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Abstract: A large number of reports present artificial intelligence (AI) algorithms, which support
pneumonia detection caused by COVID-19 from chest CT (computed tomography) scans. Only a
few studies provided access to the source code, which limits the analysis of the out-of-distribution
generalization ability. This study presents Cimatec-CovNet-19, a new light 3D convolutional neural
network inspired by the VGG16 architecture that supports COVID-19 identification from chest
CT scans. We trained the algorithm with a dataset of 3000 CT Scans (1500 COVID-19-positive)
with images from different parts of the world, enhanced with 3000 images obtained with data
augmentation techniques. We introduced a novel pre-processing approach to perform a slice-wise
selection based solely on the lung CT masks and an empirically chosen threshold for the very first
slice. It required only 16 slices from a CT examination to identify COVID-19. The model achieved a
recall of 0.88, specificity of 0.88, ROC-AUC of 0.95, PR-AUC of 0.95, and F1-score of 0.88 on a test set
with 414 samples (207 COVID-19). These results support Cimatec-CovNet-19 as a good and light
screening tool for COVID-19 patients. The whole code is freely available for the scientific community.

Keywords: deep learning; COVID-19; CT; screening test

1. Introduction

COVID-19 still affects public health services. Until 17 June 2022, there have been
535,863,950 confirmed cases of COVID-19 and 6,314,972 deaths all over the world, reported
to WHO [1]. Despite the declining curve of new cases throughout the world, it is paramount
to identify suspicious cases, differentiate them from other respiratory diseases, and to define
appropriate isolation and treatment strategies [2]. In healthcare units, mechanisms for
screening and monitoring the evolution of the disease are essential. The “Gold Standard”
for diagnosing a COVID-19 infection is a reverse transcription-polymerase chain reaction
(RT-PCR) test. Although RT-PCR is a reliable test, it needs trained people to perform the
nasopharyngeal swab collection and a specialized laboratory for analysis. Results can take
a few hours or days, and there is a significant and not yet fully explained variation in the
proportion of false-negative results [3,4]. There are many healthcare facilities, especially
in developing countries, where mechanisms for patient assessment and management are
essential and RT-PCR is not completely available.

The SARS-CoV-2 infection generates characteristic abnormalities in chest image exam-
inations. Chest radiography and computed tomography (CT) scans are the most common
methods to support the diagnosis of pneumonia in symptomatic patients [5]. These exami-
nations have been widely used as part of the initial screening and in situations where the
patient has strong respiratory symptoms [6]. Even with the appearance of new variants
less aggressive to lungs, it is still necessary to detect and monitor COVID-19 pneumonia, as
we do not know how the disease will evolve in the next years to come.
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An X-ray machine is the most commonly available imaging tool for patients with
respiratory complaints. It is especially useful to identify severe cases of COVID-19 patients,
as there might not be any findings on exams in mild or early-stage patients [7]. It is a
simple, fast, and safe examination procedure. AI algorithms can support the detection of
pneumonia caused by COVID-19 in chest radiographs [8]. Figure 1 presents a COVID-19
patient’s radiography highlighting pulmonary infiltrates.
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Figure 1. COVID-19 patient is male and 73 years old. Bounding box highlights infiltrates.

A chest CT scan combines data from multiple X-rays taken from different angles, which
produces a detailed image of the lungs. CT scans are more effective than chest X-ray in
early stages of COVID-19 disease detection. They have been used as a tool to diagnose and
monitor the progression of the disease [9]. More than 70% of chest CT scans in patients with
RT-PCR test-proven COVID-19 cases report ground-glass opacities, vascular enlargement,
bilateral abnormalities, lower lobe involvement, and posterior predilection [10]. Figure 2
illustrates those abnormalities. Studies by [11,12] confirm that patients with COVID-19
pneumonia have ground-glass opacities in the earlier stages of the disease and pulmonary
consolidation in later stages. Eventually, a rounded morphology and a peripheral pul-
monary distribution are observed. Those abnormalities are analogous to those observed in
other coronavirus infections, such as SARS-CoV-1 and MERS-CoV [13].

