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Abstract: Oroantral communication (OAC) is a common complication after tooth extraction of up-

per molars. Profound preoperative panoramic radiography analysis might potentially help predict 

OAC following tooth extraction. In this exploratory study, we evaluated n = 300 consecutive cases 

(100 OAC and 200 controls) and trained five machine learning algorithms (VGG16, InceptionV3, 

MobileNetV2, EfficientNet, and ResNet50) to predict OAC versus non-OAC (binary classification 

task) from the input images. Further, four oral and maxillofacial experts evaluated the respective 

panoramic radiography and determined performance metrics (accuracy, area under the curve 

(AUC), precision, recall, F1-score, and receiver operating characteristics curve) of all diagnostic ap-

proaches. Cohen’s kappa was used to evaluate the agreement between expert evaluations. The deep 

learning algorithms reached high specificity (highest specificity 100% for InceptionV3) but low sen-

sitivity (highest sensitivity 42.86% for MobileNetV2). The AUCs from VGG16, InceptionV3, Mo-

bileNetV2, EfficientNet, and ResNet50 were 0.53, 0.60, 0.67, 0.51, and 0.56, respectively. Expert 1–4 

reached an AUC of 0.550, 0.629, 0.500, and 0.579, respectively. The specificity of the expert evalua-

tions ranged from 51.74% to 95.02%, whereas sensitivity ranged from 14.14% to 59.60%. Cohen’s 

kappa revealed a poor agreement for the oral and maxillofacial expert evaluations (Cohen’s kappa: 

0.1285). Overall, present data indicate that OAC cannot be sufficiently predicted from preoperative 

panoramic radiography. The false-negative rate, i.e., the rate of positive cases (OAC) missed by the 

deep learning algorithms, ranged from 57.14% to 95.24%. Surgeons should not solely rely on pano-

ramic radiography when evaluating the probability of OAC occurrence. Clinical testing of OAC is 

warranted after each upper-molar tooth extraction. 

Keywords: artificial intelligence; deep learning; X-ray; tooth extraction; oroantral fistula; operative 

planning 

 

1. Introduction 

When teeth are surgically removed in the maxilla, the opening of the maxillary sinus 

is a relevant complication, especially in the posterior region. Recent studies indicate that 

surgical removal of the upper third molar in the maxilla may cause maxillary sinus open-

ing in up to 13% of cases, whereas completely displaced teeth may further increase the 

prevalence to up to 25% [1]. Usually, primary treatments cannot prevent oroantral 
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communication (OAC). More invasive surgical interventions than novel, less invasive 

ones, for example, are associated with a higher likelihood of complications [2,3]. An illus-

tration of the relationship between upper molars and the oroantral region is shown in 

Figure 1. The maxillary sinus can have variable anatomy due to maxillary sinus septa, 

temporary mucosal swelling, previous operations (Caldwell–Luc operation), or tumors 

[4]. Two-dimensional radiographic imaging is the standard imaging for routine extraction 

of maxillary teeth [5]. Panoramic radiography is the most widely used imaging modality 

for common oral surgical procedures. In addition to the general overview of the maxilla 

and mandible in a 2D X-ray/panoramic radiography, it is also characterized by its high 

availability, low radiation exposure, and low cost compared to 3D cone beam computer 

tomography [6,7]. Surgical intervention is required when the mucosal perforation exceeds 

3 mm [5]. To be able to treat this complication, preoperative planning is necessary, such 

as planning the incision to be able to form a possible mucoperiosteal flap [8]. Simple clo-

sures with a single suture are possible but carry a high risk of complications [9]. Preoper-

ative risk stratification algorithms could help lower the possible postoperative complica-

tions associated with OAC by utilizing them in alert-like systems for patients at risk in 

clinics. 

 

Figure 1. Illustration of the relationship between upper molars and the oroantral regions. Upper 

molar tooth extraction can lead to a perforation of the maxillary sinus floor and subsequent com-

munication of the oral cavity with the maxillary sinus. 

