0.523 0.450
RNN + embeddings 0.464 0.394

Multinomial NB 0.442 0.370
F1-score and Cohen’s kappa coefficient of the tested classification methods, which were trained to predict the
HDBSCAN! clustered data set. Each score is determined with ten-fold cross-validation. The transformer based
model Patho-BERT and the SVM! (SVM!)-based SGD-classifier performed best.

Interestingly, according to the different metrics used, there is no clear winner when
comparing embedding-based approaches to BoW!-based approaches. There are poorly-
performing and better-performing models on both sides. Patho-BERT performed higher
(best F1-score and Cohen’s kappa coefficient) compared to the other classifiers. So the
time-consuming pre-training of a BERT model with MLM! (MLM!) seems to be worth-
while in this case. But surprisingly, the SGD-classifier, a BoW-based classifier, achieved a
significantly better F1-score than German-BERT. In return, German-BERT achieved a better
Cohen’s kappa coefficient.

3.2.2. Can Certain Diagnoses Be Better Predicted than Others? And If So, What Are
the Reasons?

Besides the overall classification performance, as shown above, the performance with
view to the single classes was of interest. To visualize this, in Figure 3 the confusion matrices
of the four best classification methods are shown. In addition, the F1-scores per cluster can
be read in Table 5, which were achieved using Patho-BERT as classifier.
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Figure 3. Confusion matrices of the classification models. (a) German-BERT, (b) Patho-BERT, (c) the
SVM! (SVM!)-based SGD-classifier, and (d) the MLP! (MLP!)-classifier. The brightness of a cell
indicates how many times the class on the x-axis was predicted by the classifier. The true class
is indicated by the index of the y-axis. Interestingly, there are classes that could be recognized
well by all classifiers, including the weaker ones, e.g., class 1 (rapid progressive glomerulonephritis), 2
(tubulo-interstitial nephritis) and 3 (pauci immune glomerulonephritis). Although the transformer-based
classifiers (a,b) generally performed better, the BoW!-based methods were able to detect class 0
(systemic lupus erythematosus) or 5 (fsgn) better (c,d).

First, it can be observed that the HDBSCAN! cluster-set contains some clusters that
can be recognized well by all classifiers, even the weaker ones. Especially the clusters 1
(systemic lupus erythematosus), 2 (tubulo-interstitial nephritis), and 3 (pauci immune glomeru-
lonephritis) could be recognized well by all classifiers, according to the confusion matrices
(Figure 3). The Patho-BERT model was able to achieve F1-scores of over 0.8 for these three
diagnostic groups, with group 3 (pauci immune glomerulonephritis) performing best with an
F1-score of 0.892 (see Table 5). The clusters 4 (iga nephritis), 8 (kidney transplant), 13 (diabetic
glomerulosclerosis) and 15 (tubulo-interstitial nephritis) could be recognized moderately good,
with F1-scores of over 0.5. Interestingly, although Patho-BERT has the best overall F1-score
(Table 1), the BoW!-based methods were able to detect class 0 (systemic lupus erythematosus)
and 5 (FSGN) better, according to the confusion matrices (Figure 3). Table 5 also lists
the support of each cluster. The support indicates how many documents (microscopic
description texts) were available for a cluster (or a diagnostic group). Cluster 2 in particular
is significantly more supported than all other clusters, while there are some particularly
small clusters consisting of less than 20 documents. Such imbalanced datasets can lead
classification algorithms to ignore the minority class entirely, as seems to be the case for
clusters 0, 5, and 6 in Table 5. Table 5 shows clearly that the lower the support, the more
difficult it is to recognize the cluster. Presumably, these diagnostic groups could have been
recognized better if more training data had been available or if each cluster had been large
enough, respectively.
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Table 5. Classification performance of the Patho-BERT-classifier, predicting the HDBSCAN cluster-set.

Cluster/Diagnostic Group F1-Score Support

3 0.892 72
2 0.880 324
1 0.847 51
8 0.728 76
4 0.601 71
15 0.545 78
13 0.529 56
12 0.417 26
10 0.367 23
9 0.364 31
7 0.333 19
14 0.312 19
11 0.160 17
0 0.000 18
5 0.000 14
6 0.000 11

Cluster-Predictability of the HDBSCAN! cluster-set, using Patho-BERT as classifier. The cluster predictability
was determined with the F1-score and the table is sorted by descending F1-scores. Each F1-score is the result of
a 10 fold cross validation (average of 10 test measurements). Cluster 3 has the highest F1-score. Cluster 2 has
a particularly strong support, which means this cluster is particularly large (324 documents) and was therefore
often seen during training. The support specifies how many documents a cluster consists of. It can be observed
that especially the smaller clusters could be recognized with difficulty or not at all.