Although typical images can help in the early screening of suspected cases, images
of various viral pneumonias are similar and overlap with other infectious and inflamma-
tory lung diseases. Therefore, it is not trivial for radiologists to distinguish COVID-19
pneumonia from other viral pneumonias. AI algorithms are a valuable tool to support
this task. It is important to notice that the WHO and the American Society of Radiology
do not recommend the use of radiology images as the principal diagnostic method for
COVID-19 [14–16].
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on the right, in a 70-year-old man, each with positive RT-PCR test results for SARS-CoV-2. Adapted 
from [10]. 
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Figure 2. Axial nonenhanced chest CT images (lung window) in a 59-year-old man (a) and a 47-
year-old man (b) show bilateral areas of ground-glass opacities (arrows) in a peripheral distribution;
(c) shows bilateral ground-glass opacities and dilated segmental and subsegmental vessels, mainly
on the right, in a 70-year-old man, each with positive RT-PCR test results for SARS-CoV-2. Adapted
from [10].

The perspective of using deep learning algorithms as a fast and widely available
alternative for the diagnosis of COVID-19 by RT-PCR has expanded the quantity and
quality of research in this area. A research done on 1 May 2022 for articles with the words:
“Deep Learning” and “CT” and “COVID-19” and “Diagnosis” in the abstract resulted
in 287 findings in the PubMed database, being 52 in the MDPI repository. Despite the
availability of studies, there are strong obstacles for the regular application of the proposed
algorithms in clinical practice. A study by [17] systematically reviewed publications of
machine learning models for the diagnosis or prognosis of COVID-19 from X-ray or CT
images, concluding that all identified models had methodological flaws and/or underlying
biases preventing their use in clinical practice. A review by [18] identified that most of the
studies have utilized small datasets and lacked comparative analysis with other existing
research, and the codes and data were not available. In our review, we also identified
fundamental problems that limit the adoption of algorithms in healthcare centers. There is
limited access to the complete source code, train, and test data. Thus, it is not possible to
replicate the results and to evaluate the AI algorithm on different data sets. Most of the
studies used a limited number of images from local sources or used only well-known public
databases, and therefore, their models were not stressed enough to generalize properly to
other phenotypes and geographic regions contexts. For instance, we only identified a few
publications that used chest CT images from Brazilian hospitals. The work by [19] used
data from 130 patients from two hospitals in Rio de Janeiro and one in Porto, Portugal, to
develop an algorithm to identify and quantify the extent of lung involvement in patients
with COVID-19 pneumonia. The study by [20] developed an algorithm for segmenting
COVID lesions on CT using a base of 40 patients from a hospital in Rio de Janeiro. Both
studies used small databases. In this work, we avoided repeating the most common flaws
identified in the available studies and sought to advance the knowledge necessary to
support the use of such algorithms in clinical practice, preparing it for use in a hospital in
Brazil, a country with resources constraints to combat COVID-19. Table 1 categorizes the
mapped problems and solutions developed in this work.
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Table 1. Assessment of the main problems found in the literature review.

Category Problem Solution

Dataset Few images for training the algorithm Algorithm trained with 3000 chest CT examinations

Dataset Data collected from only one geographical region
Data collected from a set of curated international
public databases summed up with images from

2 Brazilian hospitals

Dataset
Poor image bank quality: non-standard scans, too
many images of children, or excess of data from

China patients

Attention to the selection of the best public bases;
automatic and visual cleaning.

Methodology Use of unbalanced datasets Attention to balancing the COVID-19, non-COVID,
and normal categories prior to training and testing.

Methodology Lack of statistical rigor or bias We used the CLAIM [10] checklist for AI in medical
imaging. Available as a supplement.

Transparency Non-replicable projects. The whole code is open.

A review study by [21] highlighted the widespread use of convolutional neural net-
works for extracting relevant features from CT scans and noted that most classification
models for COVID-19 use pre-trained networks. Another extensive review done by [22]
showed that many 2D and 3D models were used to support the identification of pneumonia,
mainly based on Inception, VGG, and ResNet architectures.