In 1978, mathematician Richard Bellman defined artificial intelligence (AI) as the au-

tomation of activities associated with human thinking skills, such as learning, decision 

making, and problem solving [10]. A clinical decision-support system is a computer algo-

rithm developed to support clinical decision making in healthcare systems. This process 

involves processing a wide variety of medical data points necessary or valuable for inter-

pretation [11,12]. As a branch of artificial intelligence, machine learning uses statistical 

learning algorithms to create systems that learn and enhance on their own without being 

explicitly programmed. The concept of “deep learning” is an applied machine learning 

method based on how the human brain filters information and learns from examples. Fil-

tering input data through layers enables a computer model to anticipate and classify in-

formation. The term “convolutional neural networks” refers to artificial neural networks 

commonly applied to medical image prediction and classification. Essentially, it is a deep 

learning algorithm that takes an image as input and assigns weights/biases to specific 
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characteristics and objects in the image in order to distinguish between them. CNNs are 

composed of many hidden layers, such as convolutional layers, pooling layers, fully con-

nected layers, and normalizing layers. A ConvNet is designed to mimic the organization 

of the visual cortex and the pattern of connectivity of the neurons in the human brain [13]. 

In dentistry, interest in this area of research has increased significantly in recent years [14]. 

In a systematic review by Khanagar et al. (2021), many areas of application of AI in den-

tistry have already been identified [14]. The studies included in this systematic review 

were mainly concerned with the application of AI for the detection and diagnosis of dental 

caries and other oral pathologies. Here, the algorithms reached satisfying diagnostic ac-

curacy. 

A high predictive probability for sinusitis of the maxillary sinus has already been 

described [15]. As compared with experienced clinicians, at least a comparable level of 

sensitivity and specificity has been achieved [16]. Artificial intelligence is a beneficial tool 

to provide adequate guidance to the practitioner in case no other three-dimensional im-

aging is available. To the best of our knowledge, the AI-based predictive accuracy of pan-

oramic radiography for maxillary sinus perforation after tooth extraction has not yet been 

described. Thus, we sought to evaluate several deep learning models for the prediction of 

OAC after tooth extraction utilizing preoperative panoramic radiography and compare 

the diagnostic accuracy with the accuracy obtained from human experts’ evaluations. The 

overall aim of this exploratory study is to evaluate whether the anatomical situation found 

in panoramic radiography can predict OAC reliably after tooth extractions. Generally, we 

aimed to (1) assess the feasibility of OAC prediction from preoperative panoramic radi-

ography utilizing multiple deep learning algorithms; (2) evaluate the feasibility of OAC 

prediction from expert evaluations; and (3) assess whether there are differences in diag-

nostic metrics for expert evaluations and deep learning algorithms regarding the OAC 

predictions. 

2. Materials and Methods 

2.1. Study Design 

The examination is conducted in accordance with the Declaration of Helsinki and the 

Professional Code of Conduct for Physicians of the Bavarian Medical Association in the 

respective current versions. Although informed consent is regarded as a requirement for 

research purposes according to the Declaration of Helsinki and the Professional Code of 

Conduct for Physicians of the Bavarian Medical Association in the respective current ver-

sions, the ethics committee waived the need for informed consent in the present study due 

to the anonymization of X-ray data. All consecutive patients examined from 2010 through 

2020 at the University Hospital Würzburg with indications of tooth extraction in the pos-

terior region of the upper jaw were included in this study. Exclusion criteria were malig-

nant diseases in the surgical area, fractures in the surgical site, syndromal anatomical var-

iants, inflammation process on the root tip, and chronic/pre-existing OAC. In total, 300 

patients with extracted teeth were included consecutively. The study was reviewed by the 

Ethics Committee of the University of Würzburg and approved under the authentication 

number 2022011702. 

The data were acquired in the data management system of the University Hospital 

of Würzburg. Patients who had a tooth extraction in the maxillary posterior region be-

tween 2010 and 2020 were screened. These patients were explicitly selected based on ICD 

codes. The respective operation report was reviewed in detail for the group of patients 

who had an OAC after tooth extraction. The preoperative panoramic radiography was 

extracted only in the case that OAC could be determined clinically with various examina-

tions. The panoramic radiography was extracted as a completely anonymized image file. 

For the control group, patients who had an extraction in the maxillary posterior region 

were searched and allocated to the control group after reviewing the surgical report, in 

which OAC was excluded and/or not diagnosed. The extraction of the radiograph was 
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performed in the same way as described above. Overall, 100 consecutive cases with simi-

lar image and positioning quality in the OAC group (from 2010 to 2020) and 200 cases in 

the control group were collected for data analysis. 

