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Abstract: In vivo MR spectroscopy is a non -invasive methodology that provides information about
the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical
MR scanners. MR spectroscopy has been used to study various brain diseases including tumors,
stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders,
and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the
pediatric population and its clinical use.
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1. Introduction

The purpose of this article is to introduce in vivo MR spectroscopy (MRS) and its op-
portunities for clinical applications in pediatric patients. More comprehensive information
about the various uses of MRS for pediatrics can be found elsewhere [1].

MR spectroscopy, also known as nuclear (N)MR spectroscopy, had been established
before MR imaging as an analytical tool for physicists, chemists, and biochemists for the
non-destructive chemical analysis of often very small samples. With the development
of large and powerful magnets, (N)MR evolved dramatically to eventually allow the
examination of metabolism in humans in vivo. Similar to MR imaging, MR spectroscopy is
non-invasive and harmless and, thus, particularly appropriate for applications in pediatrics
where exposure to ionizing radiation or radioactive isotopes is undesired.

Proton-(1H; hydrogen) MR spectroscopy (1H-MRS) uses the same hardware as MR
imaging and is a “push-button” application that is widely available on state-of-the-art clini-
cal MR scanners. Other nuclei have been utilized for in vivo MRS, including phosphorous-
31 (31P), carbon-13 (13C), or fluorine-19 (19F). However, this report will focus on 1H-MRS
since those more “exotic” spectroscopy methods require additional hardware and are only
available at academic centers.

In contrast to MR imaging, which generates maps that reflect the distribution and
properties of protons of water molecules (H2O), 1H-MRS combines the signals generated
from the protons attached to other chemicals and produces a “spectrum” representative of
tissue biochemistry (Figure 1A,B). Chemicals detectable by MRS (Table 1) are small, mobile,
and mostly intracellular metabolites, whereas large immobile macromolecules and phospho-
lipids, myelin, proteins, RNA, and DNA are rendered “invisible” to MRS. Synthesis and
breakdown of the small amino acids, carbohydrates, fatty acids, and lipids that contribute
to cell metabolism is closely controlled by enzymes, and their concentrations are, thus,
kept close to constant. Therefore, the MR spectra of normal in vivo brain biochemistry
are remarkably robust and comparable across subjects and serially in individuals with
no “Monday morning” vs. “Friday afternoon” metabolism. Of note, to minimize motion
artifacts, pediatric patients are often examined under anesthesia. We believe that the impact
of anesthesia on the metabolic profiles obtained by MRS is small and likely negligible from a
clinical standpoint. Yet, as definitive studies in pediatric controls are ethically not feasible, it
cannot be ruled out categorically. However, the biochemical profiles vary with brain regions
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(e.g., white matter vs. cortical gray matter vs. deep gray matter vs. etc.) and with brain
maturation—which is important to consider when interpreting pediatric MRS. Abnormal
spectra will be obtained when there are structural damages (trauma, degenerative diseases,
gliosis, etc.), altered physiological conditions (essentially abnormal/interrupted blood
flow), tumors, or abnormal underlying biochemical and genetic conditions. A limitation of
MRS is its low sensitivity. When compared with water and the water signal used for MR
imaging, the concentrations of the chemicals detectable by MRS are small and generate
small signals. Thus, biological/medical questions that can be appropriately addressed
with MRS are “global/systemic” or “millions of cells” events in which the signal from
comparably large volumes of tissue (≈1–10 cc) is analyzed.
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 Figure 1. Principles of in vivo MR spectroscopy. An in vivo MR spectrum of parietal gray matter
with simulated signals of some of the chemicals that typically contribute to spectra is shown (A). Note
that signals of chemicals depend on the position of the protons within molecules and their interaction
with each other. For example, the prominent signal of the N-acetylaspartate (NAA) molecule at
approximately 2.0 ppm is generated by three equivalent protons of the -CH3 (methyl) group, while a
more complex signal is generated by interacting protons elsewhere in the molecule (B). The position
on the frequency axis and the signal pattern identifies chemicals, whereas the amplitude (area) is
proportional to the concentration. Because the concentrations of these chemicals are much lower than
the water content of the tissue, MRS is restricted to regions of interest (ROIs) that are much larger
than the resolution of MR images (the ROI is indicated as rectangular box on the MR image). The MR
signal of chemicals also depends on the acquisition method (C) and field strength (D). For example,
the two spectra in 1C represent the same metabolism with the different appearances as a consequence
of the different echo times (TE). Cr = creatine, Cho = choline, mI = myo-inositol, Glu = glutamate,
Gln = glutamine, Lac = lactate.
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Table 1. Metabolites detectable with clinical MR spectroscopy in the human brain.

Metabolite (Abbr.) Functional Role and Remarks Decreased a Increased a

Acetate (Act)
Energy source, precursor of acetyl-CoA,

common building block for
biosynthesis

Disease correlate
unknown

Infection/abscesses,
brain death

Acetoacetate (AcAc)
Energy source, produced in the
mitochondria of liver cells from
acetoacetyl coenzyme A (CoA)

Disease correlate
unknown Ketosis

Acetone (Acn)
Produced by decarboxylation of

acetoacetate, singlet at 2.22 ppm more
readily detectable than βHB (see below)

Disease correlate
unknown Ketosis

Alanine (Ala)
Amino acid,

protein constituent,
glucose–alanine cycle

Disease correlate
unknown

Inborn errors; meningioma
and subgroups of other

tumors

Aspartate (Asp) Excitatory neurotransmitter
NAA and Glu precursor

Disease correlate
unknown

Challenging to recognize due
to complex signal and signal

overlap with NAA and
other chemicals

β-Hydroxybutyrate
(βHB)

Produced by the decarboxylation of
acetoacetate, doublet similar to lactate

but at 1.19 ppm

Disease correlate
unknown Ketosis

Choline (Cho) =
glycerophosphocholine +

phosphocholine
+ free choline

Membrane/myelin
synthesis/degradation,

acetylcholine precursor, osmolyte

Liver disease;
hypo-osmotic state;

during cooling
(hypometabolic?)

