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Abstract: Imaging in the emergent setting carries high stakes. With increased demand for dedicated
on-site service, emergency radiologists face increasingly large image volumes that require rapid
turnaround times. However, novel artificial intelligence (AI) algorithms may assist trauma and
emergency radiologists with efficient and accurate medical image analysis, providing an opportu-
nity to augment human decision making, including outcome prediction and treatment planning.
While traditional radiology practice involves visual assessment of medical images for detection and
characterization of pathologies, AI algorithms can automatically identify subtle disease states and
provide quantitative characterization of disease severity based on morphologic image details, such
as geometry and fluid flow. Taken together, the benefits provided by implementing AI in radiology
have the potential to improve workflow efficiency, engender faster turnaround results for complex
cases, and reduce heavy workloads. Although analysis of AI applications within abdominopelvic
imaging has primarily focused on oncologic detection, localization, and treatment response, several
promising algorithms have been developed for use in the emergency setting. This article aims to
establish a general understanding of the AI algorithms used in emergent image-based tasks and to
discuss the challenges associated with the implementation of AI into the clinical workflow.

Keywords: artificial intelligence; radiology; imaging; computed tomography; abdominal pain;
GI trauma

1. Introduction

Spawned by the age of digital medical imaging and high throughput computing, Arti-
ficial intelligence (AI) is one of the major innovations of the healthcare sector, particularly in
radiology [1–3]. On a simplistic level, AI can be defined as a field of science involved in the
creation of systems that perform problem-solving tasks that require human intelligence [4].
Machine learning is a specific subset of AI that creates algorithms and statistical models that
dictate the performance of AI systems in performing specific user-defined tasks without
using explicit instructions. These methods rely on predefined engineered features derived
from expert knowledge that quantify radiographic characteristics, including volume, shape,
size, texture, intensity, and location. The most robust features are then selected and fed
into statistical machine learning models to identify imaging biomarkers. Machine learning
methods rely on patterns and inferences derived from the human-engineered data extracted
from images to perform the task.

In recent years, the ongoing improvements in AI applications have focused on deep
learning systems that scale with data, rather than the traditional machine learning methods
based on predefined radiologic features. These deep learning systems encompass a specific
machine learning approach that relies on artificial neural network (ANN) algorithms and
contains hidden layers, such as convolutional neural networks (CNN), to process raw data
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and perform classification or detection tasks. By design, deep learning is a representation-
learning method with multiple levels of representation. Thus, deep learning methods do
not require human-engineered features such as inputs as they automatically extract features
from images. This in turn reduces the need for the manual processing of images, a time-
consuming endeavor that is oftentimes subject to operator bias [5]. Yet, many clinicians are
unaware of the complex relationships inherent in the deep learning algorithms, rendering
this approach difficult to accept within a clinical setting. While machine learning models
may be more efficient in some cases (e.g., when the input data involve single-number
metrics), deep learning models, although requiring substantially more input information,
may outperform machine learning approaches with more complex data.

As emergency radiology confronts mounting expectations to deliver dedicated on-site
service and the demand of increased imaging load and rapid report turnaround time, this
field represents a promising avenue of entry for AI into radiology departments globally.
Yet, there is a paucity of literature describing AI applications in this field, particularly
with regard to the imaging of emergent abdominopelvic pathologies and the practical
implications. Deep learning systems provide an opportunity to augment human decision
making and improve efficiency and effectiveness, thus achieving a true enhancement in the
quality of care [6,7]. Ultimately, this review will provide an overview of the AI applications
for abdominopelvic imaging in emergency radiology according to pathologic classification:
(1) diseases of the digestive tract, (2) trauma, and (3) abdominal aortic aneurysms.

2. Overview

In recent years, several promising algorithms in a variety of fields have been developed
for use in the emergency setting (Table 1). For instance, AI algorithms demonstrated clinical
utility in non-contrast, head computed tomography (CT) scans to detect hemorrhage, mass
effect, hydrocephalus, and suspected acute infarct. Additional promising AI applications
include the detection and classification of chest abnormalities in chest radiographs and
CT scans; the identification and quantification of coronary artery calcification in CT scans;
and fracture detection in orthopedic trauma. Several studies have also described the utility
of AI in oncologic detection, localization, and treatment response. Yet, irrespective of
the application, the primary advantage of AI implementation in radiology is the ability
to act as a second opinion [8]. This has the potential to improve diagnostic accuracy,
particularly in resource-limited settings. AI also has great utility in triaging patients as the
algorithm can divide abnormal cases based on predetermined criteria that we can define,
and the radiologist can then work off the sorted priority list. This has the potential to
improve workflow efficiency, with faster turnaround results for complex cases and reduced
overall workloads.
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Table 1. Overview of Deep Learning Algorithms Developed For Use in the Emergency and Clinical Setting.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

Pelvic Fractures:
Epidemiology and

Predictors of
Associated

Abdominal Injuries
and Outcomes

Demetriades et al. [9]

J. Am. Coll.
Surg.
2002

Original

No DL

Demetriades D, et al. Pelvic
fractures: epidemiology and

predictors of associated
abdominal injuries and

outcomes. J Am Coll Surg. 2002
Jul;195(1):1–10.

doi:10.1016/s1072-
7515(02)01197-3. PMID:

12113532.

Detecting pelvic
fracture on 3D-CT

using deep
convolutional neural

networks with
multi-orientated slab

images
Ukai et al. [10]

Scientific Reports
2021

Original

1. Multisource
CT images
acquired
from 93
subjects who
had one or
more pelvic
fractures.

2. Multisource
CT images
acquired
from 112
subjects
identified by
orthopedic
surgeons as
not having
any fractures.

Voxel size and
Intensity range
harmonization

Automatically detect
pelvic fractures from
pelvic CT images of

an evaluating subject.

DCNN:
YOLOv3

Area under the curve
(AUC) was 0.824, with
0.805 recall and 0.907

precision.