2.2. Expert Evaluations 

In order to evaluate and compare the results of the deep learning algorithms, a com-

parative analysis was carried out by four oral and maxillofacial clinicians. A sequence of 

a total of 300 randomly arranged panoramic radiography images was produced. This se-

quence included a total of 100 images with a postoperative OAC and 200 images without 

this complication. The examiners were asked to decide from the preoperative panoramic 

radiography whether or not postoperative OAC occurs after the extraction of teeth in the 

maxillary posterior region (binary code: 1 for OAC and 0 for non-OAC). The diagnostic 

performance was determined for the respective practitioners and compared with the re-

sults of the deep learning algorithms. 

2.3. Convolutional Neural Networks 

The original images were taken utilizing multiple panoramic imaging devices. Im-

ages were randomly split into a train, test, and validation sets (60%, 20%, 20%). The vali-

dation data comprised the dataset used during training to check the outcome and adopt 

the model structure/hyperparameters. The test data comprised the hold-out dataset that 

was not used until the training process was finished to evaluate metrics. Then, we rescaled 

(224 × 224) all dataset images and pre-processed the train dataset images by applying data 

augmentation techniques (rotation range of ±30 degrees, horizontal flipping, brightness 

of 20–80%). Image augmentation was used to reduce overfitting and improve generaliza-

tion. The region of interest was set manually by one surgeon to define the maxilla and the 

sinus area. We then utilized multiple supervised pre-trained deep learning models to clas-

sify the two study classes OAC versus non-OAC. For this, we applied five deep learning 

models (VGG16, ResNet50, Inceptionv3, EfficientNet, and MobileNetV2) to solve the clas-

sification problem. The algorithms’ structure and the code are available in the data avail-

ability section. The models were frozen in the way that we used the basic models and 

made changes to the final layer only, as these models were designed to handle multiple 

classes, whereas we needed to solve a binary classification problem. For this, we made the 

layer non-trainable and built a last fully connected layer. Overall, we flattened the output 

of our base model to one dimension, added a fully connected layer with hidden units and 

ReLU activation, used a dropout rate, and added a final fully connected sigmoid layer. 

The specific characteristics of the models, including each layer, are shown in the code 

available in the data availability section. We used the RMSProp Optimizer (VGG16, In-

ceptionV2, EfficientNet), SGD optimizer (ResNet50), or Adam optimizer (MobileNetV2) 

with a learning rate of 0.0001 and binary cross-entropy for loss evaluation. Steps per epoch 

were calculated as the sample size for the training set divided (using the integer division 

operator) by the batch size, where the batch size was 10. Models were trained for 10 

epochs. We did not use a grid search, random search, or Bayesian optimization for hy-

perparameter tuning but used a manual search to adjust the parameters until the best 

metrics were obtained. Grid search and manual search are the most widely used strategies 

for hyper-parameter optimization [17]. Hyperparameter tuning using fine-tuning algo-

rithms was intended to be applied to improve models more precisely in the case where an 

AUC over 0.75 could be reached for any model. In case no evidence was found that models 

were suitable to reach higher accuracies, we decided not to perform further hyperparam-

eter tunings in a resource-oriented way, as these fine-tuning techniques are more intended 

to build precise models to classification tasks than to explore the feasibility/exploratory 

approach of whether a reliable classification is possible or not. 

To evaluate each model’s performance, accuracy, precision, recall, F1 score, and AUC 

were calculated. Accuracy is a metric used in classification problems to determine the per-

centage of accurate predictions. Precision is the ratio of true positives to true positives and 
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false positives. The recall consists of the proportion of true positives to true positives and 

false negatives. An F1 score is derived by dividing precision and recall by (2 × precision + 

recall)/(precision + recall), while the AUC represents the area under the receiver operating 

characteristics (ROC) curve. To evaluate the clinical usability of AI, the results of pano-

ramic radiography reads by AI and four oral and maxillofacial surgery specialists were 

compared. The diagnostic performance was assessed using the AUC, sensitivity, and 

specificity metrics. Agreement for expert evaluations was assessed with Cohen’s kappa 

statistics. Algorithms were built and evaluated in Python using the OpenCV, NumPy, Pil-

low, Seaborn, Matplotlib, TensorFlow, Keras, and scikit-learn libraries. The hardware and 

software environment specifications were as follows: 

• CPU: AMD Ryzen 9 5950X 16-Core Processor; 

• RAM: 64 GB; 

• GPU: NVIDIA Geforce RTX 3090 (24 GB GDDR6X RAM); 

• Python version: 3.10.4 (64-bit); 

• OS: Windows 10. 