De novo synthesis of biomass,
including tumors, brain

growth, tissue repair;
hyper-osmotic state

Citrate (Cit)
TCA cycle intermediate, produced

when the glycolytic rate exceeds TCA
activity, fatty acid synthesis

Disease correlate
unknown

Newborns, subgroups of
tumors, most common in

diffuse intrinsic
brainstem gliomas

Creatine (Cr) =
free creatine (fCR) +

phosphocreatine (PCr)

Energy metabolism, energy storage
PCr <-> fCr + ATP

Cells without creatine
kinase, creatine

deficiencies, some tumors
Subgroups of gliomas, gliosis?

γ-Aminobutyric acid
(GABA) Inhibitory neurotransmitter Disease correlate

unknown

Challenging to recognize due
to complex signal and signal
overlap with other chemicals

Glucose (Glc)
(α and β isomers) Principal fuel for cells Hypoglycemia, detection

challenging
Uncontrolled diabetes;

hyperglycemia

Glutamate (Glu) Excitatory neurotransmitter
Most tumors, hepatic
encephalopathy, acute

hypoxic/ischemic injury
Subgroup of seizures

Glutamine (Gln)
Part of the Glu–Gln neurotransmitter
cycle; hyper ammonia detoxifier, fuel,

osmolyte

Disease correlate
unknown

Most tumors, edema (relative
increase), demyelinating

lesions, hepatic
encephalopathy, acute

hypoxic/ischemic injury

Glutathione (GSH)

Consists of glycine, cysteine, and
glutamate. Present in reduced

(predominant) and oxidized form.
Marker of oxidative stress

Disease correlate
unknown Meningioma
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Table 1. Cont.

Metabolite (Abbr.) Functional Role and Remarks Decreased a Increased a

Glycine (Glyc)
Neurotransmitter inhibitory and
excitatory, cellular migration and

circuit formation, antioxidant

Disease correlate
unknown

Medulloblastoma and other
tumors; hyperglycinemia

Lactate (Lac)

Endpoint of anaerobic glycolysis, in
normal brain present in cerebrospinal

fluid at higher concentrations than
in tissue

Disease correlate
unknown

Inborn errors of energy
metabolism,

hypoxic/ischemic injury;
tumors, cystic lesions, normal

newborn

Lipids (Lip)
with contributions from
macromolecules (MM)

Indicators for cell membrane
breakdown when elevated

Disease correlate
unknown

Injury/cell death and tumor
subgroups

Leucine (Leu),
iso-leucine (ILeu),

valine (Val)
Branched-chain amino acids (BCAA) Disease correlate

unknown

Elevated in inborn error of
BCAA metabolism, acute

abscesses

Myo-inositol (mI) Glial marker, involved in phospholipid
membrane metabolism, osmolyte

Liver disease, hepatic
encephalopathy, osmotic

imbalance

Normal newborns, astrocytes,
subgroups of tumors (e.g.,

astrocytoma, ependymoma,
choroid plexus papilloma),

osmotic imbalance

N-acetylaspartate
(NAA) Marker for mature neurons and axons

Pathologies associated
with neuronal/axonal

damage/loss,
mitochondrial function?

Canavan disease

N-acetylaspartate
glutamate (NAAG)

Neurotransmitter release modulator,
small shoulder next to NAA, detectable

in high-quality spectra

Disease correlate
unknown unknown

Phenylalanine Essential amino acid Disease correlate
unknown

Uncontrolled phenylketonuria
(PKU, phenylalanine

hydroxylase deficiency)

Propylene glycol (Pgc)

Medication solvent (e.g.,
anticonvulsants), metabolizes to lactate,

doublet similar to lactate but at 1.14
ppm

Disease correlate
unknown

Frequently seen in newborns
on medications, possibly

because of underdeveloped
blood–brain barrier

Scyllo-inositol (sI)
Symmetric sugar–alcohol isomer,
osmolyte, inhibits amyloid-beta

aggregation?

Disease correlate
unknown in majority of

population

Detectable under normal
conditions in a subgroup of
the population; glial tumors

Succinate (Suc) TCA cycle intermediate Disease correlate
unknown Abscesses, infection

Taurine (Tau) Osmolyte, modulator of
neurotransmission

Decreasing with normal
brain maturation

Newborns; medulloblastoma
(group 3, group 4),

germinoma, pineoblastoma,
and possibly others

a The accuracy for detecting some of the metabolites is low, even if present in the tissue, due to low concentrations
and/or due to complex signals that overlap with signals from other chemicals. For these chemicals, observing a
reduction or even an increase is virtually impossible and unless dramatic, may be missed in individual spectra.

For clinical applications of MRS, there is also a need to use consistent acquisition
methods, because the appearances of MR spectra acquired from the same region of interest
depend on acquisition parameters, such as the echo time (TE), and the field strength of the
magnet (i.e., 1.5T vs. 3T), which could confuse interpretation (Figure 1C,D).
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MR Spectroscopy in Pediatrics

Generally, MRS in pediatrics is more challenging but also offers more opportunities
than MRS in adults [2]. In the adult brain, stroke, different forms of dementia, and brain
tumors (mostly astrocytomas) include most of the abnormalities that are encountered. In
pediatrics, there is a wider range of diseases, which contain biologically heterogeneous tu-
mors originating from different cell types and a wide variety of inborn errors. Furthermore,
ongoing brain development adds complexity to recognizing and quantifying injury/disease
as well as to prognostication.

2. Methods for Clinical Spectroscopy

With robust and fully automated MRS available on practically all clinical MR systems,
obtaining MR spectra merely requires the selection of an appropriate acquisition method
and the identification of a proper voxel or region of interest (ROI). Good ROI placement—and
skillfully managing pediatric patients to minimize patient movements during a scan—is
possibly more significant for acquiring high-quality spectra than understanding the tech-
nical details of the various MRS acquisition methods. Except for lesions, ROIs are best
selected consistently in brain regions where normal in vivo metabolic profiles have been
established. When examining lesions such as tumors, bleeds and calcifications should be
avoided, and cellular areas should be selected over necrotic parts.