Ukai K, et al. Detecting pelvic
fracture on 3D-CT using deep
convolutional neural networks

with multi-orientated slab
images. Sci Rep 11, 11716 (2021).
https://doi.org/10.1038/s41598-

021-91144-z.

Accuracy of
Abdominal

Radiography in
Acute Small-Bowel
Obstruction: Does

Reviewer Experience
Matter?

Thompson et al. [11]

Abdominal
Imaging

2007
Original

No DL

Thompson WM, et al. Accuracy
of abdominal radiography in

acute small-bowel obstruction:
does reviewer experience

matter? AJR Am J Roentgenol.
2007 Mar;188(3):W233-8.

doi:10.2214/AJR.06.0817. PMID:
17312028.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference
Abdominal

Radiography
Findings in

Small-Bowel
Obstruction:

Relevance to Triage
for Additional

Diagnostic Imaging
Lappas et al. [12]

AJR
2001

Original
No DL

Lappas JC, et al. Abdominal
radiography findings in small

bowel obstruction: relevance to
triage for additional diagnostic

imaging. AJR 2001; 176:167–174.

Detection of
high-grade small

bowel obstruction on
conventional

radiography with
convolutional neural

networks
Cheng et al. [13]

Ab. Radiol.
2018

Original

3663 supine
abdominal

radiographs

Pixel size and
Intensity range
harmonization

Determine whether a
deep CNN can be

trained with limited
image data to detect

high-grade small
bowel obstruction
patterns on supine

abdominal
radiographs.

Inception v3
CNN

The neural network
achieved an AUCof

0.84 on the test set (95%
CI 0.78–0.89). At the
maximum Youden
index (sensitivity +
specificity-1), the
sensitivity of the

system for small bowel
obstruction was 83.8%,

with a specificity of
68.1%.

Cheng PM, et al. Detection of
high-grade small bowel

obstruction on conventional
radiography with convolutional
neural networks. Abdom Radiol

(NY) 2018;43(5):1120–1127.

Performance of a
Deep Learning
Algorithm for

Automated
Segmentation and
Quantification of
Traumatic Pelvic

Hematomas on CT
Dreizin et al. [14]

Journal of Digital
Imaging

2021
Original

253 C/A/P
admission trauma

CT

Pixel size and
Intensity range
harmonization

Determine if RSTN
would result in

sufficiently high Dice
similarity coefficients
to facilitate accurate

and objective
volumetric

measurements for
outcome prediction

(arterial injury
requiringangioem-

bolization).

Recurrent
Saliency

Transformation
Network vs. 3D

U-Net

Dice scores in the test
set were 0.71 (SD ±
0.10) using RSTN,

compared to 0.49 (SD
± 0.16) using a
baseline Deep

Learning Tool Kit
(DLTK) reference 3D
U-Net architecture.

Dreizin D, et al. “A Multiscale
Deep Learning Method for

Quantitative Visualization of
Traumatic Hemoperitoneum at
CT: Assessment of Feasibility

and Comparison with Subjective
Categorical Estimation.”

Radiology. Artificial intelligence
vol. 2,6 e190220. 11 Nov. 2020,
doi:10.1148/ryai.2020190220.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

Image Segmentation
and Machine
Learning for
Detection of

Abdominal Free
Fluid in Focused
Assessment With
Sonography for

Trauma
Examinations A Pilot

Study
Sjogren et al. [15]

J. Ultrasound
Med.
2016

Original

20 cross-sectional
abdominal US
videos (FAST)

None

Test the feasibility of
automating the

detection
of abdominal free
fluid in focused
assessment with
sonography for
trauma (FAST)
examinations.

ML: SVM

The sensitivity and
specificity (95%

confidence interval)
were 100% (69.2–100%)

and 90.0%
(55.5–99.8%),
respectively.

Sjogren AR, et al. “Image
Segmentation and Machine
Learning for Detection of
Abdominal Free Fluid in

Focused Assessment With
Sonography for Trauma

Examinations: A Pilot Study.”
Journal of ultrasound in

medicine: official journal of the
American Institute of

Ultrasound in Medicine vol.
35,11 (2016): 2501–2509.

doi:10.7863/ultra.15.11017.

Quantitative
Assessment of

Abdominal Aortic
Aneurysm Geometry

Shum et al. [16]

Ann. Biomed.
Eng.
2011

Original

76 CTs of patients
with aneurysms None

Test the feasibility
that aneurysm

morphology and
wall thickness are
more predictive of

rupture risk and can
be the deciding

factors in the clinical
management.

ML: Decision
Tree

The model correctly
classified 65 datasets

and
had an average

prediction accuracy of
86.6% (κ = 0.37).

Shum J, et al. “Quantitative
assessment of abdominal aortic
aneurysm geometry.” Annals of
biomedical engineering vol. 39,1

(2011): 277–286.
doi:10.1007/s10439-010-0175-3.

Detection and
Diagnosis of Colitis

on Computed
Tomography Using
Deep Convolutional

Neural Networks
Liu et al. [17]

Med Phys.
2017

Original

CT images of 80
patients with colitis None

Develop deep
convolutional neural
networks methods

for lesion-level colitis
detection and a
support vector
machine (SVM)

classifier for
patient-level colitis

diagnosis on routine
abdominal CT scans.

Faster
Region-based
Convolutional

Neural
Network

(Faster RCNN)
with ZF net

For patient-level colitis
diagnosis, with ZF net,

the average areas
under the ROC curve
(AUC) were 0.978 ±

0.009 and 0.984 ± 0.008
for RCNN and Faster

RCNN method,
respectively.