3.2.3. Which Classification Approach Is the Best?

Overall, the best classification results were obtained using our custom BERT model
(Patho-BERT) as well as using a simple SVM! (SGD-classifier). However, the description
sections of the HDBSCAN!-clustered reports could not be classified passably: An F1-score
of more than 0.7 could not be achieved, even with our custom pre-trained BERT! (BERT!)
model (Patho-BERT). In many other medical text classification problems, significantly higher
F1-scores could be achieved [9,11,13]. Nevertheless, the problem presented here can hardly be
compared with such classification problems, due to the fact that no human-labelled data was
available. Instead, we clustered the diagnosis sections to label the data. During development
it could be observed that the classification performance was strongly related to the quality
of the cluster-set. Moreover, not much training data was available, which resulted in several
small clusters consisting of only 10 to 20 documents. In particular, predicting small clusters
was hard to accomplish in most cases. Nevertheless, certain clusters are well distinguishable,
as mentioned earlier.

4. Discussion

Digital medical reports can be found in many different medical sub-disciplines. They
usually represent a condensate of one or a combination of the many different, complex,
available medical data types such as radiological images, molecular profiles, clinical ex-
amination findings, etc. On the one hand, it is of great research interest to obtain usable
information for further analyses from medical reports, which are often written in a non-
standardized way. On the other hand, the relationship between the underlying data (e.g.,
histological images) and the text is also of great interest. Against this background, we
examined diagnostic texts from the field of nephropathology by means of natural language
processing (NLP!). In this sub-field of pathology, among others, we were able to show
in a recent publication that images of glomeruli can be mapped by means of machine
learning to some diagnoses (such as amyloidosis), whereas for other diagnoses (such as
lupus nephritis) prediction based on glomerular changes alone does not work well. To
test without extensive image processing efforts, if the morphological information in the
entire kidney tissue is enough for diagnosis prediction, we examined nephropathological
reports. By doing so, we were able to show the following points: (i) First, we could show
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that long-known NLP!-tools like bag-of-word-based techniques and newer embedding
techniques likes BERT can be applied to different parts of histological reports written in
German (see Section 4.1 below). (ii) Second, we could demonstrate that different text
parts like the description or the diagnosis section can be clustered without supervision
to diagnostic groups (see Section 3.1.1 above and Section 4.1 below). In contrast to the
unsupervised clustering of images, this is much easier and numerous methods are known
here from various other fields (see Section 4.1 below). (iii) Third, we could show that these
diagnostic groups can be predicted by machine learning models based on the description
section (see Section 3.2 above and Section 4.1 below).

4.1. Natural Language Processing and Image Processing Techniques in Nephrology
and Nephropathology

In this work, we applied a wide range of different NLP!-techniques to the histological
reports from the field of nephropathology. These medical reports are composed of several
sections, with the descriptive and diagnostic sections being particularly relevant for us.
We can show that there is a correlation between the morphological description and the
final diagnosis by predicting the diagnosis on basis of the description with our custom
Patho-BERT transformer encoder model or even with less complex support vector machines
(Section 3.2). After a previous work on glomerular change patterns in histological images [7],
we used the morphological description by nephropathological experts as surrogate for
image analysis. This would have the advantage of eliminating the need to establish a
reliable image analysis. For such image analysis, the amount of large, properly annotated
datasets is a common bottleneck that we tried to avoid by using textual data [42–44].

Of course, textual data must also be prepared or annotated for analysis. We have
reduced this workload here in part by using unsupervised clustering methods Section 3.1.1.
These clusters or diagnostic groups can then be predicted by a classifier like a support
vector machine or with a domain specific pre-trained BERT!-based model. Furthermore, by
examining the keywords relevant for the respective clusters, one can establish a relationship
to diagnostic groups and give the clusters umbrella names such as those in standard
nephropathology textbooks [1,8]. The establishment of a relationship between the results
of an unsupervised approach and the real-world labels is also a common issue in image
analysis. There, the main solution is also to have names assigned to the labels by human
experts. For other, also machine-learning-based approaches, such as extending models
with a re-mapping block, we were recently unable to show any benefit for lung carcinoma
[45].

Our previous focus on image analysis fits quite well into the overall context. In
nephropathology, machine learning seems to be mainly used in the form of image anal-
ysis [3,4,46,47], but rarely in the form of NLP!, although NLP! is recognized as a topic of
interest [48,49]. This is indeed surprising, since nephropathology seems to be predestined
for text analysis due to various standardization efforts. There are, for instance, well written
and extensive recommendations on how to write and structure a report [50–53]; albeit
somehow controversial and not followed by everyone. There are also efforts on creating
common ontologies, taxonomies, or at least vocabularies for nephropathology [53,54]. The
clustering of diagnosis texts or the reduction of different diagnoses to diagnostic groups,
which we show here (Figure 2), can be seen in the context of stratification procedures. Since
we have not investigated the relationships between clusters here (no ontological approach),
nor have we investigated hierarchical relationships (no taxomic approach), our work can be
seen as the automatic generation of a vocabulary. In the works dealing with stratification or
unification approaches, common vocabularies are described as the basis for more complex
tasks like creating a taxonomy or ontology [53,54].