Single-voxel (SV) point-resolved-spectroscopy (PRESS) and stimulated echo acquisition
mode (STEAM) have been the most utilized acquisition methods for clinical applications of
MRS. With these methods, a single spectrum can be acquired in as little as 3–5 min from a
selected brain region. Both methods can be combined with chemical shift imaging (CSI),
also referred to as multi-voxel spectroscopy, as an alternative approach with multiple spectra
acquired simultaneously from a larger volume of tissue. However, since MR scanners must
find compromises when optimizing acquisition conditions for larger volumes, such as water
suppression and field homogeneity, individual CSI spectra may not reach the quality of
single-voxel spectra. Because of the need for spatial encoding, individual CSI acquisitions
may take 10–20 min, with a higher risk for patient motion and possibly compromised data
in pediatric patients who are not under anesthesia. Furthermore, CSI requires more effort
and expertise for processing and review.

While clinical applications of MRS are dominated by the above-mentioned, widely
available methods, there is an overabundance of other sophisticated MR spectroscopy
methods that have been developed and used in academic environments. These methods
may offer considerable advantages when used by skilled MR spectroscopists to answer
specific biological/medical questions [3].

3. Metabolic Maturation of the Human Brain

From in utero to birth to adolescence, the human brain undergoes dramatic changes
in size, morphology, and function. In utero, brain metabolism is tasked with providing the
building blocks for the de novo synthesis of tissue. At birth, metabolism transitions into
facilitating myelination and then, predominantly, providing the energy for neurotransmis-
sion and higher brain function. It is, therefore, not surprising that metabolic profiles evolve
considerably, in parallel with brain development, as reported by several groups [4–12].

Having a good understanding of normal age-dependent metabolic profiles is a prereq-
uisite for clinical applications of MRS, particularly for the very young patients. The first
three months of life is a period of rushed axonal growth, synapse formation, myelination,
and neuronal maturation. During that time, concentrations of N-acetylaspartate (NAA),
creatine (Cr), and glutamate (Glu) increase rapidly in parieto/occipital gray matter (GM)
and parietal white matter (WM). In the thalamus, where maturation including myelination
precedes cortical development, Cr levels are close to constant and more modest increases
of NAA and Glu are observed during the first three months of life (Figure 2).
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Figure 2. Metabolic maturation of the human brain. Shown are representative “closest-to-normal” 
spectra for parietal gray matter (GM, A), parietal white matter (WM, B), and thalamus (C) acquired 
from pediatric term-born patients at different points of brain development. MR images as well as 
clinical follow up were unremarkable for all subjects. Note, that metabolic profiles vary both with 
age and tissue type. All spectra were acquired on 3T scanners with SV-PRESS, echo time (TE) = 35 
ms, and repetition time (TR) = 2000 ms. 

NAA, essentially unknown before the arrival of in vivo MRS, is an amino acid that is 
mainly stored in adult-type neurons and axons. NAA is probably the most reliable non-
invasive neuronal/axonal marker as it is generally believed that its concentrations corre-
late with axonal outgrowth and neuronal maturation. NAA is synthesized in the mito-
chondria of neurons, travels along axons, and is broken down in oligodendrocytes. It is a 
major source of acetyl groups for lipid and myelin synthesis and may also have other 
functions possibly depending on the maturational stage of the brain [13–16]. Creatine and 
its functions have been well known before the introduction of in vivo MRS. It is synthe-
sized in the liver and kidneys and enters brain cells via the blood stream and the plasma 
membrane Cr transporter, where it functions as high-energy buffering system maintain-
ing cellular ATP levels [17]. Glutamate is the most abundant excitatory neurotransmitter 
and is utilized in all brain regions for various brain functions [18]. 

In parallel with increasing concentrations of NAA, Cr, and Glu with age, myo-inosi-
tol (mI) decreases rapidly in parietal WM and GM and more gradually in the thalamus. 
mI is an osmolyte [19,20] and a marker of glial cells [21,22] that is either synthesized by 
the kidneys or can be taken up from the diet. In the context of early brain development, 
its role as a precursor of phosphatidylinositol (PtdIns), a membrane phospholipid im-
portant for signal transduction events [23] that is present in the white matter prior to ac-
tive myelination [24,25], might be most significant. Choline (Cho) levels remain constant 
or decrease slowly depending on the brain region. Choline-containing metabolites 
(mainly phosphocholine and glycerophosphocholine) are involved in cell membrane syn-
thesis and breakdown [26], and Cho is generally elevated in proliferating tissue. 

Tissue lactate (Lac) levels are important indicators for pathology when elevated. In 
contrast to adults and older children, in whom lactate is barely measurable, in the normal 

Figure 2. Metabolic maturation of the human brain. Shown are representative “closest-to-normal”
spectra for parietal gray matter (GM, A), parietal white matter (WM, B), and thalamus (C) acquired
from pediatric term-born patients at different points of brain development. MR images as well as
clinical follow up were unremarkable for all subjects. Note, that metabolic profiles vary both with age
and tissue type. All spectra were acquired on 3T scanners with SV-PRESS, echo time (TE) = 35 ms,
and repetition time (TR) = 2000 ms.

NAA, essentially unknown before the arrival of in vivo MRS, is an amino acid that is
mainly stored in adult-type neurons and axons. NAA is probably the most reliable non-
invasive neuronal/axonal marker as it is generally believed that its concentrations correlate
with axonal outgrowth and neuronal maturation. NAA is synthesized in the mitochondria
of neurons, travels along axons, and is broken down in oligodendrocytes. It is a major source
of acetyl groups for lipid and myelin synthesis and may also have other functions possibly
depending on the maturational stage of the brain [13–16]. Creatine and its functions have
been well known before the introduction of in vivo MRS. It is synthesized in the liver
and kidneys and enters brain cells via the blood stream and the plasma membrane Cr
transporter, where it functions as high-energy buffering system maintaining cellular ATP
levels [17]. Glutamate is the most abundant excitatory neurotransmitter and is utilized in
all brain regions for various brain functions [18].