The work of [23,24] used 2D networks to analyze each CT slice image individually
and adopted voting methods to classify the patient outcome. Another popular approach
using 2D networks was to generate embedding feature vectors for every image, pool them
to a single global feature vector, and use fully-connection layers for classification [25,26].
Some studies used 3D CNN networks, where a subset or all the available CT slice images
per examinations were used as input [27,28]. Most of the 3D CNN algorithms used a fixed
number of images from CT examinations as input because using all available images can be
very memory-consuming. The work by [29] studied and compared various deep learning
techniques applied to both chest radiographs and CT scans images for the detection of
COVID-19 and validated VGG16 and ResNet50 as good architectures for classification.
In order to develop a new model for the COVID-19 diagnosis, the study by [30] tested
multiple architectures: DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. The
VGG-19 proved to be superior with an accuracy of 94.52% when compared to all other deep
learning models. The similarity of COVID-19-generated pulmonary lesions with the ones
generated by other respiratory diseases reinforces the necessity of the algorithm to have
an excellent feature extraction ability. A study by [31] proposed the use of a bag of deep
visual words (BoDVW) on the VGG-16 architecture. The method removes the feature-map
normalization step and adds a deep feature normalization step on the raw feature maps,
preserving the semantics of each feature map that might have importance in differentiating
COVID-19 from other forms of pneumonia on radiographies. This method was improved
by including a multi-scale BoDVW [32] and an attention module to capture the spatial
relationship between the regions of interest in CXR images [33].

In our work, we decided to adapt the VGG architecture for a 3D CNN. The input is a
set of slices of a patient’s CT. The objective is to preserve the embedded information of the
CT examination on the frame stack, thus mimicking the behavior of a radiologist’s analysis.
We used a fixed set of 16 slices per CT scan examination to reduce hardware consumption
and avoid lack of memory problems. We developed a novel pre-processing technique to
choose and prepare the best slices for training and validation.
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There are many regions in Brazil and in the world that do not have access to RT-PCR
exams in the quantity and time needed or specialized physicians. In these cases, alter-
natives that facilitate the diagnosis of COVID-19 are very important. In this paper, we
present Cimatec-CovNet-19, a fast, VGG-based CNN algorithm for COVID-19 diagnosis
in chest CT scans. We developed our system on a set of 3000 chest CT scans, from which
734 examinations were from Brazilian hospitals. This study confirms the hypothesis that AI
systems are able to correctly classify COVID-19 and non-COVID-19 classes from CT scans.
We evaluated and compared the performance of the algorithm with data from geographi-
cally distributed datasets and data from a Brazilian hospital. The main innovations of this
study are:

• Proposing a novel 3D VGG-based CNN architecture for accurately diagnosing COVID-
19 on chest CT scans. The 3D network is able to identify correlations between adjacent
slices, while 2D networks are limited to intra-slice spatial voxel information.

• Introducing a novel pre-processing technique, which reduces the number of slices re-
quired for training the algorithm: Processing fewer slices demands less computational
power, prevents communications bottlenecks, and reduces time and cost constraints.
Since the model only requires 16 slices per CT examination, it is also well-suited for a
large number of CT machines.

• Evaluating the algorithm’s diagnosis performance in both geographically distributed
and Brazilian datasets: Brazil has more than 300,000,000 inhabitants. It was one of the
worst-affected countries in the world by the COVID-19 pandemic. Despite that fact,
there are few studies with data from this country. It was important to include images
from Brazilian hospitals and confirm the algorithm’s ability to generalize well for this
phenotype. We plan to test the algorithm in a controlled environment in a Brazilian
hospital in the near future.

• Disposing the algorithm as an open software for public use and future enhancements:
This guarantees reproducibility.

2. Materials and Methods
2.1. Dataset Preparation

In the retrospective study, we gathered 5787 CT scans from nine different datasets
sources. We used seven public datasets containing CT scans from all over the world:
Medical Segmentation Decathlon, LNDb, LCTSC, MOSMEDDATA, COVID-19 CT Lung and
Infection Segmentation, COVID-19 CT Segmentation Dataset, BIMCV-COVID19, and two
private datasets from Brazilian hospitals: HCUSP and HSI. We included in this study only
images in the axial plane and from patients with a diagnosis issued by a radiologist from
well-known hospitals. All patient information was already anonymized in the data source.
The ground truth for a positive COVID-19 outcome was a positive RT-PCR test associated
with the CT-scan examination. We performed a visual inspection of the central slice in
each of the 5787 CT scans and manually discarded all data that were in sagittal or coronal
planes, had low-quality resolution, or were masks of CT scans instead of the CT scan itself.
Altogether, this procedure removed 1108 samples. Table 2 presents the complete list of
databases used in this work.

Considering a variety of CT scanners available worldwide, it would be natural to
expect that the source datasets had different number of slices and resolutions, which, in
fact, happened. Additionally, the data were unbalanced regarding the presence of COVID-
19-positive CT scans. The demographic information from the patients was not consistent
and thus not used in this work. From the remaining 4679 CT scans, we prepared a random,
balanced subset with 3000 samples (1500 COVID-19, 1500 non-COVID-19), which were
then split into training and validation sets.