4.2. How Do Our Results Fit into the Big Picture?

Even though the method of the present work differs significantly from our previous
work, and even though, in contrast to our previous work, the entire kidney tissue or its
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descriptor was included in the study, the results fit together surprisingly well [7]. Again,
certain diagnoses or groups of diagnoses can be predicted very well. For example, amyloid-
deposition-associated diseases are again among the best predicted diagnoses. This is not
very surprising, since in images it is characterized by typical, amorphous deposits, and in
texts it is characterized by the word “amyloid”. In the same way, the IgA nephropathies,
for example, are characterized by the description of the typical finding of granular IgA
deposits in the mesangium. Since in the previous work only glomeruli without additional
staining were analyzed, text analysis is significantly better for diagnoses that are defined
by certain, specific findings.

Nevertheless, in several cases the morphological description is apparently not suffi-
cient to make accurate predictions. The combination of image analysis and text analysis
as well as the additional integration of patient data or other clinical features could help to
identify more correlations and improve the prediction accuracy. Moreover, such diagnosis
prediction models could also be used to select and revise potentially incorrect diagnoses.

4.3. Other Languages

All text analyses shown in this work have been applied to German reports only. In
principle, all methods shown can be applied to documents written in other languages
without much additional effort. For the shown BoW!-based analyses, some (keyword-
based) text pre-processing steps would have to be adapted to the used language. For
example, a different stop word list, as well as a different lemmatizer would have to be
used. Especially for all transformer encoder based approaches (BERT-classification and
BERT-clustering), other pre-trained transformer models would have to be used. Depending
on the language, more or less suitable models are freely available. For example, there are
many large transformer models for the English medical domain [30–32].

4.4. Technical Weaknesses and Possible Improvements

One drawback of this work is that the cluster naming (Section 3.1.2) could almost not
be evaluated and refined. For this, not enough experts were available. Moreover, only
experts trained by the same instructors were available. Therefore, no detailed inter-observer
variability studies could be performed to measure the reliability of the cluster topics. For
this we would need to recruit more experts from different institutions for future projects.

Moreover, the examined dataset was unfortunately too small to find enough text data
for each diagnosis group. This resulted in some particularly small clusters that could hardly
or not at all be predicted by any of the tested classification approaches. Resampling-based
solutions for imbalanced data (e.g., SMOTE! (SMOTE!) [55]) could not be successfully
implemented in this work because of the text complexity and the different text vectorization
methods used. Another possibility to improve the classification results could be the use of
optimization methods for imbalanced classification problems, such as using the dice loss
as done in [56]. However, it is also questionable whether this would be effective for the
smallest clusters.

In this work we used German-BERT’s word-piece tokenizer for our BERT-based
models, since it fits well for German languages and is able to divide unknown medical
terms into several known subwords, resulting in very less OOV! cases. Although this
worked out in principle, using a custom tokenizer, which is specialized to the German
nephropathological vocabulary might produce even better classification and or clustering
results.

5. Conclusions

Overall, it can be said that the morphological description texts, as surrogate for image
analysis, enable the correct diagnosis to be achieved for some entities. For other entities,
this associative approach does not work adequately. As in our previous image analysis-
based study on glomerular change patterns [7], it can be said here that some diagnoses are
associated with one pattern, and for others, there is a complex pattern combination which
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makes the prediction difficult without patho-physiological knowledge. This raises the
consideration of including disease models in the analysis to improve accuracy. However,
methods such as semantic graphs should perhaps be tested beforehand, as they are much
easier to implement.

Besides the only associative approach here, one major issue of this work was the inad-
equate amount of labelled training data, which is why we performed a time-consuming
topic-modelling task first. In general, with more, manually-labelled, balanced data, better
text classification results could have been possible. In addition, the classification perfor-
mance depends on the properties of the given data and on the text pre-processing methods
used. These influences were not examined in detail.

The combination of text-based and image-based analysis could be worthwhile in order
to be able to take into account additional features regarding the whole tissue in addition to
the glomerular changes, which is mainly extracted in the image analysis.