In parallel with increasing concentrations of NAA, Cr, and Glu with age, myo-inositol
(mI) decreases rapidly in parietal WM and GM and more gradually in the thalamus. mI
is an osmolyte [19,20] and a marker of glial cells [21,22] that is either synthesized by the
kidneys or can be taken up from the diet. In the context of early brain development, its
role as a precursor of phosphatidylinositol (PtdIns), a membrane phospholipid impor-
tant for signal transduction events [23] that is present in the white matter prior to active
myelination [24,25], might be most significant. Choline (Cho) levels remain constant or
decrease slowly depending on the brain region. Choline-containing metabolites (mainly
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phosphocholine and glycerophosphocholine) are involved in cell membrane synthesis and
breakdown [26], and Cho is generally elevated in proliferating tissue.

Tissue lactate (Lac) levels are important indicators for pathology when elevated. In
contrast to adults and older children, in whom lactate is barely measurable, in the normal
newborn brain, lactate is expected to be detectable. Lactate levels then decline as the brain
completes its transition to aerobic metabolism [8].

After around three months of life, the rate of metabolic maturation of the brain slows
down considerably. Brain metabolism then stabilizes at approximately at 5 years of age
with the brain reaching around 90% of adult size, albeit there are small adjustments in
parallel with continuing brain development into young adulthood [11].

Prematurity

The metabolic profiles are, in a very good approximation, functions of the post-
conceptional age (PCA) [10]. That is, brain metabolism in a 34-weeker examined at 6 weeks
is comparable with the metabolism of a term (40 weeks) newborn studied at birth. How-
ever, with significant changes occurring with birth that affect metabolism, such as the
delivery of higher oxygenated arterial blood to the brain, irrespective of the gestational
age, it is conceivable that there are slightly different trajectories of metabolic maturation in
premature-born infants [27].

4. Clinical Applications of MR Spectroscopy
4.1. Pediatric Brain Tumors

Pediatric brain tumors are the second most frequent malignancy of childhood (after
leukemia) with approximately 2500 new diagnoses per year in the United States. They
are the leading cause of death from cancer in pediatric oncology [28,29]. Furthermore,
survivors often have severe neurological, neurocognitive, and psychosocial sequelae. In
contrast to adult brain tumors, which are mostly astrocytomas, pediatric brain tumors
originate from different cell types and are, thus, biologically more heterogeneous with
different biochemical and metabolic features.

Initial MRS studies have focused on common infratentorial tumors (medulloblastomas,
pilocytic astrocytomas, ependymomas) and reported that proton MRS can be used to help
differentiate cerebellar tumors by looking at ratios of NAA, creatine, choline, and lactate [30].
Since then, several groups [31–39], taking advantage of the availability of robust short echo-
time (TE) MRS, have independently confirmed the value of in vivo MRS for improving
the accuracy of initial diagnoses including for tumors outside the posterior fossa such as
germ cell tumors, choroid plexus tumors, and high-grade gliomas (Figures 3–5). It should
be noted that high-grade gliomas in pediatrics are a heterogeneous group of tumors that
are biologically different from high-grade gliomas in adults [40], and significant metabolic
heterogeneity can be observed across subjects, in individual patients in different areas of
the lesion, and in serial studies.
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Figure 3. MR spectra of common pediatric posterior fossa tumors. Metabolic profiles of posterior 
fossa pilocytic astrocytoma (A) are generally relatively predictable. Pilocytic astrocytomas show el-
evated lactate and lipids. There is signal consistent with N-acetylated sugars (N-acetyl (NA) at ≈2 
ppm and a broad signal from sugars at ≈3.8 ppm), while creatine (Cr) and myo-inositol (mI) levels 
are low. Ependymomas (B) have less predictable profiles. Whereas lipids are often prominent, they 
are not elevated in every ependymoma. Similarly, levels of other metabolites, such as mI can vary 
considerably. Medulloblastomas (C) are embryonal tumors that can present with strikingly different 
metabolic profiles for individual patients. To what extent metabolic profiles correlate with the mo-
lecular subgroups is an area of active research [41]. Above, examples for group 3 (i), group 4 (ii), 
sonic hedgehog (iii), and WNT (iv) are shown. Taurine (Tau) and glycine (Glyc) are often (but not 
always) detectable in these tumors. Medulloblastomas are generally more cellular tumors with 
higher absolute metabolite levels. For example, average choline (Cho) levels are approximately me-
dulloblastoma:ependymoma:pilocytic astrocytoma = 5:3:2 [37], which cannot be appreciated when 
spectra, that are scaled to their tallest peaks, are compared. All spectra were acquired on 3T scanners 
with SV-PRESS, TE = 35 ms, and TR = 2 s. 

Figure 3. MR spectra of common pediatric posterior fossa tumors. Metabolic profiles of posterior
fossa pilocytic astrocytoma (A) are generally relatively predictable. Pilocytic astrocytomas show
elevated lactate and lipids. There is signal consistent with N-acetylated sugars (N-acetyl (NA) at
≈2 ppm and a broad signal from sugars at ≈3.8 ppm), while creatine (Cr) and myo-inositol (mI)
levels are low. Ependymomas (B) have less predictable profiles. Whereas lipids are often prominent,
they are not elevated in every ependymoma. Similarly, levels of other metabolites, such as mI can
vary considerably. Medulloblastomas (C) are embryonal tumors that can present with strikingly
different metabolic profiles for individual patients. To what extent metabolic profiles correlate with
the molecular subgroups is an area of active research [41]. Above, examples for group 3 (i), group
4 (ii), sonic hedgehog (iii), and WNT (iv) are shown. Taurine (Tau) and glycine (Glyc) are often
(but not always) detectable in these tumors. Medulloblastomas are generally more cellular tumors
with higher absolute metabolite levels. For example, average choline (Cho) levels are approximately
medulloblastoma:ependymoma:pilocytic astrocytoma = 5:3:2 [37], which cannot be appreciated when
spectra, that are scaled to their tallest peaks, are compared. All spectra were acquired on 3T scanners
with SV-PRESS, TE = 35 ms, and TR = 2 s.
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limited (broad signals) possibly due to calcification and heterogeneity at microscopic levels. Among 
choroid plexus tumors (C), papillomas present regularly with prominent myo-inositol (mI), whereas 
choline (Cho) is prominent in carcinomas. Dysembryoplastic neuroepithelial tumors (DNETs, (D)) 
are low-grade glioneuronal tumors. Note that the signal at ≈2 ppm (with a corresponding broad 
signal at ≈3.8 ppm), is more similar (position on ppm axis and line width) to the N-acetyl (NA) signal 
observed in pilocytic astrocytoma than to N-acetylaspartate (NAA) in normal brain. A noncancer-
ous hamartoma (E) shows a spectrum that is consistent with a mixture of tumor cells with normal 
tissue with only slightly reduced NAA and unremarkable lipids and lactate (Lac) as well as unre-
markable other metabolic features. The presence of alanine (Ala) and high glutathione (GSH) [43,44] 
identifies meningiomas (F), a dural-based tumor. In addition, creatine (Cr) is depleted in meningi-
omas, and lactate and lipids are readily detectable. All spectra were acquired on 3T scanners with 
SV-PRESS, TE = 35 ms, and TR = 2 s. 