Liu J, et al. Detection and
diagnosis of colitis on computed

tomography using deep
convolutional neural networks.
Med Phys 2017;44(9):4630–4642.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

Convolutional-
neural-network-

based diagnosis of
appendicitis via CT

scans in patients with
acute abdominal pain

presenting in the
emergency
department

Park et al. [18]

Scientific Reports
2020

Original

667 CT image sets
from 215 patients

with acute
appendicitis

and 452
patients with a

normal appendix

Data augmentation
to prevent
over-fitting

Test feasibility of a
neural

network-based
diagnosis algorithm
of appendicitis by

using CT for patients
with acute abdominal

pain visiting the
emergency room

(ER).

Deep CNN

Diagnostic
performance was

excellent inboth the
internal and external

validation with an
accuracy larger than

90%.

Park JJ, et al. Convolutional-
neural-network-based diagnosis
of appendicitis via CT scans in
patients with acute abdominal

pain presenting in the
emergency

department. Sci Rep. 2020 Jun
12;10(1):9556.

doi:10.1038/s41598-020-66674-7.
PMID: 32533053; PMCID:

PMC7293232.
Deep learning
algorithms for
detecting and

visualizing
intussusception on

plain abdominal
radiography in

children: a
retrospective

multicenter study
Kwon et al. [19]

Scientific Reports
2021

Original
9935 X-rays None

Verify a deep CNN
algorithm to detect
intussusception in
children using a

human-annotated
dataset of plain

abdominal X-rays.

Single Shot
MultiBox

Detector and
ResNet

The internal test values
after training with two
hospital datasets were
0.946 to 0.971 for the

area under the receiver
operating characteristic
curve (AUC), 0.927 to
0.952 for the highest

accuracy, and 0.764 to
0.848 for the highest

Youden index.

Kwon G, et al. Deep learning
algorithms for detecting and

visualising intussusception on
plain abdominal radiography in

children: a retrospective
multicenter study. Sci Rep 10,

17582 (2020).
https://doi.org/10.1038/s41598-

020-74653-1.

An artificial
intelligence deep

learning model for
identification of

small bowel
obstruction on plain

abdominal
radiographs

Kim et al. [20]

British Journal of
Radiology

2021
Original

990 plain
abdominal

radiographs
None

Detect small bowel
obstructions of plain
abdominal X-rays.

VGG16,
Densenet121,
NasNetLarge,
InceptionV3,
and Xception

The model showed an
AUC of 0.961,

corresponding to
sensitivity and

specificity of 91 and
93%, respectively.

Kim DH, et al. “An artificial
intelligence deep learning model
for identification of small bowel
obstruction on plain abdominal

radiographs.” The British
journal of radiology vol. 94,1122

(2021): 20201407.
doi:10.1259/bjr.20201407.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

Performance of deep
learning-based
algorithm for

detection of ileocolic
intussusception on

abdominal
radiographs of
young children
Kim et al. [19]

Scientific Reports
2019

Original

Abdominal
radiographs of 681

children

Intensity
normalization using

z-score

Detect ileocolic
intussusception on

abdominal
radiographs of
young children.

YOLO v3

The sensitivity of the
algorithm was higher
compared with that of
the radiologists (0.76

vs. 0.46, p = 0.013),
while specificity was
not different between
the algorithm and the
radiologists (0.96 vs.

0.92, p = 0.32).

Kim S, et al. Performance of
deep learning-based algo-rithm

for detection of ileocolic
intussusception on abdominal
radiographs of young children.
Sci Rep. 2019 Dec 19;9(1):19420.
doi:10.1038/s41598-019-55536-6.

PMID: 31857641; PMCID:
PMC6923478.

Using Machine
Learning to Predict

the Diagnosis,
Management and

Severity of Pediatric
Appendicitis

Marcinkevics et al.
[21]

Frontiers in
Pediatrics

2021
Original

430 children and
adolescents None Detect pediatric

appendicitis.

Logistic
regression,

random forests,
and gradient

boosting
machines

A random forest
classifier achieved

areas under the
precision-recall curve
of 0.94, 0.92, and 0.70,
respectively, for the

diagnosis,
management, and

severity of
appendicitis.

Marcinkevics R, et al. (2021).
Using Machine Learning to

Predict the Diagnosis,
Management and Severity of

Pediatric Appendicitis [Original
Research]. Frontiers in

Pediatrics, 9.
https://doi.org/10.3389/

fped.2021.662183.

Development and
Validation of a Deep
Neural Network for

Accurate
Identification of

Endoscopic Images
From Patients With
Ulcerative Colitis

and Crohn’s Disease
Ruan et al. [22]

Frontiers in
Medicine

2022
Original

49,154 colonoscopy
images from 1772

patients

Data augmentation
using operations

such as horizontal
flipping, vertical
flipping, random
cropping, random

rotation, brightness
adjustment, contrast

adjustment, and
saturation

adjustment, CutMix
algorithm

Detect ulcerative
colitis and Crohn’s

disease using
endoscopic images.

ResNet50

The identification
accuracy achieved by

the deep learning
model was superior to

that of experienced
endoscopists per

patient (deep model vs.
trainee endoscopist,
99.1% vs. 78.0% and

per lesion (deep model
vs. trainee endoscopist,
90.4% vs. 59.7%. While
the difference between

the two was lower
when an experienced

endoscopist was
included, the deep

learning still
performed significantly

(p < 0.001) better.

Ruan G, et al. (2022).
Development and Validation of

a Deep Neural Network for
Accurate Identification of
Endoscopic Images From

Patients With Ulcerative Colitis
and Crohn’s Disease [Original

Research]. Frontiers in
Medicine, 9.

https://doi.org/10.3389/
fmed.2022.854677.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

A Multiscale Deep
Learning Method for

Quantitative
Visualization of

Traumatic
Hemoperitoneum at
CT: Assessment of

Feasibility and
Comparison with

Subjective
Categorical
Estimation

Dreizin et al. [23]

Radiology AI
2020

Original

CT images of 130
patients

Pixel size and
Intensity range
harmonization

Evaluate the
feasibility of a

multiscale deep
learning algorithm

for quantitative
visualization and
measurement of

traumatic
hemoperitoneum

and compare
diagnostic

performance for
relevant outcomes

with categorical
estimation.

