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Supplementary Materials

S1 Landmarks

Table S1 shows the landmarks annotated by the medical staff.

Table S1: Landmarks on 3D surface scans provided by the medical staff. We use the cephalometric
landmark notation of [1].

Landmark Abbreviation

Tragion (left and right) (tl) and (tr)
Sellion (se)
Exocanthion (left and right) (exl) and (exr)
Subnasale (sn)
Labiale Superius (ls)
Otobasion superius (left and right) (obsl) and (obsr)
Soft tissue gnathion (gn)

S2 Description of morphing methods

S2.1 Description of optimal step nonrigid iterative closest points methods

To be consistent with the notation in the original paper [2] for the description of the optimal step
nonrigid iterative closest points (OS-N-ICP) methods, we change notation. The np template points
are expressed as V ∈ Rnp×3.

The unknown affine transformations are defined as X ∈ R4np×3. The full cost function can be
expressed as E(X) = αEs(X) + Ed(X) + βEl(X). The stiffness term Es(X) can be described as
the Kronecker product ⊗ of the mesh topology matrix M ∈ Rne×np with ne denoting the number
of edges and np the number of points. The weight matrix G ∈ R4×4 = diag(1, 1, 1, γ) between
rotational and skew parts against translational parts [2]:

Es(X) = ∥(M⊗G)X∥2F . (S1)
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M describes the connections between neighboring vertices (we use the node-arc incidence ma-
trix [3] in which for each edge r we set M(r, i) = −1 and M(r, j) = 1). The distance term Ed(X)
describes how close the displaced template vertices are to the target vertices and can be written
as:

Ed(X) = ∥W(DX−U)∥2F . (S2)

W ∈ Rnp×np is a diagonal weighting matrix which allows assigning different weights to each
transformation. The sparse displacement matrix D ∈ Rnp×4np is a diagnoal matrix with the
homogeneous points vi = [xi, yi, zi, 1]

T as its diagnoal elements mapping the homogeneous template
points to the respective affine transforms. U ∈ Rnp×3 denotes the found correspondences from the
target points.

Finally, the landmark term El(X) is similar to the distance term while only the landmark points
are considered:

El(X) = ∥(DLX−UL)∥2F . (S3)

The complete cost function for nonrigid iterative closest points affine (N-ICP-A) can be written
as:

E(X) =

∥∥∥∥∥∥
αM⊗G

WD
βDL

X−

 0
WU
UL

∥∥∥∥∥∥
2

F

(S4)

For the translation-only variant nonrigid iterative closest point translation (N-ICP-T), the
unknown transformations are defined as translations X ∈ Rnp×3. The cost function is changed
accordingly:

E(X) =

∥∥∥∥[ αM
WInp

]
X−

[
0

W(U−V)

]∥∥∥∥2
F

(S5)

S2.2 Description of Laplace-Beltrami regularized projection methods

Laplace-Beltrami regularized projection (LBRP) [4, 5] relies on mutual correspondences between
template and target and uses the Laplace-Beltrami (LB) operator L0 ∈ Rnp×np computed on the
original template as a regularization, controlled by the stiffness parameter λ. A higher λ puts
more weight to the LB term of the equation, leading to a mesh which retains its original shape.
For a low λ, the original template shape is disregarded and is mapped closer to the target mesh,
which might lead to irregularities in the projection. This template projection step can be described
using [4, 5]: [

λL0

SX

]
X =

[
λL0X0

SYY

]
, (S6)

The two Boolean selection matrices SX ∈ [0, 1]
k×nn and SY ∈ [0, 1]

k×nt select the k correspon-
dences on the template and target. np denotes the number of template points, nt the number of
target points.

For the two-step Laplace-Beltrami regularized projection, we essentially perform this template
projection twice, first to adapt the template to the target and then refining it with decreased
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stiffness to let it deform more strongly to the target. This is a similar approach to the template
adaption described in [5].

For the iterative coherent point drift with Laplace-Beltrami regularized projection [5], we first
employ the adaptive template projection with a high λ, then alternate between the rigid coherent
point drift (CPD) and nonrigid CPD [6] and conclude with the adaptive template projection with
a small λ. For our dataset, this increased robustness compared to using the affine CPD variant as
proposed in [5]. For further reading on the iterative coherent point drift and the template adaption
of the LBRP, the reader is referred to [5].

S2.3 Hyperparameters for template morphing

Table S2 lists the hyperparameters used in each method.

Table S2: Hyperparameters used for the template morphing approaches.

Two-step Laplace-Beltrami regularized projection (2S-LBRP) (notation of [5])
Stiffness first morph λ1 = 10
Stiffness second morph λ2 = 0.1

Iterative coherent point drift with Laplace-Beltrami regularized projection (ICPD-LBRP)
(notation of [5])
Stiffness first morph λ1 = 10
Iterative coherent point drift (ICPD)-Loop For each iteration, perform first cpdRigid, then

cpdNonrigid
cpdNonrigid smoothing weight: 3
cpdNonrigid tolerance 1 · 10−5

Exit condition fewer than 1% of nearest neighbors between iter-
ations change

Stiffness second morph λ2 = 0.1 with Laplace matrix resulting from first
morph

Nonrigid iterative closest points affine (N-ICP-A) and
nonrigid iterative closest point translation (N-ICP-T) (notation of [2])
Iterations n = 80