Figure 4. Examples for MR spectra of pediatric brain tumors outside the posterior fossa. Metabolic
profiles of pilocytic astrocytomas elsewhere in the brain (A) are comparable with those in posterior
fossa PAs, except that, often, higher myo-inositol (mI) is observed [42]. The MR spectra of germ cell
tumors, including pure germinomas, (B) frequently show prominent lipids, and their quality is often
limited (broad signals) possibly due to calcification and heterogeneity at microscopic levels. Among
choroid plexus tumors (C), papillomas present regularly with prominent myo-inositol (mI), whereas
choline (Cho) is prominent in carcinomas. Dysembryoplastic neuroepithelial tumors (DNETs, (D))
are low-grade glioneuronal tumors. Note that the signal at ≈2 ppm (with a corresponding broad
signal at ≈3.8 ppm), is more similar (position on ppm axis and line width) to the N-acetyl (NA) signal
observed in pilocytic astrocytoma than to N-acetylaspartate (NAA) in normal brain. A noncancerous
hamartoma (E) shows a spectrum that is consistent with a mixture of tumor cells with normal tissue
with only slightly reduced NAA and unremarkable lipids and lactate (Lac) as well as unremarkable
other metabolic features. The presence of alanine (Ala) and high glutathione (GSH) [43,44] identifies
meningiomas (F), a dural-based tumor. In addition, creatine (Cr) is depleted in meningiomas, and
lactate and lipids are readily detectable. All spectra were acquired on 3T scanners with SV-PRESS,
TE = 35 ms, and TR = 2 s.
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Figure 5. Pediatric high-grade gliomas. Metabolic profiles of pediatric high-grade gliomas present
with considerable heterogeneity. For example, three patients with thalamic anaplastic astrocytoma
show varying levels of myo-inositol (mI) and glycine (Glyc) at initial diagnoses. Choline (Cho) is
moderate or even low in patients 1 and 2 but is prominent in patient 3, with higher Cho generally
associated with more proliferative tumors [45]. Citrate (Cit) is readily detectable in patients 2 and 3 but
absent in patient 1. Two spectra acquired from patient 4 (glioblastoma) at diagnosis exhibit remarkable
metabolic heterogeneity with glutathione (GSH), Glyc, and lactate (Lac) all elevated in one region
but unremarkable in a second spectrum. It is presently unclear to what extent metabolic features
identify subtypes and whether this information can be exploited to optimize therapeutic approaches
and patient management. Serial MRS in patient 5 (glioblastoma) demonstrate the transition of a solid
lesion to a partially necrotic lesion with increased lipids and lactate (Lac). All spectra were acquired
on 3T scanners using SV-PRESS, TE = 35 ms, and TR = 2 s.

Among pediatric brain tumors, diffuse intrinsic pontine gliomas (DIPGs) carry the
worst prognosis. They are highly resistant to chemo- and radiation therapy and, due to
their location in the brainstem, inoperable. Thus, with no effective therapy available, the
average survival after diagnosis is less than one year [46]. In vivo MR spectroscopy studies
showed that, at initial diagnoses, these tumors often present with metabolic profiles that
are consistent with low-proliferative tumors. The metabolism of DIPG then evolves into a
profile typical for high-grade gliomas consistent with the observation that, at autopsy, most
DIPGs have progressed to glioblastoma (Figure 6) [47,48]. These changes may precede
clinical deterioration and progression on MRI, and MR spectroscopy could thus provide
non-invasive biomarkers that help with patient management [49].
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Figure 6. Diffuse intrinsic pontine glioma (DIPG). DIPGs are readily diagnosed by conventional MR
imaging. MR spectroscopy demonstrates a metabolic evolution from a more moderately abnormal
profile at presentation (A) to a metabolic pattern that is consistent with high-grade aggressive
behavior at progression (C). Transiently, albeit still consistent with viable tumor, a pattern suggestive
for a limited response to therapy may be observed, characterized by reduced choline (Cho) and
increased myo-inositol (mI) (B). Metabolic changes consistent with progression may precede clinical
deterioration and progression on MRI. All spectra were acquired on a 1.5T scanner using SV-PRESS
with TE = 35 ms and TR = 1.5 s. Cit = citrate.

Citrate (Cit) is routinely detectable in DIPG. Citrate is also detectable in subgroups
of tumors outside the brainstem [50]. Among grade II astrocytomas, high levels of Cit
appeared to indicate a high risk for malignant progression [51]. However, Cit was not
generally specific for poor outcome, as it was undetectable in a significant number of
high-grade gliomas with poor outcomes. Harris et al. reported that myo-inositol in
supratentorial pilocytic astrocytomas is higher than in posterior fossa pilocytic astrocytomas
(cf. Figures 3 and 4). They also noted that, among optic or thalamic tumors, those that had
low myo-inositol at presentation were at higher risk for progression [42]. It has also been
suggested that elevated levels of glycine identify tumors with increased malignancy [52–54].