Statistical analyses were conducted in Python, Stata Statistical Software Release 15 

(StataCorp. 2011, College Station, TX, USA), and SPSS v26 (IBM, Armonk, NY, USA). Fig-

ure 1 was created with BioRender.com software (BioRender, Toronto, ON, Canada). 

3. Results 

3.1. Convolutional Neural Network Performance 

According to the accuracy and area under the curve (AUC) measure, the best-per-

forming models were MobileNetV2 and IncepionV3. The accuracy, AUC, precision, recall, 

and F1 score for the MobileNetV2 model were 0.74, 0.67, 0.75, 0.43, and 0.55, respectively 

(Table 1). The accuracy, AUC, precision, recall, and F1 score for the InceptionV3 model 

were 0.70, 0.60, 1.00, 0.19, and 0.32, respectively. 

Table 1. Model performance of the convolutional neural networks. Values show the metrics for the 

independent test dataset (hold-out dataset). 

Algorithm Accuracy AUC Precision Recall F1-Score 

VGG16 0.63 0.53 0.50 0.14 0.22 

MobileNetV2 0.74 0.67 0.75 0.43 0.55 

InceptionV3 0.70 0.60 1.00 0.19 0.32 

ResNet50 0.56 0.45 0.17 0.05 0.07 

EfficientNet 0.63 0.51 0.50 0.05 0.09 

Precision, TP/(TP + FP); Recall, TP/(TP + FN); F1 score, 2 × (recall × precision)/(recall + precision); 

AUC, area under the curve; Accuracy, (TP + TN)/(TP + TN + FP + FN). 

The confusion matrices and metrics of each model performed on the hold-out dataset 

(validation dataset) can be found in the data availability section. The specificity ranged 

from 0.8611 to 1.0000, with the highest specificity reached by the InceptionV3 model. The 

sensitivity ranged from 0.0476 to 0.4286, with the highest sensitivity reached by the Mo-

bileNetV2 model. The sensitivities from the EfficientNet, InceptionV3, MobileNetV2, Res-

Net50, and VGG16 were 0.0476, 0.1905, 0.4286, 0.0476, and 0.1429, respectively. The spec-

ificities from the EfficientNet, InceptionV3, MobileNetV2, ResNet50, and VGG16 were 

0.9722, 1.0000, 0.9167, 0.8611, and 0.9167, respectively. The false-negative rate, i.e., the rate 

of true-positive cases (OAC) that were missed by the algorithms, ranged from 57.14% 

(MobileNetV2) to 95.24% (EfficientNet and ResNet50). 

3.2. Expert Evaluations 

Table 2 shows the performance metrics for each of the four expert evaluations. The 

area under the curve (AUC) ranged from 0.5458 to 0.7059. The specificity ranged from 
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51.74% to 95.02%, whereas the sensitivity ranged from 14.14% to 59.60%. Cohen’s kappa 

exhibited a poor agreement for the oral and maxillofacial expert evaluations (Cohen’s 

kappa: 0.1285). 

Table 2. Detailed report of examiners (n = 300). AUC: area under the receiver operating characteris-

tic (ROC) curve. 

Observer Sensitivity Specificity Correctly Classified AUC 

1 14.14 95.02 68.33 0.5458 

2 59.60 81.59 74.33 0.7059 

3 34.69 76.12 62.54 0.5541 

4 68.69 51.74 57.33 0.6021 

The comparison of all ROC curves and AUC is shown in Figure 2 The deep learning 

model MobileNetV2 reached the highest AUC (AUC: 0.673), followed by a human expert 

(expert 2; AUC: 0.629). 

 

Figure 2. Receiver operating characteristic (ROC) curves and area under the ROC curves for all deep 

learning models and examiners. 

4. Discussion 

The present study sought to evaluate the feasibility of OAC prediction after upper-

molar tooth extraction utilizing preoperative panoramic radiography. The results showed 

that although the MobileNetV2 algorithm and one expert reached an AUC of 0.673 and 

0.629, respectively, the overall predictability of OAC from panoramic radiography was 

low. The false-negative rate, i.e., the rate of positive cases (OAC) missed by the deep learn-

ing algorithms, ranged from 57.14% to 95.24%. Further, there was a poor agreement for 

the oral and maxillofacial expert evaluations (Cohen’s kappa: 0.1285). 