The use of VL-PTMs! (VL-PTMs!) [57], e.g., ViLBERT [58] or Unicoder-VL [59], could
be a good opportunity to combine image analysis with text analysis in nephropathology.
Therefore, sufficient image-text data pairs would be needed. The benefit would be that
time-consuming image-labelling would not be necessary.
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BoW Bag-of-Words
SVM support vector machine
NLP natural language processing
OOV out of vocabulary
MLM masked language modeling
LSTM long short-term memory
ICD-O International Classification of Diseases for Oncology
CNN convolutional neural network
RNN Recurrent Neural Network
BERT Bidirectional Encoder Representations from Transformers
UMAP Uniform Manifold Approximation and Projection
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
GSDPMM Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture
SGD Stochastic Gradient Descent
PCA Principal Component Analysis
tf-idf term frequency–inverse document frequency
NMI normalized mutual information
ReLU rectified linear unit
VL-PTMs Vision-Language Pre-Trained Models
s-score silhouette score
cls accuracy classification accuracy
ML machine learning
LDA Latent Dirichlet Allocation
NB naive bayes
MLP multilayer perceptron
UMLS Unified Medical Language System
SMOTE synthetic minority over-sampling technique
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Appendix A. Additional Annotated Topic Word Tables

Table A1. Annotated German topic words, extracted from the HDBSCAN! (HDBSCAN!) cluster-set,
using the tf–idf based extraction method. A particularly large number of topic words strongly refer to
cluster names (left column) highlighted in green (strong cluster names). In the case of cluster names
marked in orange, only a few topic words indicated the specified cluster name (weak cluster name).
The same applies to the colour-coded topic words: topic words that strongly indicate a cluster name
are highlighted in green (strong topic words). Orange highlighted topic words only weakly indicate a
cluster name (weak topic words).

Cluster Index-Cluster Name Keywords according to tf-idf

0-Systemischer Lupus erythematodes
skala, chronizitätsindex, klasse, aktivitätsindex, nih, lupus_nephritis , iv, who,
glomerulärer, iii

1-Rapid progressive Glomerulonephritis
anzahl, glomeruli, vernarbten , nekrosen , frisch ,
proliferierende_glomerulonephritis , ca, segmental_nekrotisierend, extrakapillär ,

betreffend

2-Tubulo-interstitielle Nephritis ca, betreffend, cortex, leicht, immunfärbung, schädigung, miterfasst, mäßig, chronisch,
ergänzend

3-Pauci-Immun-Glomerulonephritis
hiervon, glomeruli, gesamtzahl, intakt, extrakapillär , vernarbt , global, nekrosen ,

proliferierende_glomerulonephritis , tubulointerstitieller_schaden

4-Ig A Nephritis oxford , m1, e0, s1, t0, c0, klassifikation, iga , glomerulonephritis, zellzahl

5-FSGN
fsg , primär, unterscheidung, fokal, sekundär, kollabierend, chronisch, glomeru-

losklerose, erfolgen, hinweis

6-Thrombotic microangiopathy
mikroangiopathie , thrombotisch , floride, reparation, präglomerulär , glomeruläre,

befindlich, chronisch, tubulointerstitieller_schaden, hypertonie

7-Multiples Myelom
nephropathie, kappa , cast , amyloidose , myelomniere , lcdd, hinweis, chronisch,
kein, tubulointerstitieller_schaden

8-Nierentransplantat
abstoßung , routinemäßig, chronisch, erfolg, immunhistochemisch, untersuchung, toxiz-

ität, hinweis, nephrosklerose, leichtgradig

9-Unauffälliger Befund
nierenparenchym, unauffällig , übrig, weitgehend , normal , speziell, akut, tubuluss-
chaden, histologisch, glomerulonephritis

10
schnittstufe, kaum, nennenswert, chronisch, tubulointerstitieller_schaden, tief, bislang,
aufarbeitung, nephrosklerose , leichtgradig

11 mikroskopie, konventionell, maßgabe, ergeben, nierenparenchym, absehen, chronisch,
nephrosklerose, leichtgradigen, untersuchung

12- Membranöse Glomerulonephritis
pla2r , membranöse, ehrenreich, glomerulonephritis, stadium, churg, chronisch, tubu-

lointerstitieller_schaden, positiv, nephrosklerose

13- Diabetische Glomerulosklerose
diabetische_glomerulosklerose , chronisch, tubulointerstitieller_schaden, nodulär, licht-

mikroskopisch, bild, nephrosklerose , schwer, untersuchung, bestehen

14-Glomerulosklerose
glomerulosklerose , global, tubulointerstitieller_schaden, chronisch, nephrosklerose ,

fokal_segmental , fokal, mäßiggradig, erfolgen, sekundär

15-Tubulo-interstitielle Nephritis

leichtgradiger, tubulusschaden , akut, chronisch, nephrosklerose ,

tubulointerstitieller_schaden , leichtgradig, mäßiggradiger, mäßiggradig,

potentiell_reversibel
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Table A2. Annotated German topic words, extracted from the HDBSCAN! (HDBSCAN!) cluster-
set, using the SVM! (SVM!) based extraction method. A particularly large number of topic words
strongly refer to cluster names (left column) highlighted in green (strong cluster names). In the case
of cluster names marked in orange, only a few topic words indicated the specified cluster name (weak
cluster name). The same applies to the colour-coded topic words: topic words that strongly indicate a
cluster name are highlighted in green (strong topic words). Orange highlighted topic words only
weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords according to SVM

0-Systemischer Lupus erythematodes
skala, chronizitätsindex, aktivitätsindex, klasse, -nih, iv, lupus_nephritis , komponente,
iii, who