MSAN
TensorFlow

AUCs for automated
volume measurement

and categorical
estimation were 0.86
and 0.77, respectively

(p = 0.004). An optimal
cutoff of 278.9 mL

yielded accuracy of
84%, sensitivity of 82%,

specificity of 93%,
positive predictive
value of 86%, and

negative predictive
value of 83%.

Dreizin D, et al. “A Multiscale
Deep Learning Method for

Quantitative Visualization of
Traumatic Hemoperitoneum at
CT: Assessment of Feasibility

and Comparison with Subjective
Categorical Estimation.”

Radiology. Artificial intelligence
vol. 2,6 e190220. 11 Nov. 2020,
doi:10.1148/ryai.2020190220.

A scalable
physician-level deep
learning algorithm
detects universal
trauma on pelvic

radiographs
Cheng et al. [24]

Nat. Comm.
2021

Original

5204 pelvic
radiographs

Zero-padding and
resizing, Data

augmentation such
as translation,

flipping, scaling,
rotation, brightness

and contrast

Detect most types of
trauma-related
radiographic

findings on pelvic
radiographs.

PelviXNet

PelviXNet yielded an
area under the receiver
operating characteristic

curve (AUROC) of
0.973 (95% CI,

0.960–0.983) and an
area under the

precision-recall curve
(AUPRC) of 0.963 (95%
CI, 0.948–0.974) in the
clinical population test
set of 1888 PXRs. The
accuracy, sensitivity,
and specificity at the

cutoff value were 0.924
(95% CI, 0.912–0.936),

0.908 (95% CI,
0.885–0.908), and 0.932
(95% CI, 0.919–0.946),

respectively.

Cheng CT, et al. A scalable
physician-level deep learning
algorithm detects universal

trauma on pelvic radiographs.
Nat Commun 12, 1066 (2021).

https://doi.org/10.1038/s41467-
021-21311-3.
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Table 1. Cont.

Title/Author Journal/Year/Type Data Data Processing Application Model Performance Reference

Automated
Screening for

Abdominal Aortic
Aneurysm in CT

Scans under Clinical
Conditions Using

Deep Learning
Golla et al. [25]

Diagnostics
(Basel)
2021

Original

187 heterogenous
CT scans.

Pixel size and
Intensity range

harmonization, Data
augmentation

Develop and validate
an easily trainable

and fully automated
deep learning 3D
AAA screening

algorithm, which can
run as a background
process in the clinic

workflow.

ResNet,
VGG-16 and

AlexNet

The 3D ResNet
outperformed both
other networks and

achieved an accuracy
of 0.953 and an AUC of
0.971 on the validation

dataset.

Golla AK, et al. “Automated
Screening for Abdominal Aortic

Aneurysm in CT Scans under
Clinical Conditions Using Deep

Learning.”
Diagnostics (Basel, Switzerland)

vol. 11,11 2131. 17 Nov. 2021,
doi:10.3390/diagnostics11112131.
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3. Diseases of the Digestive Tract
3.1. Small Bowel Obstruction

As small bowel obstruction is a common diagnostic cause of acute abdominal pain in
the emergency setting, patients with high clinical suspicion oftentimes undergo abdominal
radiography as one of the first-line screening tests. Three radiologic signs are highly
pathognomonic for the detection of SBO: two or more air-fluid levels, air-fluid levels
wider than 2.5 cm, and air-fluid levels differing more than 5 mm from one another in
the same loop of bowel [12]. Yet, recent studies indicate that a direct correlation exists
between SBO detection and radiologist experience [11]. Thus, AI-assisted detection may
aid non-radiologists or junior radiology staff members in diagnosing this pathology [11].

Although difficult to comprehend, the mechanisms behind deep learning architecture
can be investigated with the use of occlusion maps. Occlusion maps are developed by
occluding areas in the original image with a low probability of detecting pathology. These
maps can change the output probability of neural network models, making it easier to
parse out relevant image details for classification when overlayed on the original image.
The application of occlusion maps in neural network models of SBO detection appears to
demonstrate the significance of dilated small bowel segments, but other specific SBO fea-
tures may be universally distributed throughout the image [13]. In a single-institution pilot
study of AI technology, transfer learning from a pre-trained neural network was conducted
on a set of 3663 clinical supine abdominal radiographs. Four hundred and fifty-two images
were classified by the transferred neural network as false positives, of which 94 images
(21%) were considered as ileus and 50 images (11%) were considered low-grade bowel
obstruction [13]. Following training, the neural network achieved an AUC of 0.849, and an
observed sensitivity and specificity of 84% and 68%, respectively [13]. Follow-up studies
using full CNN models with large training set sizes demonstrate a marked improvement in
the AUC to 0.97, with a sensitivity and specificity of 91% and 92%, respectively [26]. More
recently, ensemble models created using a variety of CNN architectures based on 990 plain
abdominal radiographs showed an AUC of 0.96, corresponding to a sensitivity and speci-
ficity of 91 and 93%, respectively, in identifying small bowel obstruction [20]. Considering
that abdominal radiographs are less sensitive than CT for the diagnosis of small bowel ob-
struction, similar studies using CT images are warranted. Post-validation, the development
of such AI-driven systems could alert clinicians to the presence of critical clinical features
warranting expedited clinical review and thereby improve patient outcomes.