Recently, molecular subtypes of common pediatric brain tumors associated with
significant different clinical outcomes have been identified using whole-genome sequencing
methods [55,56]. Future novel targeted therapies might be able to treat these tumors without
the need and risks of surgical resection and biopsies. Nevertheless, there is a need for
accurate and early in vivo diagnosis of molecular subtypes—a possible important clinical
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application for in vivo MRS. Indeed, first studies indicate that MRS might be able to assist
with the non-invasive identification of the medulloblastoma subtypes wingless (WNT),
sonic hedgehog (SHH), group 3, and group 4 [41]. In vivo MRS may also predict key
molecular features of atypical teratoid/rhabdoid tumors (AT/RT) at initial diagnosis [57]
and may help with assigning subtypes of ependymomas [58].

4.2. Perinatal Hypoxic–Ischemic Encephalopathy

Perinatal hypoxic–ischemic encephalopathy (HIE) is a significant cause of neonatal
death and of long-term neurodevelopmental disabilities [59]. MR imaging of the newborn
brain provides biomarkers of disease status and predictors for outcome [60–63]. MRS com-
plements conventional MRI and diffusion MRI by providing direct measures of metabolites
that reflect the severity of injury [63–70] (Figure 7). Meta-analyses that compared various
imaging modalities showed high sensitivity (82%) and specificity (95%) for the lactate
to NAA ratio (Lac/NAA) for predicting neurodevelopmental outcomes [71,72]. Lactate
accumulates when oxidation of pyruvate in the TCA cycle is impaired or halted, whereas a
reduction of NAA indicates neuronal and axonal injury.
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Figure 7. Newborn hypoxic/ischemic injury. Typical MR spectra of the thalamus of acute mild
newborn hypoxic/ischemic injury (HIE) with clinically unremarkable follow up (A,C) versus severe
HIE followed by death or significant disability (B,D). Note that spectra (A) + (B) were acquired with
a short echo time (TE = 35 ms), whereas spectra (C) + (D) were acquired with long TE = 288 ms.
Metabolic markers of severe injury that have been consistently reported in the literature are elevated
lactate (Lac) and lipids, reduced NAA, and elevated glutamine (Gln). The above spectra were
scaled to the approximate absolute metabolite levels ((A) vs. (B) and (C) vs. (D)). Edema formation
and/or cell death and depletion of intracellular metabolites in severe HIE may explain generally
lower absolute concentrations. In long-TE spectra, signals from lipid, glutamate, and glutamine are
suppressed resulting in a more unambiguous detection and quantitation of NAA and lactate, which
may simplify the determination of the important Lac/NAA ratio. Spectra were acquired within
1 week of injury on a clinical 3T scanner with SV-PRESS, TR = 2 s, and TE as indicated above.

The metabolic profiles of HIE evolve as the injury evolves. Lactate is prominent and
glutamine (Gln) is elevated at the very early stage (1–2 days) with NAA more moderately
decreased. Edema formation may also have an overall impact on metabolite profiles and
concentrations during the acute phase of HIE. With subsequent cell death in severe HIE,
a more substantial reduction of NAA and increased lipids are observed (Figure 8). Kreis
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et al. suggested that MRS performed 3–4 days after injury had higher predictive value
for outcome than when done at 1–2 days; however, their study was performed in older
children [73]. Of note, propylene glycol (Pgc), when used as a vehicle for medications, can
accumulate in tissue and can be misidentified as lactate as their signals are similar [74].
This is avoided by appreciating the different positions of their signals on the frequency axis
at ≈1.14 ppm for Pgc vs. ≈1.33 ppm for Lac (Figure 9). Pgc is ultimately metabolized to
lactate and is, therefore, a potential exogenous source of lactate.
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With MRS providing metabolic information, inborn errors of metabolism (IEMs) 

seem to be a tailormade application for MRS. However, IEMs are generally infrequently 
encountered indications for brain MRI studies when compared with, for example, brain 
tumors. In addition, albeit altogether IEMs constitute a significant portion of childhood 
disorders, individually, IEMs are rare diseases. Finally, since radiologists are often un-
comfortable with MRS, it has been utilized infrequently, and it is not surprising that the 
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Figure 8. Evolution of HIE in newborns. MR spectra of the thalamus (A) and parietal gray matter (B)
in a newborn with severe HIE on days 2, 4, and 24 after injury. Lactate (Lac) is elevated whereas
lipids are unremarkable on day 2 after injury in both brain regions. Four days after injury, small
increases of lipids are noted with lactate remaining elevated. Lipids are prominent at day 24 in the
more severely injured thalamus. At that time, lactate levels in both regions have decreased. The
broad peak at 2.8 ppm originates from poly-unsaturated fatty acids (PUFAs). Note that absolute NAA
is reduced on day 2 but then further declines with cell death particularly in the thalamus. Spectra
were acquired on a clinical 3T scanner with SV-PRESS, TE = 35 ms, and TR = 2 s.
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Figure 9. Lactate vs. propylene glycol. MRS of parietal white matter of a 1-month-old male with
suspected HIE shows a prominent propylene glycol (Pgc) signal centered at ≈1.19 ppm but essentially
unremarkable Lac at ≈1.33 ppm. Other metabolites are also unremarkable.
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4.3. Inborn Errors of Metabolism

With MRS providing metabolic information, inborn errors of metabolism (IEMs) seem
to be a tailormade application for MRS. However, IEMs are generally infrequently encoun-
tered indications for brain MRI studies when compared with, for example, brain tumors.
In addition, albeit altogether IEMs constitute a significant portion of childhood disorders,
individually, IEMs are rare diseases. Finally, since radiologists are often uncomfortable
with MRS, it has been utilized infrequently, and it is not surprising that the number of
MRS studies of IEM is small. Nevertheless, MR imaging studies, for IEM patients who
undergo an MR examination, are often interpreted as unremarkable or report ambiguity.
For these patients, with a suspected or a known neurometabolic disease, the addition of a
brief MRS acquisition may be beneficial either by improving the accuracy of diagnoses or
the phenotyping of a known disease [75].