1-Rapid progressive Glomerulonephritis
anzahl, sklerosieren, glomeruli, vernarbten , glomerulus, frisch , davon1,
proliferierende_glomerulonephritis , nekrosen , sklerosierten

2-Tubulo-interstitielle Nephritis
tubulusepithelschaden , mäßig, leicht, schädigung, keine, komplettierung, fibrose, ab-

schließend, bekannt, tubulointerstitiell

3-Pauci-Immun-Glomerulonephritis
hiervon, gesamtzahl, intakt, pauci-immun-glomerulonephritis , nekrotisierend,

glomeruli, vernarbt , *, restlich, extrakapillär

4-Ig A Nephritis oxford-klassifikation, e0, s1, m1, t0, c0, iga-glomerulonephritis, s0, anwendbar, e1

5-FSGN
fsg , primär, unterscheidung, zusammenschau, sekundär, segmen-

tale_glomerulosklerose, kollabierend, allenfalls, weiterführend, patient

6-Thrombotic microangiopathy
mikroangiopathie , thrombotisch , reparation, präglomerulär , glomeruläre, befind-

lich, floride, glomerulärethrombotisch, hypertonie, überwiegend

7-Multiples Myelom
cast-nephropathie, myelomniere , lcdd, lambda, kappa , amyloidose , anschließen,
leichtketten, al-amyloidose, leichtkettennephropathie

8-Nierentransplantat
abstoßung , routinemäßig, erfolg, untersuchung, calcineurininhibitor-toxizität , auf-

steigend, humorale, bakteriell, harnwegsinfekt, nachbericht

9-Unauffälliger Befund
nierenparenchym, unauffällig , normal , weitgehend , übrig, vorbehaltlich, imübrigen,
speziell, iga-, pathologisch

10 kaum, schnittstufe, nennenswert, tief, bislang, aufarbeitung, mittels, kongorot-färbung,
zumausschluss, zelluläreoder

11 mikroskopie, konventionell, maßgabe, absehen, leichtgradigen, membranösen, früh,
zellvermehrung, ergeben, g

12-Membranöse Glomerulonephritis
membranöse, proteinurie, infolge, glomerulonephritis, pla2r , stadium, churg, ehrenre-
ich, elektronenmikroskopie, pla2r-positiv

13-Diabetische Glomerulosklerose
diabetische_glomerulosklerose , bestehen, immunkomplexglomerulonephritis, nodulär,

bild, lichtmikroskopisch, teils, arteriolohyalinose, diabetische_glomeruloskleros, zusät-
zlich

14-Glomerulosklerose
global, fokal_segmental , segmentaleglomerulosklerose, glomerulosklerose , fokalglob-
ale, diffussegmental, einschl, fokal, tubulointerstitieller_schaden, vernarbung

15-Tubulo-interstitielle Nephritis tubulusschaden , leichtgradiger, leichtgradig, tubulointerstitieller_schaden , verän-
derung, mäßiggradiger, leichtgradige, andauernd, akut, malignität
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Appendix B. UMAP Representations of the Cluster-Sets, Colored According to the
Authors

Figure A1. UMAP! (UMAP!) of the cluster-sets generated with (a) LDA! (LDA!), (c) HDBSCAN!
(HDBSCAN!), (d) top2vec, (e) German-BERT, (f) Patho-BERT, (g) k-means and (h) GSDPMM!
(GSDPMM!). The LDA! (LDA!) cluster-set is also shown as PCA! (PCA!) in (b). Each dot colour
represents a different author. The authors of the reports marked in black are unknown (e.g. because
multiple authors were involved).

References
1. Colvin, R.B.; Chang, A. Diagnostic Pathology: Kidney Diseases E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019.
2. Martul, E.V.; Praga, M. Nephropathology and nephrology. The need for a change. Nefrología 2018, 38, 247–249. [CrossRef]
3. Barisoni, L.; Lafata, K.J.; Hewitt, S.M.; Madabhushi, A.; Balis, U.G. Digital pathology and computational image analysis in

nephropathology. Nat. Rev. Nephrol. 2020, 16, 669–685. [CrossRef] [PubMed]
4. Becker, J.U.; Mayerich, D.; Padmanabhan, M.; Barratt, J.; Ernst, A.; Boor, P.; Cicalese, P.A.; Mohan, C.; Nguyen, H.V.; Roysam, B.

Artificial intelligence and machine learning in nephropathology. Kidney Int. 2020, 98, 65–75. [CrossRef]
5. Bukowy, J.D.; Dayton, A.; Cloutier, D.; Manis, A.D.; Staruschenko, A.; Lombard, J.H.; Woods, L.C.S.; Beard, D.A.; Cowley, A.W.