Due to the fact that there are no comparable predictive studies currently available, it 

is not possible to compare our diagnostic metrics with others for the prediction of OAC 

after upper-molar tooth extraction. Using two data sets, one study compared AI-based 

and human examiner-based evaluations of inflammatory processes in the maxillary sinus 

from panoramic radiography [16]. The AI-based models achieved an AUC of 0.93 and 0.88 

compared to the radiologist with 0.83 and 0.89. For predicting the postoperative injury of 
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the inferior alveolar nerve from panoramic radiography, a systematic review of current 

evidence showed that sensitivity ranges from 0.06 to 0.49, and specificity ranges from 0.42 

to 0.89, which is in accordance with our deep learning results for OAC [6]. These findings 

were also comparable to our expert evaluations for OAC although the agreement between 

the experts was low. We could not find a general superiority of the AI-based algorithms 

compared to the expert evaluations, as described before for panoramic radiography pre-

dictions; however, one deep learning algorithm reached the highest AUC [6,16]. This find-

ing may be due to the fact that the information available in panoramic radiography was 

not sufficient to detect patterns on the basis of which an AI would be able to predict OAC 

reliably. One systematic review evaluated several risk assessment studies assessing the 

risk of OAC based on clinical data, panoramic radiography, or cone-beam computer to-

mography (CBCT) utilizing statistical models. The authors concluded that panoramic ra-

diographies are not reliable for assessing risk factors for OAC compared to CBCT based 

on current evidence [5]. We could confirm this finding by applying multiple deep-learn-

ing algorithms and letting experts evaluate the preoperative panoramic radiography. 

Two-dimensional images (panoramic radiography) are not able to reflect the three-

dimensional anatomical situation of molar roots. Bouquet et al. were able to show that in 

panoramic radiography, the root of the tooth appeared to protrude into the maxillary si-

nus, whereas in three-dimensional imaging (CBCT), there was no contact and thus no an-

atomical relationship [18]. Teeth can appear more inclined than they are in panoramic 

radiography [18]. This finding can be explained by the fact that deformations can occur 

when projecting a volume onto a flat surface. Such deformations are not expected in a 3D 

image [18]. It must also be borne in mind that in the majority of cases, the spatial devel-

opment of the maxillary sinus is buccal to the roots of the maxillary molars [18,19]. For 

this reason, the analysis of the more palatal/distal tooth part seems to be less relevant for 

the chosen question of perforation of the maxillary sinus. Furthermore, no information is 

available regarding the number of roots. Iwata et al. showed that single-rooted teeth had 

a higher incidence of oroantral connections than multi-rooted teeth [20]. 

Using a defined classification (Archer classification, inclination, and root sinus clas-

sification), it has been shown that the positional relationship of maxillary molars to the 

maxillary sinus or their neighboring teeth can predict the probability of OAC [20]. In ad-

dition, other factors such as treatment components (incision, bone removal, maxillary tu-

ber fractures, and extensive bleeding) correlate significantly with the likelihood of OAC 

[20]. The multifactorial genesis makes a prediction using 2D imaging difficult even with 

reliable classification systems. If the positional relationship or number of roots is unclear, 

3D imaging is a helpful tool [18]. For AI-based prediction models, it is therefore difficult 

to reliably predict the occurrence of OAC based only on 2D imaging. It remains to be ver-

ified whether prediction with 3D imaging, for example, 3D magnet resonance tomogra-

phy for soft tissue illustrations, can produce better results because of the additional infor-

mation processed with an AI approach in specific classification tasks [21]. In the expert 

evaluations, we also showed that only low agreement could be identified between experts, 

indicating that 2D imaging is also not sufficient to predict OAC from the clinical perspec-

tive. 

At present, deep learning methods are still being developed. An important ad-

vantage of convolutional neural networks is their ability to rapidly develop a feature ex-

traction model, which is not overly concerned with the effectiveness of some features. It 

is, however, difficult to compare and explain performance. MobileNetV2 is one of the 

most popular deep learning methods that are widely used today since it has one of the 

most lightweight network architectures. This model showed the best performance in our 

study. MobileNetV1 introduced depth-wise separable convolution, which dramatically 

reduced the network’s complexity costs and model size, making it suitable for low-pro-

cessing devices, such as smartphones. In MobileNetV2, a better module with the inverted 

residual structure, is introduced. It eliminates non-linearities in narrow layers. In addition 

to achieving state-of-the-art performances for feature extraction, MobileNetV2 also 
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achieves advanced results for object detection and semantic segmentation [22]. In general, 