3.2. Intussusception

In children aged 3 to 36 months old, intussusception remains the most common cause
of intestinal obstruction [27]. While roughly 84% of patients experience alleviation of
symptoms when diagnosed and treated with an air enema within 24 h of onset, delays
in treatment can result in complications such as ischemia, necrosis, and perforation [27].
Traditionally, abdominal radiographs have markedly low sensitivity for detection of intus-
susception (<50%) and a poor rate of interobserver reliability [28]. In recent years, however,
studies investigating risk stratification for intussusception in children have demonstrated
the utility of abdominal X-rays as an initial diagnostic modality, with one study reporting
sensitivity and specificity values of 0.77 and 0.79, respectively [29]. Unlike ultrasound (US),
plain radiography is unaffected by operator skill and equipment variability and remains
an inexpensive option for a first-line screening test [19]. As such, the implementation of
AI algorithms in abdominal radiography may have a broad patient impact, and it shows
promise as an initial point of entry.

The recent studies of AI applications in the detection of intussusception have focused
on the implementation of deep learning algorithms for abdominal radiographs and have
indicated that the technique may add value to the field. In one retrospective study of
681 pediatric patients, including 242 children diagnosed with intussusception, the authors
used a You Only Look Once, Version 3 (YOLOv3) deep learning algorithm to validate
automated detection [30]. The sensitivity of the algorithm was higher when compared with
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radiologist interpretation alone (0.76 vs. 0.46), while there were no significant differences in
the specificity (0.96 vs. 0.92) [30]. More recent studies with larger sample sizes have demon-
strated improved detection of intussusception with ranges between 0.91–0.94 and 0.85–0.91,
respectively [19]. Other authors have described similar findings with AUC values of 0.95
and 0.97 and an accuracy of 0.93 and 0.95 [19]. Thus, as more data are gathered, hospitals
may train these algorithms and institute them for routine use in emergency radiology.

3.3. Acute Appendicitis

Acute appendicitis is one of the most common causes of acute abdominal pain in the
emergency department [31]. However, many patient-specific factors make detection of the
appendix and diagnosis of appendicitis difficult, such as unusual appendix location, scanty
intraabdominal fat, prominent cecal wall thickening, and abscess formation adjacent to the
adnexa [31]. While both US and CT are important in the diagnosis of acute appendicitis, CT
is considered the gold-standard diagnostic tool as it circumvents the issues of operator de-
pendency, abundant bowel gas, and obesity that are prevalent in ultrasound techniques [31].
As for AI applications for the detection of acute appendicitis, the literature remains sparse,
with only one study investigating the performance of the CNN-based diagnosis algorithm
for abdominopelvic CT imaging [18]. In this retrospective multicenter study, the authors
obtained a total of 667 image sets from 215 acute appendicitis patients and 452 controls for
the algorithm training [18]. Following training, the CNN algorithm achieved a diagnostic
accuracy of 91.5% for all image sets, with a reported sensitivity and specificity of 90.2% and
92.0%, respectively [18].

Although the diagnostic performance of the CNN algorithm was excellent, many false
negatives were reported as the AI algorithm oftentimes misinterpreted early phase acute
appendicitis, appendiceal perforation with abscess, and small mesenteric fat [18]. Some
cases of false negatives were difficult to comprehend as trained humans never deemed
these cases as normal [18]. Thus, the application of a CNN-based diagnosis algorithm in CT
imaging may be useful in conjunction with a trained radiologist. Along with a thorough
examination for false negatives, CNN-based acute appendicitis detection could potentially
be implemented as a second opinion in order to improve diagnostic accuracy acutely.

More recently, a random forest-based predictive model of pediatric appendicitis was
created and validated on a dataset obtained from 430 children and adolescents. The
model used information extracted from patient history, clinical examination, laboratory
parameters, and abdominal ultrasonography and reported areas under the precision-recall
curve of 0.94, 0.92, and 0.70, respectively, for the diagnosis, management, and severity of
appendicitis [21]. External validation using large sample sizes can increase the impact of
such findings and help to identify and manage patients with potential appendicitis and its
heterogeneous presentation in the pediatric population.

3.4. Colitis

Colitis is a chronic disease resulting from inflammation of the inner lining of the colon
that can be caused by multiple etiologies, including ischemia, infection, neutropenia, and
inflammatory bowel diseases (Crohn’s disease and ulcerative colitis) [32]. In the acute
setting, patients present with diarrhea and abdominal pain, and CT is frequently utilized to
evaluate patients for the presence of this disease [33]. Certain CT findings, such as wall
thicknesses greater than 3 mm and the presence of an “accordion sign” (due to trapping
of oral contrast between thickened haustral folds and mucosal ridges), are considered to
be representative of colitis [33]. In addition, both of these radiographic findings can serve
as important imaging markers for the AI-based detection of colitis. While older studies
investigated the use of traditional AI methods, such as hand-crafted features (Gabor filters)
and support vector machines to detect and classify colitis, these methods rely on expert
knowledge and the segmentation of muscle, kidneys, and liver to reduce false-positive
classification [33]. Other strategies such as high-capacity, region-based CNN have also
demonstrated utility in colitis screening, with some studies reporting sensitivities and
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specificities as high as 94% and 95%, respectively [17,34]. These models have observed
AUC values as high as 0.99 and are encouraging for potential clinical application [34].

In a multicenter diagnostic study involving five hospitals in China, deep learning
models constructed from 49,154 colonoscopy images collected 1772 participants with inflam-
matory bowel disease (IBD) and normal controls; the identification accuracy obtained by
the deep learning model was superior to that of experienced endoscopists per patient (deep
model vs. trainee endoscopist, 99.1% vs. 78.0%) and per lesion (deep model vs. trainee
endoscopist, 90.4% vs. 59.7%) [22]. While the difference between the two approaches was
smaller when an experienced endoscopist was included, the deep learning still performed
significantly (p < 0.001) better than its visual assessment-based counterpart.

4. Trauma
4.1. Hemoperitoneum

In the setting of trauma, point of care ultrasound (POCUS), particularly the Focused
Assessment with Sonography for Trauma (FAST) examination, is the gold standard for rapid
detection of hemoperitoneum [18]. Certain sonographic findings, such as free fluid in the
right upper quadrant (RUQ), are the most important independent predictors of therapeutic
laparotomy in trauma [15,35–37]. Positive free fluid findings on US imaging can also
narrow the differential diagnosis and aid decision making for antibiotic administration,
surgery, or transfer of care to tertiary referral hospitals [15,38–40].