Region-based convolutional neural nets for localization of glomeruli in trichrome-stained whole kidney sections. J. Am. Soc.
Nephrol. 2018, 29, 2081–2088. [CrossRef]

6. Hermsen, M.; de Bel, T.; Den Boer, M.; Steenbergen, E.J.; Kers, J.; Florquin, S.; Roelofs, J.J.; Stegall, M.D.; Alexander, M.P.; Smith,
B.H.; et al. Deep learning–based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 2019, 30, 1968–1979. [CrossRef]

http://doi.org/10.1016/j.nefroe.2018.03.010
http://dx.doi.org/10.1038/s41581-020-0321-6
http://www.ncbi.nlm.nih.gov/pubmed/32848206
http://dx.doi.org/10.1016/j.kint.2020.02.027
http://dx.doi.org/10.1681/ASN.2017111210
http://dx.doi.org/10.1681/ASN.2019020144


Diagnostics 2022, 12, 1726 24 of 25

7. Weis, C.A.; Bindzus, J.N.; Voigt, J.; Runz, M.; Hertjens, S.; Gaida, M.M.; Popovic, Z.V.; Porubsky, S. Assessment of glomerular
morphological patterns by deep learning algorithms. J. Nephrol. 2022, 1–11. [CrossRef]

8. Fogo, A.B.; Cohen, A.H.; Colvin, R.B.; Jennette, J.C.; Alpers, C.E. Fundamentals of Renal Pathology; Springer: Berlin/Heidelberg,
Germany, 2014.

9. Schulz, S.; Fix, S.; Klügl, P.; Bachmayer, T.; Hartz, T.; Richter, M.; Herm-Stapelberg, N.; Daumke, P. Comparative evaluation of
automated information extraction from pathology reports in three German cancer registries. GMS Med. Inform. Biom. Epidemiol.
2021, 17, Doc01. [CrossRef]

10. Fabacher, T.; Godet, J.; Klein, D. Machine learning application for incident prostate adenocarcinomas automatic registration in a
French regional cancer registry. Int. J. Med. Inform. 2020, 139, 5. [CrossRef]

11. Oleynik, M.; Patrão, D.; Finger, M. Automated Classification of Semi-Structured Pathology Reports into ICD-O Using SVM in
Portuguese. Stud. Health Technol. Inform. 2017, 32, 1–10. [CrossRef]

12. World Health Organization. International Classification of Diseases for Oncology (ICD-O), 3rd ed.; 1st Revision Ed.; World Health
Organization: Geneva, Switzerland, 2013.

13. Löpprich, M.; Krauss, F.; Ganzinger, M.; Senghas, K.; Riezler, S.; Knaup, P. Automated Classification of Selected Data Elements
from Free-text Diagnostic Reports for Clinical Research. Methods Inf. Med. 2016, 55, 373–380. [CrossRef]

14. Bodenreider, O. The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 2004,
32, 267D–270D. [CrossRef] [PubMed]

15. Juluru, K.; Shih, H.H.; Keshava Murthy, K.N.; Elnajjar, P. Bag-of-Words Technique in Natural Language Processing: A Primer for
Radiologists. RadioGraphics 2021, 41, 1420–1426. [CrossRef]

16. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly
Media, Inc.: Sebastopol, CA, USA, 2009.

17. Rehurek, R.; Sojka, P. Gensim–Python Framework for Vector Space Modelling; NLP Centre, Faculty of Informatics, Masaryk University:
Brno, Czech Republic, 2011; Volume 3.

18. McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 223–228. [CrossRef]
19. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020,

arXiv:1802.03426.
20. Yin, J.; Wang, J. A model-based approach for text clustering with outlier detection. In Proceedings of the 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; pp. 625–636. [CrossRef]
21. Wartena, C. A Probabilistic Morphology Model for German Lemmatization. In Proceedings of the 15th Conference on Natural

Language Processing (KONVENS 2019), Erlangen-Nürnberg, Germany, 9–11 October 2019; pp. 40–49. [CrossRef]
22. Dieng, A.B.; Ruiz, F.J.R.; Blei, D.M. Topic Modeling in Embedding Spaces. Trans. Assoc. Comput. Linguist. 2020, 8, 439–453.

[CrossRef]
23. Rangarajan Sridhar, V.K. Unsupervised Topic Modeling for Short Texts Using Distributed Representations of Words. In Proceedings

of the 1st Workshop on Vector Space Modeling for Natural Language Processing; Association for Computational Linguistics: Denver,
CO, USA, 2015; pp. 192–200. [CrossRef]

24. Angelov, D. Top2Vec: Distributed Representations of Topics. arXiv 2020, arXiv:2008.09470. Available online: http://arxiv.org/
abs/2008.09470 (accessed on 27 May 2022).

25. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

26. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. arXiv 2014, arXiv:1405.4053. Available online:
https://arxiv.org/abs/1405.4053 (accessed on 27 May 2022).

27. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv 2018, arXiv:1810.04805. Available online: https://arxiv.org/abs/1810.04805 (accessed on 27 May 2022).

28. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. arXiv 2020, arXiv:1910.03771.

29. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084.
30. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model

for biomedical text mining. arXiv 2019, arXiv:1901.08746. Available online: https://arxiv.org/abs/1901.08746 (accessed on 27
May 2022).

31. Alsentzer, E.; Murphy, J.R.; Boag, W.; Weng, W.; Jin, D.; Naumann, T.; McDermott, M.B.A. Publicly Available Clinical BERT
Embeddings. arXiv 2019, arXiv:1904.03323. Available online: https://arxiv.org/abs/1904.03323 (accessed on 27 May 2022).

32. Chakraborty, S.; Bisong, E.; Bhatt, S.; Wagner, T.; Elliott, R.; Mosconi, F. BioMedBERT: A Pre-Trained Biomedical Language Model for
QA and IR; International Committee on Computational Linguistics: Praha, Czech Republic, 2020; pp. 669–679. [CrossRef]

33. Brownlee, J. Deep Learning for Natural Language Processing; Machine Learning Mastery: Melbourne, Australia, 2019.
34. Pugachev, L.; Burtsev, M. Short Text Clustering with Transformers. arXiv 2021, arXiv:2102.00541.
35. Qiang, J.; Qian, Z.; Li, Y.; Yuan, Y.; Wu, X. Short Text Topic Modeling Techniques, Applications, and Performance: A Survey. IEEE

Trans. Knowl. Data Eng. 2020, 14, 17. [CrossRef]
36. Christopher, D.M.; Prabhakar, R.; Hinrich, S. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK,

2008.

http://dx.doi.org/10.1007/s40620-021-01221-9
http://dx.doi.org/10.3205/mibe000215
http://dx.doi.org/10.1016/j.ijmedinf.2020.104139
http://dx.doi.org/10.3233/978-1-61499-753-5-256
http://dx.doi.org/10.3414/ME15-02-0019
http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/pubmed/14681409
http://dx.doi.org/10.1148/rg.2021210025
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.1109/ICDE.2016.7498276
http://dx.doi.org/10.25968/opus-1527
http://dx.doi.org/10.1162/tacl_a_00325
http://dx.doi.org/10.3115/v1/W15-1526
http://arxiv.org/abs/2008.09470
http://arxiv.org/abs/2008.09470
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1901.08746
https://arxiv.org/abs/1904.03323
http://dx.doi.org/10.18653/v1/2020.coling-main.59
http://dx.doi.org/10.1109/TKDE.2020.2992485


Diagnostics 2022, 12, 1726 25 of 25

37. Kim, Y. Convolutional Neural Networks for Sentence Classification. CoRR 2014. Available online: https://arxiv.org/abs/1408.5
882 (accessed on 27 May 2022).

38. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

39. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.D., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New
York, NY, USA, 2019; Volume 32.

40. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:1711.05101.
41. Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
42. Tizhoosh, H.R.; Pantanowitz, L. Artificial intelligence and digital pathology: Challenges and opportunities. J. Pathol. Inform.

2018, 9, 6. [CrossRef]
43. Abels, E.; Pantanowitz, L.; Aeffner, F.; Zarella, M.D.; van der Laak, J.; Bui, M.M.; Vemuri, V.N.; Parwani, A.V.; Gibbs, J.; Agosto-

Arroyo, E. Computational pathology definitions, best practices, and recommendations for regulatory guidance: A white paper
from the Digital Pathology Association. J. Pathol. 2019, 249, 286–294. [CrossRef]

44. Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.Z. Deep learning for health informatics. IEEE J.
Biomed. Health Inform. 2016, 21, 4–21. [CrossRef] [PubMed]

45. Weis, C.A.; Weihrauch, K.R.; Kriegsmann, K.; Kriegsmann, M. Unsupervised Segmentation in NSCLC: How to Map the Output
of Unsupervised Segmentation to Meaningful Histological Labels by Linear Combination? Appl. Sci. 2022, 12, 3718. [CrossRef]

46. Noriaki, S.; Eiichiro, U.; Yasushi, O. Artificial Intelligence in Kidney Pathology. In Artificial Intelligence in Medicine; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 1–11.