MobileNetV2 is very similar to the original MobileNet, with the exception that it uses a 

novel layer module called the inverted residual with linear bottleneck, which reduces the 

memory requirement for processing since it has fewer parameters than the original Mo-

bileNet. As a result, the MobileNet V2 is less prone to overfitting. The proposed method 

uses MobileNetV2 as the basis for the transfer learning process. Due to the lightweight 

network architecture, the developed model can be implemented more quickly in clinical 

settings or mobile devices, making it more practical for use in clinical settings. Addition-

ally, we included MobileNetV2 because a recent study showed that it is possible to per-

form classification tasks from panoramic radiographs with MobileNetV2 achieving higher 

accuracy than has been seen in the past, for instance, in classifying caries in the third mo-

lars [23]. Apostolopoulos et al. used VGG19 and MobileNetV2 to perform feature extrac-

tion on X-ray images and found that MobileNetV2 performed better than VGG19 in terms 

of specificity [24]. As a result, they believe that MobileNetV2 is the most robust model for 

specific classification tasks and data samples. In general, more research needs to be un-

dertaken in order to evaluate why MobileNetV2 outperforms other methods in various 

settings. Notably, there might also be other image classification algorithms that could out-

perform the included models, such as artificial neural networks based on the successive 

geometric transformations model (SGTM) [25]. Several studies involving CNN in ortho-

pedics, oncology, ophthalmology, and neurosurgery have been cited in the PubMed data-

base since 2013. In 2017, Miki et al. published one of the first reports using CNNs with 

cone-beam computed tomography in the dental field [26]. CNN has been used in recent 

publications in cariology, periodontology, and endodontics as well as practical applica-

tions in clinics that are to be exploited in the near future [27–29]. Recent research describes 

a method to identify teeth using orthopantomography and registering them using simple 

CNNs that can help dentists in filling out dental charts more quickly and efficiently [30]. 

Other researchers developed a method of calculating age utilizing global fuzzy segmen-

tation and local feature extraction based upon a projection-based feature transformation 

with a deep CNN model designed for molar classification [31]. In a scoping study on CNN 

applications in dental image diagnostics, it was observed that CNNs could be utilized in 

diagnostic-assistance systems in the dental arena [32]. At present, the implementation of 

CNN technology is challenging for dentists. It is expected that the generalization of such 

technology will be made easier through the development of improved algorithms. Previ-

ously, discriminant handcrafted features (e.g., histograms of oriented gradients features 

or local binary patterns features) dominated digital image analysis, but recent advances 

in deep learning algorithms have displaced the handcrafted approach, allowing auto-

mated image analysis. Convolutional neural networks are a type of deep learning algo-

rithm that has become a workhorse. In recent data challenges for medical image analysis, 

all of the top-ranked teams used CNN. Except for one team, the top ten ranked solutions 

in the CAMELYON17 challenge used CNN for automatic detection and classification [33]. 

Shi et al. showed that the characteristics recovered via deep learning are superior to those 

extracted from handmade approaches [34]. In practice, however, deep learning algorithms 

such as CNN require a considerable quantity of training data under ideal conditions, re-

sulting in a data-scarcity problem. A number of obstacles, such as the scarcity of expert-

annotated data sets and the small size of medical cohorts, are well-known. Several studies 

have attempted to solve this problem by utilizing transfer learning or domain adaptation 

[35]. These approaches try to produce a high performance on target activities by applying 

knowledge learned from source tasks. Recent studies of transfer learning approaches from 

a data and model perspective were reviewed in 2020 by Zhuang et al. [36]. Researchers 

are increasingly interested in unsupervised transfer learning, an emerging academic sub-

ject. In their review of unsupervised deep domain adaptations, Wilson and Cook [37] ex-

amined a large number of articles. The use of generative adversarial networks-based 

frameworks has gained momentum recently [38], with Domain Adversarial Neural Net-

work (DANN) being particularly promising [39]. A number of other methods have also 
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been utilized for unsupervised transfer learning, including multiple kernel active learning 

[40] and collaborative unsupervised methods [41]. 