As the demand for on-call imaging expands, the need for efficient and accurate imag-
ing in POCUS has led to research developments in the feasibility of automated detection
systems. In one retrospective pilot study by Gwin et al., the authors employed cross-
sectional RUQ views from FAST examinations to investigate the feasibility of automating
free fluid detection [15]. A traditional AI algorithm was developed with features related
to geometric properties (i.e., linearity, curvilinearity, radius angle covariance, roundness,
position, and area), grayscale color properties of shape (i.e., echogenicity, echo variability,
medial/lateral neighborhood echogenicity, and medial/lateral neighborhood variability),
edge sharpness, and pixilation [15]. The features were subsequently inputted into a support
vector machine for the classification of hypoechoic regions of interest as ‘free fluid’ or ‘not
free fluid’. This study reported a sensitivity and specificity of 100% and 90%, respectively,
in detecting free fluid on FAST examination for trauma; these values are within range of
those reported in studies evaluating the human interpretation of free fluid detection. The
authors also concluded that AI applications may also allow for the expedited identifica-
tion of abdominal free fluid in the acutely ill non-trauma patient [15]. Ultimately, these
results warrant further investigation and applications in other disease states, as well as the
expansion of the approach to all quadrants for true improvements in clinical utility. Fur-
thermore, implementation of automated detection systems may help reduce unnecessary
patient transfers to tertiary care centers and make for an ideal triage tool. Taken together,
automated detection systems may be vital in reducing the burden of imaging interpretation
volumes for the on-call radiologist.

More recently, a multiscale deep learning approach designed for the quantitative visu-
alization of traumatic hemoperitoneum using CT images showed a significantly improved
performance (accuracy of 84%, sensitivity of 82%, specificity of 93%, positive predictive
value of 86%, and negative predictive value of 83%) for the prediction of a composite
outcome of surgical or angiographic hemostatic intervention, massive transfusion, and
mortality compared with that of the conventional volume estimation methods [23]. Similar
studies using larger sample sizes, multicentric data, and the inclusion of negative controls
can improve the impact of the findings and support the development of clinical aids to
rapidly and objectively quantify hemoperitoneum.

4.2. Traumatic Pelvic Injuries

These automated detection techniques may also be valuable in the identification of
traumatic pelvic injuries as rapid detection remains crucial to the timely delivery of life-
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saving interventions [41]. Recent studies indicate that approximately 22% of patients with
pelvic injuries have concomitant abdominal trauma [42]. Of special significance is the
fact that pelvic fractures are a marker of injury from major force and are associated with
morbidity and mortality from bleeding and abdominal compartment syndrome, as well as
intraabdominal abscesses [9,43,44].

Supervised learning has commonly been used to detect fractures in local regions
and has demonstrated an accuracy comparable to that of physicians [45]. Deep learn-
ing studies report an accuracy upwards of 90% for detecting hip fractures in various
settings [46,47]. Recently, Cheng et al. reported a scalable physician-level deep learning
algorithm (PelviXNet) that detects universal trauma on pelvic radiographs. Using data
from 5204 pelvic radiographs, PelviXNet yields an AUC of 0.97 (95% CI, 0.96–0.98) [24].
While the results are valuable, most of the conditions analyzed in this study are rarely
missed by physicians, leading to a limitation in its impact [48]. Multicentric studies using
large sample sizes, particularly those using data including more complex injuries which
are visually difficult to discern, will be very impactful to the clinical community.

In severe pelvic fractures, injuries to the bladder are most common (15%) followed
by the liver (10%) [9]. In milder pelvic fractures, the most commonly injured organ is
the liver (6%) [9]. While contrast-enhanced CT is the gold-standard diagnostic test for
pelvic trauma, the sensitivity of this technique in evaluating both mild and severe pelvic
fractures is only 66% [49]. This can be attributed to a multitude of imaging complexities,
including low resolution, noise, partial volume effects, and inhomogeneities, which are
particularly relevant in identifying mild/small bone fractures [41]. These irregularities
render image labeling difficult, often requiring multiple reads to confirm the existence
and details of a fracture. Thus, computer-assisted support may have a potential niche in
assisting emergency radiologists in making accurate diagnoses and assessing the severity
of pelvic fractures with shorter turnaround times.

Unfortunately, the literature surrounding AI algorithms for the CT detection of pelvic
fractures remains sparse. One retrospective study investigated the feasibility of automated
fracture detection in 12 patients, including 8 patients presenting with mild and small
fractures [41]. The authors developed a traditional AI algorithm involving pelvic bone
segmentation through registered active shape models, adaptive window creations, 2D sta-
tionary wavelet transformations, masking, and boundary tracing [41]. The proposed model
reduced the overall processing speed and achieved a 92% accuracy, 93% sensitivity, and
89% specificity in detecting pelvic bone fractures [41]. Furthermore, this model quantified
certain fracture features, such as separation distance and angle, that are not visible to the
human eye.