47. Chan, L.; Vaid, A.; Nadkarni, G.N. Applications of machine learning methods in kidney disease: Hope or hype? Curr. Opin.
Nephrol. Hypertens. 2020, 29, 319–326. [CrossRef] [PubMed]

48. Burger, G.; Abu-Hanna, A.; de Keizer, N.; Cornet, R. Natural language processing in pathology: A scoping review. J. Clin. Pathol.
2016, 69, 949–955. [CrossRef] [PubMed]

49. Schena, F.P.; Magistroni, R.; Narducci, F.; Abbrescia, D.I.; Anelli, V.W.; Di Noia, T. Artificial intelligence in glomerular diseases.
Pediatr. Nephrol. 2022, 6, 13. [CrossRef]

50. Haas, M.; Seshan, S.V.; Barisoni, L.; Amann, K.; Bajema, I.M.; Becker, J.U.; Joh, K.; Ljubanovic, D.; Roberts, I.S.; Roelofs, J.J.; et al.
Consensus definitions for glomerular lesions by light and electron microscopy: Recommendations from a working group of the
Renal Pathology Society. Kidney Int. 2020, 98, 1120–1134. [CrossRef]

51. Chang, A.; Gibson, I.W.; Cohen, A.H.; Weening, J.W.; Jennette, J.C.; Fogo, A.B. A position paper on standardizing the nonneoplastic
kidney biopsy report. Hum. Pathol. 2012, 43, 1192–1196. [CrossRef]

52. Sethi, S.; Haas, M.; Markowitz, G.S.; D’Agati, V.D.; Rennke, H.G.; Jennette, J.C.; Bajema, I.M.; Alpers, C.E.; Chang, A.; Cornell,
L.D.; et al. Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J.
Am. Soc. Nephrol. 2016, 27, 1278–1287. [CrossRef]

53. Leh, S.; Dendooven, A. Systematic reporting of medical kidney biopsies. Clin. Kidney J. 2022, 15, 21–30. [CrossRef]
54. Ong, E.; Wang, L.L.; Schaub, J.; O’Toole, J.F.; Steck, B.; Rosenberg, A.Z.; Dowd, F.; Hansen, J.; Barisoni, L.; Jain, S.; et al. Modelling

kidney disease using ontology: Insights from the Kidney Precision Medicine Project. Nat. Rev. Nephrol. 2020, 16, 686–696.
[CrossRef]

55. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

56. Li, Xiaoya; Sun, Xiaofei; Meng, Yuxian; Liang, Junjun; Wu, Fei Li, Jiwei Dice Loss for Data-imbalanced NLP Tasks. arXiv 2020,
arXiv:1911.02855 .

57. Du, Yifan; Liu, Zikang; Li, Junyi; Zhao, Wayne Xin A Survey of Vision-Language Pre-Trained Models. arXiv 2022,
arXiv:2202.10936.

58. Lu, J.; Batra, D.; Parikh, D.; Lee, S. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language
Tasks. arXiv 2019, arXiv:1908.02265.

59. Li, G.; Duan, N.; Fang, Y.; Gong, M.; Jiang, D. Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal
Pre-Training. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11336–11344. [CrossRef]

https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1408.5882
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.4103/jpi.jpi_53_18
http://dx.doi.org/10.1002/path.5331
http://dx.doi.org/10.1109/JBHI.2016.2636665
http://www.ncbi.nlm.nih.gov/pubmed/28055930
http://dx.doi.org/10.3390/app12083718
http://dx.doi.org/10.1097/MNH.0000000000000604
http://www.ncbi.nlm.nih.gov/pubmed/32235273
http://dx.doi.org/10.1136/jclinpath-2016-203872
http://www.ncbi.nlm.nih.gov/pubmed/27451435
http://dx.doi.org/10.1007/s00467-021-05419-8
http://dx.doi.org/10.1016/j.kint.2020.08.006
http://dx.doi.org/10.1016/j.humpath.2012.04.009
http://dx.doi.org/10.1681/ASN.2015060612
http://dx.doi.org/10.1093/ckj/sfab140
http://dx.doi.org/10.1038/s41581-020-00335-w
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1609/aaai.v34i07.6795

	Introduction
	Materials and Methods
	Data Collection
	Overview
	Clustering and Topic Modeling
	Clustering with Bag-of-Words Approaches
	Clustering with Distributed Representations

	Evaluation of Clustering Results
	Clustering Metrics
	Visual Presentation of Clustering Results
	Keywords Extraction
	Cluster Naming Based on Keywords

	Classification
	Classification with Bag-of-Words Approaches
	Classification with Distributed Representations

	Evaluation of Classification Results

	Results
	Topic Moelling Based on Text Clustering on the Diagnosis Section of Nephropathological Reports (Ad Task I)
	What Are the Differences of the Tested Clustering Methods?
	Can the Clusters Be Named on Basis of Keywords?
	Do the Authors of the Nephropathological Reports Have an Impact on the Clustering?
	Which Clustering Method Is the Best?

	Assignment of Nephropathological Description Sections to Specific Diagnostic Groups (Ad Task Ii)
	Which Methods Can Be Used to Map Descriptive Sections to the Correct Diagnostic Groups?
	Can Certain Diagnoses Be Better Predicted than Others? And If So, What Are the Reasons?
	Which Classification Approach Is the Best?


	Discussion
	Natural Language Processing and Image Processing Techniques in Nephrology and Nephropathology
	How Do Our Results Fit into the Big Picture?
	Other Languages
	Technical Weaknesses and Possible Improvements

	Conclusions
	Appendix A
	Appendix B
	References