The study is associated with strengths and limitations. To the best of our knowledge, 

it is the first study evaluating the prediction of OAC utilizing both AI-based and expert-

based evaluations of preoperative panoramic radiography. Thus, it contributes to the ex-

isting evidence, which solely applied statistical modeling (i.e., regression models) to eval-

uate risk factors for OAC. Further, the presented algorithms and dataset can be used to 

expand the methodology, compare diagnostic metrics with 3D assessment metrics, and 

perform external validations. However, there are also limitations associated with the pre-

sent study. Unknown confounding factors due to the nature of retrospective analysis must 

be considered. In retrospective studies, it must be taken into account that small OAC may 

have occurred and were not documented in the patient information system, as this did 

not result in any additional need for intervention. Hence, although we accurately checked 

the available surgical reports to ensure whether OAC occurred or not, there might be mis-

allocations. Thus, it should be noted that the control group included cases that were not 

assigned to the intervention group due to the lack of documentation in cases of low clinical 

suspicion, small OAC not worthy of treatment, or OAC that had occurred but were not 

documented. This might bias the allocation process. A more precise allocation would be 

possible with a prospective study design with standardized clinical testing algorithms for 

OAC. Overall, external validation utilizing prospective datasets is warranted. Another 

limitation is the determination of the ROI in our study. We decided to include a rather 

larger ROI to evaluate whether shapes of the sinus or adjacent structures are related to 

OAC. This was based on a previous study showing that the Archer and Root Sinus classi-

fication of teeth impaction is significantly associated with OAC [20]. As both classifica-

tions focus not only on the extracted teeth but also on adjacent structures, we decided to 

include a larger ROI. In our subsequent study, including larger sample size, we limited 

the ROI to the sinus area to evaluate whether the automatized classification of Archer and 

RS classes would be possible (unpublished data). In addition, here, we did not find evi-

dence that panoramic radiography is feasible for this classification task, which is also in 

accordance with the expert evaluations. Although we included an extensive period to ex-

tract all images in our institution, the number of OAC cases might still be small, limiting 

the capabilities of deep learning algorithms to reliably learn the features from the dataset 

that can predict OAC, potentially reflecting the low sensitivity obtained from our algo-

rithms. Sample size calculations for image classifications are known to require more than 

1000 images per class for accurate predictions. However, this is often not possible in mo-

nocentric studies coming from surgical departments, as also shown in a recent systematic 

review assessing whether studies to date have performed sample size calculations for 

deep learning purposes in the literature [42]. These sample-size calculations might be 

more beneficial if there is evidence in an initial dataset analysis showing that classification 

is accurate and feasible from the dataset. A subsequent sample-size calculation can further 

improve future research models to a specific degree although studies have shown that 

sample size also affects the robustness of neural networks [43]. Another common mistake 

is to use the same data sets for validation and training. To avoid this bias, we separated 

the dataset into a training, testing, and validation sets, limiting the size of the training 

dataset further [44,45]. Nevertheless, the present study was the first feasibility study to 

evaluate whether multi-center studies would be beneficial in assessing the study question. 

As we did not find convincing evidence that panoramic radiography can predict OAC, 

our approach might have saved research resources associated with multi-center evalua-

tions. Notably, the predictions of the algorithms are exclusively based on panoramic radi-

ography. In this case, the practitioner’s clinical decision-making process, which is carried 

out by considering all additional clinical data (i.e., clinical examinations, the extent of sur-

gical invasiveness), cannot be fully simulated by the AI algorithms [46]. In addition, bi-

nary classification by human experts might not be as accurate as Likert-like scales or vis-

ual analogue scales, where expert decisions might be better reflected. This approach 
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would also be more comparable with the algorithms that provide the probability metrics. 

Notably, we used the whole dataset for expert evaluations, which might be a discussion 

point, as this strategy limit the comparability with the metrics obtained from the hold-out 

dataset of the deep learning models. For metrics evaluations in deep learning, we used 

the metrics of the test dataset (hold-out dataset) because the same dataset to evaluate the 

model metrics should not be used as the dataset used to train (train dataset) and fine-tune 

the model (validation dataset). This approach was not necessary for the expert evalua-

tions, thus justifying the use of the whole dataset for the evaluation process to evaluate 

whether experts are able to detect OAC from the dataset. Furthermore, the comparison of 

metrics between institutions may be limited due to different radiography protocols [44]. 