Diagnostics 2022, 12, 1527 6 of 16

Table 2. CT scans databases used in this study.

Dataset ID Dataset Name Public (Y/N)
Number of CT

Scans after Data
Cleaning

Avg Number
of Slices per

CT Scan

Number of CT
Scans Positive
for COVID-19

Training/Val
Dataset Test Dataset 1 Test Dataset 2

i
Medical

Segmentation
Decathlon

Y 94 279 0 50 0 9

ii LNDb Y 139 322 0 78 0 13

iii LCTSC Y 94 279 0 25 0 3

iv MOSMEDDATA Y 1105 42 1105 449 0 56

v HCUSP N 935 337 431 384 170 51

vi HSI N 1806 308 1294 766 0 79

vii
COVID-19 CT

Lung
and Infection
Segmentation

Y 10 176 10 8 0 1

viii
COVID-19 CT
Segmentation

Dataset
Y 10 280 10 3 0 1

ix BIMCV-
COVID19 Y 486 288 308 222 0 31

2.2. Dataset Description

i. Medical Segmentation Decathlon: The Medical Segmentation Decathlon is a collection of an-
notated medical image datasets for the development and evaluation of segmentation
algorithms. The lung dataset has 96 preoperative thin-section CT scans performed
without use of contrast and from patients with non-small cell lung cancer from Stan-
ford University (Palo Alto, CA, USA) publicly available through TCIA [34].

ii. LNDb: This dataset contains 294 CT scans collected retrospectively at the Centro
Hospitalar e Universitário de São João (CHUSJ) in Porto, Portugal, between 2016 and
2018. All data were acquired under approval from the CHUSJ Ethical Committee
and was anonymized. Among the 294 patients scanned, 164 (55.8%) were male.
The average age was 66, and the minimum and maximum ages were 19 and 98,
respectively [35].

iii. LCTSC: This dataset was provided in association with a challenge competition and
related conference session conducted at the American Association of Physicists in
Medicine 2017 Annual Meeting. There are CT scans of 60 patients undergoing treat-
ment simulation for thoracic radiotherapy from three institutions: MD Anderson
Cancer Center, Memorial Sloan-Kettering Cancer Center, and the MAASTRO clinic.
Each institution provided CT scans from 20 patients, including mean intensity projec-
tion (4D CT), exhale phase (4D CT), or free-breathing CT scans depending on their
clinical practice. All CT scans covered the entire thoracic region with a 50 cm field of
view and slice spacing of 1 mm, 2.5 mm, or 3 mm [36].

iv. MOSMEDDATA: This dataset contains 1110 anonymized lung CT scans obtained
between 1 March 2020 and 25 April 2020 from public medical hospitals in Moscow,
Russia. Among the patients scanned, there were 42% males, 56% females, and 2%
other/unknown with ages from 18 to 97 years, with an average of 47 years. They
were distributed according to a classification table of the severity of lung tissue
abnormalities with COVID-19 and routing rules. There were five categories ranging
from CT-0, zero, not consistent with pneumonia (including COVID-19) up to CT-4,
severe, with diffuse ground glass opacities, with consolidations and reticular changes,
and pulmonary parenchymal involvement ≥ 75%. The number of cases by category
was: CT-0, 254 (22.8%); CT-1, 684 (61.6%); CT-2, 125 (11.3%); CT-3, 45 (4.1%); and CT-4,
2 (0.2%) [37].

v. HC USP: The data were obtained through a collaboration between SENAI CIMATEC
and the Medical School of the University of São Paulo (HC USP). Altogether, we
obtained 439 COVID-19-positive exams and 506 COVID-19-negative exams.
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vi. HSI: The data were acquired from a partnership between SENAI CIMATEC and the
Santa Izabel Hospital (HSI). This database has 1294 COVID-19-positive exams and
512 COVID-19-negative exams.

vii. COVID-19 CT Lung and Infection Segmentation: This dataset contains 20 labeled COVID-
19 lung-infection CT scans collected from the Coronacases Initiative and Radiopaedia,
which can be freely downloaded with CC BY-NC-SA license. The proportion of
infections in the lungs ranges from 0.01% to 59%. The left lung, right lung, and
infection segmentation were firstly delineated by junior annotators (1 to 5 years
of experience), then refined by two radiologists with 5 to 10 years of experience.
All the annotations were verified and refined by a senior radiologist (>10 years of
experience) [38].