Computer-assisted decision support for CT can also be implemented in the automated
segmentation and measurement of traumatic pelvic hematomas. While the volume of
pelvic hematoma is the strongest independent predictor of arterial injury needing angioem-
bolization in trauma patients with pelvic fractures, the measurement of pelvic hematoma
volumes through current methods (e.g., semiautomated seeded region growing) are time-
consuming [14]. In addition, the shape and location of pelvic hematomas are often variable
and have poorly defined margins, further muddling detection. Thus, hospitals may benefit
from more efficient automated approaches. In a retrospective study of 253 trauma patients,
Dreizin et al. assessed the performance of a deep learning algorithm for the automated seg-
mentation and measurement of pelvic hematoma volume [14]. Not only did this algorithm
contain a recurrent saliency transformation network, but it also made objective volumetric
hematoma measurements for the prediction of arterial injury requiring angioembolization.
Ultimately, these authors reported that the aggregate measure of performance for the model
achieved an area-under-curve (AUC) of 0.81, which is comparable to manual measurements
of pelvic hematoma volume (AUC of 0.80) [14]. Other studies reported similar findings and
noted that the use of deep learning algorithms for hematoma measurements demonstrated
an improved prediction of the need for pelvic packing, massive transfusion, and in-hospital
mortality when compared to subjective hematoma measurements [50]. Thus, the optimiza-
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tion of hematoma measurement through AI could augment outcome prediction for trauma
patients and may guide treatment planning for emergency radiologists.

5. Abdominal Aortic Aneurysms

Abdominal aortic aneurysms (AAAs) are a life-threatening disease characterized by
segmental weakening and ballooning of the aorta [51]. While the only curative treatment of
AAA is open or endovascular repair, the decision to proceed with surgical repair requires
careful consideration of the surgical risks and the risk of aneurysm rupture. Thus, CT
imaging is often utilized for operative planning as it allows visualization of the aorta,
access vessels, aneurysm morphology, and coexistent occlusive disease [51]. In recent years,
AI methods have been proposed to improve the efficiency of image segmentation, the
detection of AAA, and the characterization of AAA geometry and fluid dynamics.

A recent systematic review described 15 studies of AI methods on the segmentation
of the abdominal aorta [51]. Manual segmentation is time-consuming, often requiring
30 min and is operator-dependent [51]. To reduce segmentation time and the reliability of
segmentation, one approach utilized an active shape model (ASM) segmentation scheme for
CT angiography (CTA) images [52]. This technique refers to the development of a statistical
shape model derived from labeled landmark points and iteratively fitted to an image.
Following manual segmentation of the first slice, a shape model of the contours in adjacent
image slices is iteratively fitted over the entire volume of the AAA. This in turn reduces the
time required for expert segmentation by a factor of six. Other potential techniques include
semiautomatic approaches for segmentation with the use of a 3D deformable model and
level-set algorithms [53].

AI methods have also been proposed to quantify the morphologic aspects of AAA.
In a study by Zhuge et al., predefined features of intensity, volume, and aorta shape from
20 CTA scans of AAA patients were utilized to train a support vector machine classifier [54].
Following preprocessing, global region analysis, surface initialization, local feature analysis,
and level set segmentation, the authors observed the mean and worst-case values of the
volume overlap at 95% and 93% [54]. The mean segmentation time was also reduced from
30 min to 7.4 min. Other studies have employed finite-element, analysis-based approaches
to automate the analysis of CT and magnetic resonance imaging (MRI) images [55]. These
applications have been extended to multimodal imaging using neural network fusion
models [56]. In this setting, AI models allow a shared representation of the aorta in both
the CT and the MRI images. In addition to aneurysm shape, both intraluminal thrombus
and calcifications contribute to the development of AAA and the risk of rupture [57].
Recent studies have employed fully automated pipelines to detect the aortic lumen and
characterize the intraluminal thrombus and calcifications with computational times of
<1 min [58].

As the precise characterization of AAA geometry and arterial wall thickness is vital
for the assessment of the rupture risk, several studies have investigated the development of
neural network algorithms for accurate measurement [16,59]. One study reported an associ-
ation between AI performance and the manual assessment performed by vascular surgeons,
with coefficients of variation of 11% for ruptured AAA and 13% for non-ruptured AAA [59].
In another study, the authors developed a decision tree algorithm from 76 contrast-enhanced
CT scans to characterize AAA geometry into 25 sizes and shapes [16]. Ultimately, this
model yielded a prediction accuracy of 87% [16].

AI techniques have also been utilized in the characterization of AAA fluid dynamics
as wall shear stress also accounts for AAA rupture risk [60]. While some studies have
measured computational fluid dynamics and estimated wall shear stress from geometric
parameters, other authors have utilized machine learning to calculate wall shear stress and
predict wall shear stress distribution in carotid bifurcation models [60–62]. These studies
demonstrate the potential clinical utility of AI in distinguishing AAA morphology and
may be effective in reducing the costs associated with image analysis.



Diagnostics 2022, 12, 1351 15 of 19

Using multicenter, multi-scanner, multiphase CT data, the 3D ResNet model demon-
strated a high performance (AUC of 0.95) for fully automated abdominal aneurysm de-
tection in an abdominal CT scan [25]. While promising, the study was conducted on a
small patient cohort of 187 CT scans as a training dataset, potentially limiting the dataset
variability and, thus, the generalizability. The validation of similar approaches in a larger
cohort can increase the robustness of the findings and ultimately aid the transition of such
AI-driven workflows into clinical practice.

6. Practical Applications

In recent years, a number of promising AI algorithms have been developed for use
in the emergency setting. In a study by Kim et al., the authors tested the accuracy of
artificial intelligence and deep learning-based algorithms in the context of diagnosing
ileocolic intussusception on abdominal radiographs in the pediatric population [63]. Ul-
timately, the deep learning-based algorithms provided higher sensitivity in diagnosing
intussusception in children under five years old when compared to clinical radiologists
(0.76 vs. 0.46, p = 0.013), but demonstrated no statistical difference in specificity (0.96 vs.
0.92, p = 0.32) [30]. Pang et al. also utilized the Yolov3-arch neural network in the clinical
setting by identifying cholelithiasis and classifying gallstones on CT images [63]. This
algorithm was applied to a medical image dataset comprising 223,846 CT images, with
gallstones present in 1369 patients. The diagnostic accuracy of this algorithm was ultimately
reported to be 86.5%, thus indicating the practical use of AI in assisting radiologists in
gallstone detection [63].