Stiffness parameter α in iteration n αn = 108 · 0.8n
Landmark weight in iteration n β if n < 51 βn = 1, else βn = 0
Exit condition ϵ for each fixed stiffness α ϵ < 100

Valid normals for correspondence establishment φ φ < 45◦

Rotation weight γ γ = 1

S3 Evaluation of the morphing methods

S3.1 Morphing evaluation

We present mean and standard deviations for each error metric in Table S3. Cumulative errors for
each metric show the distribution of each error and are displayed in Figure S1. LBRP methods
showed smaller landmark errors and larger surface normal deviations compared to OS-N-ICP.
N-ICP-A had the lowest vertex-to-nearest-neighbor distance errors. Surface normal deviations
were for all methods larger than 17◦.
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Table S3: Mean error and standard deviation for each morphing method. Boldface shows smallest
error for each metric.

Morphing method Mean landmark er-
ror (mm)

Mean vertex-to-
nearest-neighbor
distance (mm)

Mean surface nor-
mals deviations (de-
gree)

Nonrigid iterative closest
points affine (N-ICP-A)

6.533± 1.796 0.007± 0.003 33.488± 1.578

Nonrigid iterative closest point
translation (N-ICP-T)

5.699± 1.789 0.302± 0.01 23.242± 1.849

Two-step Laplace-Beltrami
regularized projection
(2S-LBRP)

4.185± 1.205 0.785± 0.17 20.392± 1.466

Iterative coherent point drift
with Laplace-Beltrami regular-
ized projection (ICPD-LBRP)

4.071± 1.163 0.272± 0.049 29.255± 2.12

Figure S1: Proportion of subjects with mean landmark error, vertex-to-nearest-neighbor-
distances, and surface normal. We compared nonrigid iterative closest points affine, nonrigid
iterative closest point translation, two-step Laplace-Beltrami regularized projection (2S-LBRP),
and iterative coherent point drift with Laplace-Beltrami regularized projection (ICPD-LBRP).
The graph shows the proportion of subjects less than the abscissa value. Higher is better.
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Figure S2: Compactness as a function of the number of principal components of the full shape
model. We compared nonrigid iterative closest points affine (N-ICP-A), nonrigid iterative closest
point translation (N-ICP-T), two-step Laplace-Beltrami regularized projection (2S-LBRP), and
iterative coherent point drift with Laplace-Beltrami regularized projection (ICPD-LBRP). Left:
full compactness, right: zoom-in. A higher value is better.

Figure S2 shows the compactness of the statistical shape model. The most compact models
were produced by N-ICP-A and N-ICP-T, while generalization error and specificity error were
larger (Figure S3).

Figure S3: Generalization and specificity errors as functions of the number of principal compo-
nents of the full shape model. We compared nonrigid iterative closest points affine (N-ICP-A),
nonrigid iterative closest point translation (N-ICP-T), two-step Laplace-Beltrami regularized pro-
jection (2S-LBRP), and iterative coherent point drift with Laplace-Beltrami regularized projection
(ICPD-LBRP). Left: generalization error, right: specificity error. For both metrics, a lower error
is better.

S3.2 Classfication evaluation

In Table S4 we show the classification results per morphing method and classification approach.
Linear discriminant analysis (LDA) consistently yielded the highest accuracy regardless of the
morphing method. Using LDA, all morphing methods obtained accuracies of 97.0% or higher.
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Note that N-ICP-T model scores the highest accuracy although it did not perform best in any of
the evaluation criteria.

Table S4: Highest accuracy for each classifier and morphing methods. Optimal number of princi-
pal components is given in brackets. Underlined accuracy indicates optimal classifier per method
and boldface optimal classifier overall.

Morphing method LDA support
vector
machine

näıve
Bayes

k-nearest-
neighbors

bagged de-
cision tree

Nonrigid iterative closest points
affine

0.978 (44) 0.962 (46) 0.946 (23) 0.916 (23) 0.826 (22)

Nonrigid iterative closest point
translation

0.981 (54) 0.959 (23) 0.946 (28) 0.910 (9) 0.842 (10)

Two-step Laplace-Beltrami regu-
larized projection

0.970 (50) 0.970 (31) 0.959 (23) 0.946 (10) 0.861 (8)

Iterative coherent point drift
with Laplace-Beltrami regular-
ized projection

0.975 (91) 0.962 (13) 0.951 (23) 0.951 (10) 0.847 (8)

6



Schaufelberger et al.: A radiation-free classification pipeline for craniosynostosis using statistical
shape modeling (supplementary materials), Diagnostics, 2022

References

[1] Gwen R.J. Swennen, Filip Schutyser, and Jarg-Erich Hausamen. Three-Dimensional Cephalom-
etry. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] Brian Amberg, Sami Romdhani, and Thomas Vetter. Optimal Step Nonrigid ICP Algorithms
for Surface Registration. In 2007 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, Minneapolis, MN, USA, June 2007. IEEE.

[3] Melvyn W. Jeter. Mathematical Programming: An Introduction to Optimization. Number 102
in Monographs and Textbooks in Pure and Applied Mathematics. M. Dekker, New York, 1986.

[4] Hang Dai, Nick Pears, and Christian Duncan. A 2D Morphable Model of Craniofacial Profile
and Its Application to Craniosynostosis. In Maŕıa Valdés Hernández and Vı́ctor González-
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