viii. COVID-19 CT Segmentation Dataset: This dataset contains 100 axial CT images from
more than 40 patients with COVID-19 converted from openly accessible JPG images
provided by the Società Italiana di Radiologia Medica e Inteventistica. The images
were segmented by a radiologist using three labels: ground glass, consolidation, and
pleural effusion [39].

ix. BIMCV-COVID19: A large dataset from the Valencian Region Medical ImageBank
(BIMCV) containing chest X-ray images CXR (CR, DX) and computed tomography (CT)
imaging of COVID-19+ patients along with their radiological findings and locations,
pathologies, radiological reports (in Spanish), DICOM metadata, polymerase chain
reaction (PCR), immunoglobulin G (IgG), and Immunoglobulin M (IgM) diagnostic
antibody tests was also used. This database includes 1380 CX, 885 DX, and 163 CT
studies from 1311 COVID-19 patients [40].

2.3. Slice-Wise Selection

In order to normalize the input resolution, we used the Clara Training framework,
part of the Clara Image software suite, to resample all DICOM and NIfTI data to a voxel
spacing resolution of 1 × 1 × 1 mm NIfTI format. Clara is an application framework
optimized for healthcare and life sciences developers. It contains software development
kits, full-stack GPU-accelerated libraries, and pre-tested reference applications [41]. We
also used the Clara framework to obtain lung masks from each chest CT scan. We used the
clara_train_covid19_ct_lung_seg model, a voxel-wise binary classification for lung region
segmentation. Each voxel is predicted as either foreground (lung) or background. The
output is a binary mask, where the lung is assigned 1, and the background is assigned
0. We noticed that the sum of pixels in the lung masks grows in a Gaussian-like pattern
from the first to the last slice, peaking around the central slice. Using this information, we
did a slice-wise selection in order to collect data from different areas of the lung. After
experimenting with 64, 32 and 16 slices, the results did not have any significant statistical
differences, so we used 16 slices from each CT scan in order to save computational resources.
The slice-wise selection was performed according to the following expression:

slicei = F + G × i, with i in [0, 1, 2, . . . , 15], (1)

where F is the first slice in the mask whose sum of pixels is greater than 1000, and G is the
step size given by:

G = d(µ − F)/8)e, (2)

with µ being the central slice.
Before executing the described slice-wise selection, the CT scans were trimmed be-

tween –3000 and 4000 Housefield units (HU) and scaled between 0 and 1. We reshaped
the 16 slices chosen from each CT scan to a 512 × 512 × 16 × 1 format. Figure 3 depicts a
single slice from an exam both before and after being pre-processed.
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2.4. Algorithm Architecture

Cimatec-CovNet-19 has an architecture inspired by the VGG-16 neural network. The
VGG-16 was developed in 2014 and is one of the best CNN architectures to deal with 2D
large-scale image recognition tasks. The image passes through a stack of convolutional
layers with very small receptive fields (3 × 3 kernels), which is the smallest size possible
to capture pixel position notions (left/right, up/down, center). The spatial resolution is
preserved with paddings. After some of the convolutional layers, there are max pooling
layers (2 × 2 window, stride 2) to guarantee spatial pooling. The stack of convolutional
layers is followed by three fully connected (FC) layers. The last layer is a softmax layer,
which is a function to represent the network output as a categorical distribution [42].

In our model, there are 17 convolutional layers split into 5 convolutional blocks with
different filter sizes, as can be seen in more detail in Figure 4.

The model takes CT slices as input and combines the features extracted from the slices
in a sequence of convolutions and pooling operations. The number of input slices can vary.
Typically, it can be 64, 32, or 16 slices. It requires an analysis and validation of the approach
to select the lowest number of slices without losing accuracy, which will be presented in
the following section.