MR spectra of inborn errors need to be interpreted in the context of the complete
clinical history and MRI appearance as there are common abnormal metabolic features
such as possibly elevated lactate and glucose in mitochondrial disorders or reduced NAA
for any disease associated with neuronal/axonal damage. Age at onset, progression of
a disease, and treatments, particularly those that are effective (e.g., removal of glycine
in hyperglycinemia), will change the appearance of the spectra [70,76,77]. Examples for
MRS of inborn errors acquired at a single institution with consistent methods are shown in
Figures 10 and 11.
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Figure 10. Mitochondrial disorders. MRS of parieto/occipital gray matter of mild form of MELAS
(mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) with an unremarkable
MRI is essentially normal with no evidence for elevated lactate (Lac) (A). In contrast, Lac is readily
detectable in another MELAS patient with a borderline normal MRI. Note that NAA (relative to
Cr) is reduced in this patient (B). MR spectra of two patients diagnosed with Leigh’s syndrome
(siblings) are shown on the right. In addition to Lac, alanine (Ala) is elevated. In both spectra, NAA is
reduced, and glucose (Glc) seems to accumulate in the upper spectrum (C,D). Spectra were acquired
with SV-PRESS, TE = 35 ms, TR = 1.5 s on a 1.5T scanner (A,B) and TE = 35 ms, TR = 2 s on a 3T
scanner (C,D).
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Figure 11. MR spectra of various inborn errors of metabolism. (A) Non-ketotic hyperglycinemia
(NKH): A 15-day-old male newborn examined to confirm suspicion of acute NKH. The elevated
glycine (Glyc) signal is consistent with hyperglycinemia, an amino aciduria in which a defect of the
enzyme that breaks down glycine results in the abnormal accumulation of glycine in tissue. Note
that for a 15-day-old newborn, the NAA and Lac signals are within normal. Other metabolic features
are also unremarkable when adjusted for age. For the above patient, the MR images were mostly
unremarkable. (B) Sandhoff disease: A 14-month-old female presenting with global developmental
delay and hypotonia with delayed myelination and diffuse white matter abnormalities. The signal at
approximately ≈2.07 ppm has been assigned to N-acetylhexosamine (NHEX), specific for Sandhoff
disease [78]. In addition, elevated mI and reduced NAA is noted. (C) Canavan disease: Canavan
disease is a leukodystrophy where a defect in aspartoacylase (ASPA), the enzyme that breaks down
N-acetylaspartate (NAA), results in excessive accumulation of NAA. In above spectrum, myo-inositol
(mI) is also elevated. The MR images of the 6-month-old male patient showed significant diffuse
white and gray matter abnormalities. (D) Krabbe’s leukodystrophy: Krabbe’s leukodystrophy is a
lipid storage disorder caused by a deficiency of galactocerebrosidase (GALC), the enzyme required for
the breakdown of the sphingolipids, galactosylceremide and psychosine. MR images of a 3-year-old
child with Krabbe’s leukodystrophy demonstrate white matter dysmyelination and loss. MRS of
white matter show a significant reduction of NAA and elevated mI. (E) Adrenoleukodystrophy
(ALD): ALD is caused by mutations in the ABCD1 genes. In vivo MRS of affected the white matter in
a 5-year-old male shows, relative to creatine (Cr), elevated lipids, depleted NAA, elevated choline
(Cho), and elevated mI. Note that the spectrum carries some similarities with the spectra of gliosis
and gliomas. (F) Metachromatic leukodystrophy (MLD): In MLD the accumulation of sulfatides
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causes the destruction of the myelin sheath. MR images show profoundly abnormal white matter.
The MR spectrum shows elevated lipids and macromolecules (MM), elevated Lac, and reduced NAA.
(G) Adenylosuccinate lyase deficiency (ASLD): ASLD causes the buildup of succinylaminoimidazole
carboxamide riboside (SAICA riboside) and succinyladenosine (S-Ado), which are detectable at 7.5
and 8.3 ppm. In addition, in this patient, Lac is elevated, NAA is reduced, and Cho is elevated relative
to Cr. The MR images of the 17-month-old female showed general volume loss and hypomyelination.
(H) 3-hydroxy-3-methylglutaric acid (HMG) CoA lyase deficiency: In HMG CoA lyase deficiency,
cells are unable to process leucine and synthesize ketone bodies. The MR images of this 12-year-old
female were mildly abnormal. The MR spectrum acquired in parietal white matter demonstrates
accumulation of HMG and of 3-hydroxy isovaleric acid (OHIV). All spectra were acquired on clinical
1.5T (C,E,H) or 3T scanners (A,B,D,F,G) with SV-PRESS sequence, TE = 35 ms, and TR = 1.5 s (1.5T)
or TR = 2 s (3T).

4.4. Trauma

Traumatic brain injury (TBI) in children, including from child abuse (non-accidental
trauma), is a leading cause of child death and neurologic complications in the United
States [79–81]. In addition, possible adverse long-term effects from mild but repeated TBI
(concussions) from sports or other activities are likely underreported and are an increasing
concern in children [82–85].

Computer tomography (CT) and MR imaging are the first choices for detecting bleeds
and edema/swelling in acute and severe TBI. However, some aspects of acute and chronic
injury or more mild but repetitive injury at a cellular level may be difficult to recognize by
these methodologies. Metabolic patterns observed by in vivo MRS should be expected to
be heterogeneous depending on the time after injury, the severity of the injury, the brain
region examined, and the response of the brain to injury, which may vary during brain
development.

Several groups independently concluded that MRS has value when performed early
after an injury as it is helpful for evaluating the extent of injury and improves the accuracy of
long-term prognosis [86–93]. It was reported that abnormal MRS in brain regions that were
deemed to be normal by MRI, predicted outcome more accurately than the abnormalities
of lesions [94,95].

Severe, acute injury is recognized by elevated lactate and lipids and a reduction of
the axonal/neuronal marker NAA and often mimics MRS patterns that are observed in
hypoxic–ischemic injury, consistent with the interruption of blood perfusion and subse-
quent apoptosis and cell death (Figure 12). In more mild/moderate cases of traumatic brain
injury, NAA may be mildly or only transiently reduced, whereas Cho is often elevated,
possibly reflecting axonal injury and subsequent repair processes [95–99].