In addition, the surgical approach and the individual experience of the practitioner (i.e., 

learning curves) cannot be fully considered in prediction studies trying to predict OAC 

from panoramic radiography. Although prospective studies could adjust their study de-

signs to evaluate data from solely one surgeon with a single technique extracting wisdom 

teeth, this seems not feasible considering that large datasets are required for deep learning 

evaluations. It is an inherent limitation of artificial intelligence-based algorithms based on 

only one data modality to lack multi-perspectivity when predicting images. Multi-input-

mixed data hybrid models could help to improve the predictive capacities in the future 

[12]. In summary, the decision making based on AI algorithms remains complex and is 

beyond the practitioner’s control [47,48]. Thus, clinical applicability may be limited. How-

ever, our primary aim was not to evaluate the algorithms as potential alert-like systems 

in clinics that can help to screen patients at risk for OAC but to generally evaluate the 

feasibility of OAC prediction based on preoperative panoramic radiography. Although 

such alert-like systems may be interesting in clinics, the authors recommend testing clini-

cally whether an OAC has occurred after each extraction. Various options have been es-

tablished for clinical testing. Starting with the least invasive test, the Valsalva test puts 

pressure on the maxillary sinus and, therefore, a possible OAC. The escaping air can be 

detected by air bubbles, a whistling sound, or a fogging mirror. However, this test can be 

falsely negative if mucous membranes are obstructed. Blunt probing and the insertion of 

objects impermeable to X-rays are not recommended because of their invasiveness and 

the possibility of germs spreading into the maxillary sinus [49]. Although the aforemen-

tioned clinical tests have limitations, they might be the easiest, fastest, and most accurate 

option currently available when considering the available evidence and our results. 

Final clinical decisions should be made considering all aspects that potentially affect 

patients and can only be made by the practitioner. Supporting this decision-making pro-

cess with the objective perspective of an AI-based approach may improve the quality of 

treatment. However, in the context of the present results, both experts and deep learning 

algorithms were not able to predict OAC reliably from patients’ panoramic radiography. 

5. Conclusions 

Whether preoperative panoramic radiography information can help predict OAC af-

ter a tooth extraction is currently unknown. The results showed that although the  

MobileNetV2 algorithm and one expert reached an AUC of 0.673 and 0.629, respectively, 

the overall feasibility of OAC prediction from panoramic radiography was low. The false-

negative rate, i.e., the rate of positive cases (OAC) missed by the deep learning algorithms, 

ranged from 57.14% to 95.24%. Further, there was a poor agreement for the oral and max-

illofacial expert evaluations (Cohen’s kappa: 0.1285). AI approaches utilized in the present 

work seem to be not feasible in predicting OAC based on the results shown. However, 

larger sample sizes, modification of the region of interest, and the inclusion of other algo-

rithms could help to improve the knowledge presented with the work. Surgeons should 

not solely rely on panoramic radiography when evaluating the probability of OAC occur-

rence. Clinical testing of OAC is warranted after each upper-molar tooth extraction. 
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Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/diagnostics12061406/s1, Figure S1: Confusion matrix, model 

performance measures, and receiver operating characteristic (ROC) curve for the EfficientNet algo-

rithm. Precision: TP/(TP + FN); Recall: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + preci-

sion); support: actual occurrence of the class in the dataset. Values are showing the metrics for the 

independent test dataset (hold-out dataset); Figure S2: Confusion matrix, model performance 

measures and receiver operating characteristic (ROC) curve for the InceptionV3 algorithm. Preci-

sion: TP/(TP + FN); Recall: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision); support: 

actual occurrence of the class in the dataset. Values are showing the metrics for the independent test 

dataset (hold-out dataset); Figure S3: Confusion matrix, model performance measures and receiver 

operating characteristic (ROC) curve for the MobileNetV2 algorithm. Precision: TP/(TP + FN); Re-

call: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision); support: actual occurrence of 

the class in the dataset. Values are showing the metrics for the independent test dataset (hold-out 

dataset); Figure S4: Confusion matrix, model performance measures and receiver operating charac-

teristic (ROC) curve for the ResNet50 algorithm. Precision: TP/(TP + FN); Recall: TP/(TP + FN); F1 

score: 2*(recall*precision)/(recall + precision); support: actual occurrence of the class in the dataset. 

Values are showing the metrics for the independent test dataset (hold-out dataset); Figure S5: Con-

fusion matrix, model performance measures, and receiver operating characteristic (ROC) curve for 

the VGG16 algorithm. Precision: TP/(TP + FN); Recall: TP/(TP + FN); F1 score: 2*(recall*preci-

sion)/(recall + precision); support: actual occurrence of the class in the dataset. Values are showing 

the metrics for the independent test dataset (hold-out dataset); Figure S6: Example images from the 

whole data set. 
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