There are more pooling layers in the two initial convolutional blocks than in the final
ones. We chose this approach to reduce the tensors size and fit them in the available
GPU memory. We also added batch normalization layers after every convolutional layer
and a single dropout layer with a 0.5 dropout rate to enhance the training performance
and prevent overfitting. The final feature map runs through two FC layers, the first with
4096 neurons and the second being the output layer with a sigmoid activation function to
generate a binary output, namely COVID-19 or non-COVID-19. All hidden layers are built
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with the rectified linear unit (ReLU) [43] activation function. The model had 47.3 million
parameters, was trained in a computing node with four NVIDIA GPUs V100 32 GB SXM2,
and took 9313 s to train 56 epochs.
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2.5. Model Training

We randomly initiated the weights and trained the neural network with a batch size
of 16 using the Adamax optimizer and learning rate of 10−3. We used early stopping
with a patience of seven epochs based on the validation loss. During model development,
2000 samples were used for training and 1000 samples for validation as observed in Table 3.

Table 3. Dataset split during model development.

Training Validation Test Dataset 1 Test Dataset 2

COVID-19 1000 500 85 122

Non-COVID-19 1000 500 85 122

Total 2000 1000 170 244

In order to fine-tune the CNN architecture, we started the experiment with a different
number of convolutional and pooling layers, following the VGG-16 pattern (increasing the filter
size as the layers went deeper). Then, we tried different number of neurons in the FC layers and a
sequence of three FC layers. Finally, we tried different regularization techniques:

• Batch normalization layer in different positions after the convolutional layers,
• Dropout layers in different positions and different dropout rates,
• L2 regularization in different layers, resulting in regularizations to the fourth, eleventh,

and fourteenth convolutional layers and to the penultimate FC layer.

All the experiments were performed with the keras tuner API [44], which is an easy-to-
use, scalable, hyperparameter optimization framework. We performed the hyperparameter
search with the built-in hyperband optimization algorithm [45].
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We used two datasets for model assessment: (1) data from Medical School of the
University of São Paulo and (2) data randomly taken from the full dataset. Both test sets
were balanced (50% for each class: COVID-19, non-COVID-19). We reached a plateau for
model assessment after experimenting with several different hyperparameters settings and
model architectures.

In order to evaluate the model variability in different portions of the data, we used a
stratified 10-fold cross-validation on the 3000 samples. Finally, we combined the training
and validation datasets into a single training dataset and added data augmentation to each
of the 3000 examples, bringing the total number of samples in the training dataset to 6000,
as observed in Table 4.

Table 4. Final training dataset with data augmentation.

Original Augmented Test Dataset 1 Test Dataset 2

COVID-19 1500 1500 85 122

Non-COVID-19 1500 1500 85 122

Total 3000 3000 170 244

Five different data augmentation techniques were tried: vertical and horizontal flip,
changing brightness and contrast, shear, zoom-in and zoom-out, and small rotations. For
each technique, we trained the model with a pair-wise combination of the 3000 original
images with 3000 augmented images. Finally, we combined all augmented images with
the original images and found that augmented rotated images showed the best results. In
this technique, every image suffered small rotations. The algorithm randomly rotates the
images with one of the angles in the set (−15, −10, 10, 15). For the final training, there were
neither validation data nor automatic early stoppage. We defined the number of epochs to
train the algorithm as 56. It was the same number of epochs achieved for the best model
weights reached during model development.

3. Results

After trying different hyperparameters setups throughout model development, we
achieved the results presented on Figure 5. Notice that the validation curves reach an
accuracy plateau around 0.80 by the 50th epoch. The model weights stabilize, and the
accuracy for both training and validation data show little changes. The loss for the training
and validation sets also stabilizes around epoch 50.

Figure 6 presents the boxplot of the stratified 10-fold cross-validation results, and
Table 5 presents the evaluation results for each validation fold in more detail. We can
observe that the PR-AUC varies from 0.86 to 0.96, the ROC-AUC varies from 0.87 to 0.96,
and the F1-score varies from 0.80 to 0.90. Those results represent a good overall performance
when compared to several recent related works [21,46,47].

The confusion matrices in Figure 7 the ROC-AUC in Figure 8 and PR-AUC in Figure 9
show the model performance in both test datasets. For test dataset 1, the model assessment
shows a recall of 88.51% (95% CI, 79.88% to 94.35%), specificity of 90.36% (95% CI, 81.89%
to 95.75%), accuracy of 89.41% (95% CI, 83.78% to 93.60%), and ROC-AUC and PR-AUC of
97%. Test dataset 2 shows a recall of 85.25% (95% CI, 77.69% to 91.02%), specificity 90.98%
(95% CI, 84.44% to 95.41%), accuracy of 88.11% (95% CI, 83.38% to 91.89%), and ROC-AUC
and PR-AUC of 93%.