7. Discussion

Despite these strides, several barriers remain that prevent the clinical translation of AI
techniques into daily workflow [5,64,65]. These include both ethical and medicolegal chal-
lenges, such as standardization difficulties across multiple centers, potential disagreement
between radiologists and AI, and gaining trust in the black-box deep learning approach [12].
Some of the implementation-related challenges include incorporating AI within PACS and
EMR systems, determining the level of AI–human interaction, and packaging these algo-
rithms into a widely acceptable product [66].

Beyond the implementation barriers, there are deep-rooted issues with artificial in-
telligence at its core. First, most machine learning technologies have high sensitivity but
low to moderate specificity [2]. Thus, AI can be highly beneficial as a screening tool, but
oftentimes falls short when ruling on a diagnosis, particularly when dealing with over-
lapping structures. For instance, an algorithm may identify a micro-calcification smaller
than the human eye as nephrolithiasis, which could actually be an early atherosclerotic
plaque in the vessel running posterior to the organ of interest. These issues become further
compounded by the fact that this novel technology does not consider the full clinical picture
when making a diagnosis. As many gastrointestinal pathologies can present similarly on
imaging, it is imperative to consider patient demographics and history. For example, while
AI-based imaging may correctly identify an adrenal nodule, the clinical context of episodic
hypertension and tachycardia would favor a diagnosis of pheochromocytoma, whereas a
patient with new-onset truncal obesity, insulin resistance, and hirsutism most likely has an
adrenocortical adenoma [67]. In addition, a renal hyperdensity can be interpreted as active
extravasation in the context of trauma or nephrolithiasis in the context of unilateral flank
pain and colicky pain radiating to the groin. Thus, machine learning techniques should
not be utilized as a stand-alone technology, but instead applied under the supervision of a
trained radiologist.

For successful implementation of deep learning systems in radiology, large well-
annotated datasets of medical images are needed to detect subtle differences in disease
states [4]. Yet, a scarcity of this large-scale data currently exists [68]. For medical image
datasets that are too small to generate vast networks, pre-trained deep learning networks
obtained from large-scale natural images may be repurposed and transferred over, in a
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process known as transfer learning. However, these techniques are fraught with limita-
tions. Of the datasets that have been generated, many inaccuracies have been identified,
particularly in patients who had undergone long periods of hospitalization. In a study
by Behzadi-Khormouji et al. that conducted a quality control of various AI datasets, the
authors noted that certain CXRs labeled as “no interval change”, were incorrectly coded as
“no finding” within the dataset, and thus, were being utilized as a standardized normal [2].
Consequently, the “high accuracy rate” associated with AI models may actually be due to
inaccurate training/coding, yielding unforeseen errors [2]. Thus, machine learning tech-
nologies require constant retraining and evaluation to ensure their accuracy and precision
and that they stay current with the constant learning curve present in medicine.

Additional challenges associated with this technology include the poor generaliz-
ability of models trained on one dataset (single-institution dataset) to other data [69,70].
Due to the high-risk nature of translating AI technologies developed from single institu-
tions to widespread clinical practice, governing bodies such as the US Food and Drug
Administration (FDA) have attempted to adopt specific regulatory frameworks to ensure
effective safeguards. To date, these frameworks have cleared medical devices utilizing
“locked” algorithms, i.e., those that provide reproducible results with the same inputs.
Changes beyond the original market authorization for these algorithms would require FDA
premarket review [71]. However, artificial intelligence/machine learning (AI/ML)-based
medical devices increasingly utilize deep learning networks that adapt over time, where the
adaptation or change is only recognized after distribution. Current regulatory frameworks
have not been designed for medical devices using these adaptive algorithms.

Distributional shift can also greatly impact AI technology and lead to erroneous
predictions [72]. For example, models can appear to perform with high accuracy but
may fail if the dataset suddenly shifts. As disease patterns are constantly changing, a
mismatch can occur between the training and the operational data [72]. In order to combat
this, the FDA proposed a potential solution to this problem where manufacturers can
submit periodic updates and real-world performance monitoring to the FDA as part of an
algorithm-change protocol [71]. This method falls under the framework of a total product
lifecycle regulatory approach, allowing the integration of pre-market and post-market
surveillance data for medical devices using AI/ML-based technologies. Within the field of
radiology, 21 AI/ML-based algorithms are FDA-approved as medical devices, 3 of which
are used for CT-based lesion detection (Arterys Oncology DL, Arterys MICA, and QuantX),
2 of which are used for stroke and hemorrhage detection (ContaCT, Accipiolx, and Icobrain),
6 of which are deep learning algorithms used to improve image processing (SubtlePET,
Deep Learning Image Reconstruction, Advanced Intelligent Clear-IQ Engine, SubtleMR,
and AI-Rad Companion), and 4 of which are focused on acute care for pneumothorax, wrist
fracture diagnosis, and triage of head, spine, and chest injuries (Health PNX, Critical Care
Suite, OsteoDetect, and Aidoc Medical BriefCase System) [72]. Deep learning algorithms
developed from single institutions will require approval under these regulatory pathways
for widespread clinical application. Ultimately, this approach can help the FDA embrace
the iterative improvement power of AI/ML-based technologies as medical devices, while
simultaneously ensuring patient safety.

8. Conclusions

The field of emergency radiology can greatly benefit from AI applications in image seg-
mentation, automated detection, and outcome prediction for a variety of abdominopelvic
pathologies. Not only can AI algorithms automatically identify subtle disease states and
provide quantitative characterization of disease severity, but they also have the potential
to improve workflow efficiency and reduce overall workloads. In addition, AI can help
augment human decision making and serve as a second opinion in complicated cases.
As most AI methods are trained in one specific task, it remains to be seen whether AI
will be broadly implemented in the detection of multiple abdominopelvic pathologies, as
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outlined here. While the field of AI in emergency radiology is expanding exponentially,
many challenges exist that hinder the clinical translation of these technologies.
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