4.5. Infections, Inflammation

Acute abscesses can present with metabolic profiles that are strikingly unusual de-
pending on the organism (bacteria, fungi) that is causing them (Figure 13A). The presence of
cytosolic amino acids (e.g., leucine, isoleucine, and valine at 0.8 ppm) has been consistently
reported both in aerobic and anaerobic pyogenic lesions with varying amounts of lactate
and lipids. Acetate at 1.9 ppm and succinate at 2.4 ppm may also be observed as well
as other signals that yet need to be assigned [100–103]. Abscesses that have been treated
successfully may present with elevated Lac and lipids with all other metabolites being
depleted (Figure 13B).
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Figure 12. MRS of suspected non-accidental trauma. A parietal white matter spectrum acquired
from a 5-month-old male with subarachnoid hemorrhage but otherwise unremarkable MR imaging.
The MR spectrum appears to be normal for age (A). Six-month-old with subdural hemorrhages and
diffuse supratentorial volume loss. Choline (Cho) appears to be elevated suggestive for axonal injury
(B). Two-month-old with acute subdural hemorrhage in the posterior fossa and diffusion abnormality
consistent with acute infarct. Lactate is elevated and NAA is reduced. The elevated signal in the
2.2–2.5 ppm range is likely from glutamine (Gln) (C). All spectra were acquired on a 1.5T system with
SV-PRESS, TE = 35 ms, TR= 1.5 s.

Otherwise, infectious or inflammatory conditions may present with a wide range of
metabolic abnormalities depending on type, time of onset, extent, and treatments [104–113].
It has been suggested that MRS could be useful for differentiating infectious/demyelinating
processes from tumors by the relative prominence of glutamine in short-TE spectra [114,115].
Of note, with long-TE MRS acquisitions (e.g., TE > 130 ms), the glutamine signal disappears
and spectra need to be interpreted carefully [116]. Furthermore, when the ROI for a tumor
study includes edema/inflammation adjacent to a tumor, the resulting spectrum will show
a combination of metabolic features, complicating the interpretation.
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Figure 13. Acute and chronic infections. MR spectra of acute abscesses can be strikingly unusual.
In the above example (A), common brain metabolites are absent, whereas prominent signals form
succinate (Suc) and acetate (Act) as well the cytosolic amino acids leucine (Leu), isoleucine (ILeu),
and valine (Val) are observed. lactate (Lac), alanine (Ala), and moderate amounts of lipids are also
detectable. On the other hand, only lipids and lactate are observed in a shrinking abscess after 20
days of antibiotics treatment (B). A spectrum of acute cerebellitis shows elevated lipids and lactate as
well as reduced N-acetylaspartate (NAA). Glutamine (Gln) is elevated, whereas myo-inositol (mI) is
low (C). In a spectrum acquired from a 2 1

2 -year-old child with a history of meningoencephalitis, lipids
are unremarkable, lactate is close to normal, and both myo-inositol and glutamine are unremarkable.
NAA is reduced, indicating some permanent neuronal/axonal injury (D). Spectra were acquired on
3T (A,C,D) and 1.5T (B) scanners with SV-PRESS, TE = 35 ms, and TR = 2 s (3T) or TR = 1.5 s (1.5T).

4.6. Epilepsy

Epilepsy is a chronic disorder characterized by unprovoked seizures. Seizure cause is
often unknown. Several groups have reported a decrease of the neuronal marker NAA,
which could be attributed to loss of neurons but also to abnormal mitochondrial function as
NAA is synthesized in the mitochondria [117–120]. NAA can recover to normal levels with
disappearing seizure activity [121,122]. It has also been reported that lactate is elevated
during seizure activity possibly due to increased energy demand that is met with partially
anaerobic metabolism [123]. Tissue glutamate and GABA levels, being major excitatory
and inhibitory neurotransmitters, have been investigated by several groups in patients
with epilepsy. However, it is challenging to accurately quantify these metabolites in vivo
since their MR signals are complex and overlapping [124–128].

Clinically, focal abnormal metabolic features could be exploited for detecting seizure
foci and for disease lateralization in temporal lobe epilepsy. Nevertheless, in practice,
that would require examining the whole brain or a large section of the brain with multi-
voxel spectroscopy, which is time-consuming and requires elaborate post-processing by
experienced spectroscopists and is, therefore, currently not utilized.

A ketogenic diet is effective in reducing seizure activities for a subgroup of patients.
Albeit ketosis can readily be monitored with urine ketone levels, it should be noted that
the accumulation of ketone bodies in the brain can be observed with in vivo MRS [129]
(Figure 14).
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Figure 14. Detection of ketone bodies in in vivo MRS (A) The MR spectrum of a 13-year-old boy
with refractory epilepsy on ketogenic diet and unremarkable MR images shows a signal consistent
with acetone (Acn) at 2.22 ppm and a doublet from β-hydroxybutyrate (βHB) centered at ≈1.19 ppm.
Note that NAA is below normal for age. MR imaging in this patient was unremarkable. (B) The MR
spectrum of a 11-year-old boy with abnormal MRI, a history of meningoencephalitis, and refractory
epilepsy on ketogenic diet shows prominent Acn signal, elevated lactate (Lac) and glutamine (Gln),
as well as drastically reduced NAA. Spectra were acquired on a 3T scanner with PRESS, TE = 35 ms,
and TR = 2 s.

4.7. Neuropsychiatric Disorders

In vivo metabolic abnormalities have been detected in several neuropsychiatric disor-
ders in children [130–132]. Unfortunately, some of the neurochemicals that are of interest
for psychiatric disorders, including GABA and glutathione, cannot be quantified accurately
in clinical settings. In addition, metabolites that can be assessed more reliably, such as NAA,
Cr, Cho, and mI, show a large overlap in patients and controls. Thus, there is currently
no role for MRS as a clinical tool for the diagnoses and monitoring of neuropsychiatric
disorders in pediatrics, and MRS is restricted to academic research.

5. Conclusions

In vivo proton MRS is a unique and non-invasive methodology widely available
on state-of-the-art clinical MR scanners. It generates spectra that contain biochemical
information about tissue status. Most chemicals detectable with MRS are small molecules
that maintain cell function. Analyzing metabolic profiles can increase the diagnostic
accuracy and improve the assessment of disease status for a variety of pediatric brain
disorders, including pediatric brain tumors, hypoxic–ischemic injuries, inborn errors of
metabolism, trauma, and infections.
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