Finally, we present the results with the combined datasets (test dataset 1 and test
dataset 2) in Figures 10 and 11 as an overall performance assessment. The model assessment
shows a recall of 88% (95% CI, 79.88% to 94.35%), specificity of 88% (95% CI, 81.89% to
95.75%), and accuracy of 89% (95% CI, 83.78% to 93.60%). We can see a ROC AUC and PR
AUC of 95% for the combined test dataset. The model’s performance in both dataset and in
the combined set confirms its ability to generalize well for new data.
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Table 5. Evaluation results for each validation fold.

Fold PR-AUC ROC-AUC F1-Score

0 0.94 0.93 0.86

1 0.86 0.87 0.80

2 0.88 0.89 0.82

3 0.90 0.91 0.84

4 0.94 0.93 0.86

5 0.90 0.92 0.87

6 0.88 0.89 0.84

7 0.96 0.96 0.90

8 0.90 0.92 0.86

9 0.90 0.90 0.82

Average 0.906 0.912 0.847

Std 0.031 0.026 0.029

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

Table 5. Evaluation results for each validation fold. 

Fold PR-AUC ROC-AUC F1-Score 
0 0.94 0.93 0.86 
1 0.86 0.87 0.80 
2 0.88 0.89 0.82 
3 0.90 0.91 0.84 
4 0.94 0.93 0.86 
5 0.90 0.92 0.87 
6 0.88 0.89 0.84 
7 0.96 0.96 0.90 
8 0.90 0.92 0.86 
9 0.90 0.90 0.82 

Average 0.906 0.912 0.847 
Std 0.031 0.026 0.029 

The confusion matrices in Figure 7 the ROC-AUC in Figure 8 and PR-AUC in Figure 
9 show the model performance in both test datasets. For test dataset 1, the model assess-
ment shows a recall of 88.51% (95% CI, 79.88% to 94.35%), specificity of 90.36% (95% CI, 
81.89% to 95.75%), accuracy of 89.41% (95% CI, 83.78% to 93.60%), and ROC-AUC and PR-
AUC of 97%. Test dataset 2 shows a recall of 85.25% (95% CI, 77.69% to 91.02%), specificity 
90.98% (95% CI, 84.44% to 95.41%), accuracy of 88.11% (95% CI, 83.38% to 91.89%), and 
ROC-AUC and PR-AUC of 93%. 

  
(a) (b) 

Figure 7. Confusion matrix results for model evaluation on the test datasets, (a) test dataset 1, and 
(b) test dataset 2. 

Figure 7. Confusion matrix results for model evaluation on the test datasets, (a) test dataset 1, and
(b) test dataset 2.

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

  
(a) (b) 

Figure 8. ROC curves obtained for model evaluation on the test dataset 1 (a) and on the test dataset 
2 (b). 

  

(a) (b) 

Figure 9. Precision-recall curves for model evaluation on both test datasets. (a) Results for test da-
taset 1 and (b) results for test dataset 2. 

Finally, we present the results with the combined datasets (test dataset 1 and test 
dataset 2) in Figures 10 and 11 as an overall performance assessment. The model assess-
ment shows a recall of 88% (95% CI, 79.88% to 94.35%), specificity of 88% (95% CI, 81.89% 
to 95.75%), and accuracy of 89% (95% CI, 83.78% to 93.60%). We can see a ROC AUC and 
PR AUC of 95% for the combined test dataset. The model’s performance in both dataset 
and in the combined set confirms its ability to generalize well for new data. 

Figure 8. ROC curves obtained for model evaluation on the test dataset 1 (a) and on the test dataset 2 (b).



Diagnostics 2022, 12, 1527 13 of 16

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

  
(a) (b) 

Figure 8. ROC curves obtained for model evaluation on the test dataset 1 (a) and on the test dataset 
2 (b). 

  

(a) (b) 

Figure 9. Precision-recall curves for model evaluation on both test datasets. (a) Results for test da-
taset 1 and (b) results for test dataset 2. 

Finally, we present the results with the combined datasets (test dataset 1 and test 
dataset 2) in Figures 10 and 11 as an overall performance assessment. The model assess-
ment shows a recall of 88% (95% CI, 79.88% to 94.35%), specificity of 88% (95% CI, 81.89% 
to 95.75%), and accuracy of 89% (95% CI, 83.78% to 93.60%). We can see a ROC AUC and 
PR AUC of 95% for the combined test dataset. The model’s performance in both dataset 
and in the combined set confirms its ability to generalize well for new data. 

Figure 9. Precision-recall curves for model evaluation on both test datasets. (a) Results for test dataset
1 and (b) results for test dataset 2.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. Confusion matrix for model evaluation on the combined test dataset. 

  

(a) (b) 

Figure 11. Present the ROC-AUC (a) and PR-AUC (b) results for model evaluations on the combined 
test dataset. 

4. Discussion 
In the lack of a specialized radiologist, AI models may support the identification of 

COVID-19 pneumonia characteristics in CT scans. With this objective in mind, we devel-
oped the Cimatec-CovNet-19 neural network and evaluated its performance using two 
test datasets: one being a subset of a global public dataset and the other a set of 170 patients 
served by a hospital in São Paulo. Generalization for different datasets is a known problem 
in AI applied to medical images [48]. We did not observe major differences in the algo-
rithm performance over the two tests datasets, which suggests that the algorithm gener-
alizes well. 

One limitation of this study is the use of a diverse public dataset, which lacks demo-
graphic information to train the algorithm. Those datasets might contain unknown biases 
and contaminate the model. 

The importance of CT scans examinations to evaluate suspected COVID-19 patients 
and support the management of known patients is evident. The ROC-AUC and PR-AUC 
showed in this study validated that Cimatec-CovNet-19 is a good screening tool for 
COVID-19 pneumonia from CT scans. The algorithm has a new approach for processing 

Figure 10. Confusion matrix for model evaluation on the combined test dataset.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. Confusion matrix for model evaluation on the combined test dataset. 

  

(a) (b) 

Figure 11. Present the ROC-AUC (a) and PR-AUC (b) results for model evaluations on the combined 
test dataset. 

4. Discussion 
In the lack of a specialized radiologist, AI models may support the identification of 

COVID-19 pneumonia characteristics in CT scans. With this objective in mind, we devel-
oped the Cimatec-CovNet-19 neural network and evaluated its performance using two 
test datasets: one being a subset of a global public dataset and the other a set of 170 patients 
served by a hospital in São Paulo. Generalization for different datasets is a known problem 
in AI applied to medical images [48]. We did not observe major differences in the algo-
rithm performance over the two tests datasets, which suggests that the algorithm gener-
alizes well. 

One limitation of this study is the use of a diverse public dataset, which lacks demo-
graphic information to train the algorithm. Those datasets might contain unknown biases 
and contaminate the model. 

The importance of CT scans examinations to evaluate suspected COVID-19 patients 
and support the management of known patients is evident. The ROC-AUC and PR-AUC 
showed in this study validated that Cimatec-CovNet-19 is a good screening tool for 
COVID-19 pneumonia from CT scans. The algorithm has a new approach for processing 

Figure 11. Present the ROC-AUC (a) and PR-AUC (b) results for model evaluations on the combined
test dataset.



Diagnostics 2022, 12, 1527 14 of 16

4. Discussion

In the lack of a specialized radiologist, AI models may support the identification
of COVID-19 pneumonia characteristics in CT scans. With this objective in mind, we
developed the Cimatec-CovNet-19 neural network and evaluated its performance using
two test datasets: one being a subset of a global public dataset and the other a set of 170
patients served by a hospital in São Paulo. Generalization for different datasets is a known
problem in AI applied to medical images [48]. We did not observe major differences in
the algorithm performance over the two tests datasets, which suggests that the algorithm
generalizes well.

One limitation of this study is the use of a diverse public dataset, which lacks demo-
graphic information to train the algorithm. Those datasets might contain unknown biases
and contaminate the model.

The importance of CT scans examinations to evaluate suspected COVID-19 patients
and support the management of known patients is evident. The ROC-AUC and PR-AUC
showed in this study validated that Cimatec-CovNet-19 is a good screening tool for COVID-
19 pneumonia from CT scans. The algorithm has a new approach for processing the images,
requiring the use of fewer slices per examination and thus reducing training and inference
times. This is important, especially for centers with low computing resources. The code is
open for further enhancement. We encourage future works to compare this algorithm with
other publicly available algorithms and explore its use in clinical practice in a controlled
environment. In the near future, we plan to test Cimatec_CovNet-19 in a hospital in Brazil.

The methodology used to build and test the algorithm and the developed model can
quickly be adapted and applied to other lung infections in new potential pandemics.
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