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Abstract: Objectives: To explore the potential of radiomics on gadoxetate disodium-enhanced MRI
for predicting hepatocellular carcinoma (HCC) response after transarterial embolization (TAE).
Methods: This retrospective study included cirrhotic patients treated with TAE for unifocal HCC
naive to treatments. Each patient underwent gadoxetate disodium-enhanced MRI. Radiomics analysis
was performed by segmenting the lesions on portal venous (PVP), 3-min transitional, and 20-min
hepatobiliary (HBP) phases. Clinical data, laboratory variables, and qualitative features based on
LI-RADSv2018 were assessed. Reference standard was based on mRECIST response criteria. Two
different radiomics models were constructed, a statistical model based on logistic regression with
elastic net penalty (model 1) and a computational model based on a hybrid descriptive-inferential
feature extraction method (model 2). Areas under the ROC curves (AUC) were calculated. Results:
The final population included 51 patients with HCC (median size 20 mm). Complete and objective
responses were obtained in 14 (27.4%) and 29 (56.9%) patients, respectively. Model 1 showed the
highest performance on PVP for predicting objective response with an AUC of 0.733, sensitivity of
100%, and specificity of 40.0% in the test set. Model 2 demonstrated similar performances on PVP
and HBP for predicting objective response, with an AUC of 0.791, sensitivity of 71.3%, specificity of
61.7% on PVP, and AUC of 0.790, sensitivity of 58.8%, and specificity of 90.1% on HBP. Conclusions:
Radiomics models based on gadoxetate disodium-enhanced MRI can achieve good performance for
predicting response of HCCs treated with TAE.

Keywords: radiomics; LI-RADS; hepatocellular carcinoma; magnetic resonance imaging;

treatment response

1. Introduction

Hepatocellular carcinoma (HCC) accounts for about 90% of all primary liver malig-
nancies in cirrhotic patients [1]. Treatment options for HCC are based on tumor extent and
severity of chronic liver disease [1]. In patients with localized HCC, ineligible for resection
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or transplantation and without macrovascular invasion, locoregional treatments represent
an important therapy option to prolong patients” survival. Among these, intraarterial
treatments, such as transarterial chemoembolization (TACE) and transarterial embolization
(TAE), are widely used as first-line treatments in patients with intermediate stage (Barcelona
Clinic Liver Cancer stage B) HCC, not eligible to curative surgical resection, or as a bridge
to transplantation [1,2]. Accurate prediction of response to intraarterial treatments is crucial
for optimal patients’ selection. Response to treatment can be heterogeneous according to
pre-treatment tumor characteristics. Several prior clinical models have been proposed for
predicting treatment response with varying results, including assessment of clinical and
tumor features such as location and size of HCC, number of nodules, x-fetoprotein, patients
age, liver function, and performance status [3,4]. Additionally, some studies investigated
pretreatment qualitative imaging features of HCC on magnetic resonance imaging (MRI)
for predicting tumor response [5,6]. Gadoxetate disodium-enhanced MRI has an impor-
tant role for the diagnosis and pretreatment assessment in patients with HCC, providing
improved sensitivity for the diagnosis and high quality of the hepatobiliary phase (HBP).
However, qualitative imaging features may be affected by subjective interpretation, readers
experience, and different definitions among HCC guidelines. Therefore, reliable prediction
of response on pretreatment MRI remains an unsolved challenge in clinical practice.

Radiomics is emerging as a promising tool that allows to extract a large number
of quantitative features from radiological images. Radiomics features can be combined
with clinical and imaging data for building predictive models for lesion characterization,
prediction of treatment response, and patients’ prognosis [7,8]. Initial studies explored
the potential of radiomics and texture analysis for the prediction of treatment response
and prognosis after intraarterial treatments on contrast-enhanced CT [9-16] and MRI
with extracellular contrast agents [17-22]. On MRI, radiomics analysis was applied to T1-
weighted post-contrast images, T2-weighted sequences, and diffusion weighted imaging
with high performances [17-22]. However, none of these studies investigated accuracy
of radiomics on gadoxetate disodium-enhanced MRI in combination with both clinical
and semantic imaging features. Moreover, the impact of different model developments on
the final diagnostic performance has not been compared in this setting. We hypothesize
that radiomics may provide an added value for predicting treatment response of HCC by
quantifying lesion heterogeneity related to tumor aggressiveness that cannot be appreciated
by the radiologist eyes.

The aim of this study was to explore the potential of radiomics on gadoxetate disodium-
enhanced MRI in comparison with clinical variables and qualitative imaging features
for predicting hepatocellular carcinoma response after transarterial embolization, using
statistical and computational models.

2. Materials and Methods

This retrospective, single-institution study protocol was approved by the Ethical Com-
mittee of University Hospital of Palermo with a waiver for informed consent (N. 10/2020
Approval Date: 25 November 2020).

2.1. Population

A search through the clinical and radiological database at our Institution was con-
ducted to select adult patients meeting the following inclusion criteria: (1) diagnosis
of cirrhosis or chronic hepatitis B infection; (2) presence of unifocal HCC naive to any
prior treatment, in patients not candidate to surgical resection due to advanced liver dis-
ease; (3) gadoxetate disodium-enhanced MRI performed at our Institution; (4) underwent
successful transarterial embolization between 2015 and 2020, within one month of the
pretreatment gadoxetate disodium-enhanced MRI. Patients were excluded if they met any
of the following criteria: (1) lack of pretreatment contrast-enhanced MRI exams (1 = 56);
(2) pretreatment contrast-enhanced MRI not acquired with gadoxetate disodium as contrast
agent (n = 14). The flowchart of patients” accrual for this study is illustrated in Figure 1.
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Figure 1. Flowchart of patients” accrual for the study. Abbreviations: HCC: Hepatocellular Carci-
noma; LI-RADS: Liver Imaging Reporting and Data System; MRI: Magnetic Resonance Imaging;
TAE: Transarterial Embolization.

The final study population consisted of 51 patients (37 males, 14 females, median age
73 years, range 44-85 years) with unifocal HCC and available pretreatment gadoxetate
disodium-enhanced MRI. Patient-related clinical data and laboratory variables—i.e., age at
the time of treatment, sex, laboratory and tumor markers, history of ascites or varices, and
Child-Pugh score—were collected using the electronic data repository systems.

2.2. MRI Technique

MRI exams were acquired on two clinical 1.5-T MR scanners (n = 27 patients with
Signa Excite, General Electric, Healthcare, Milwaukee, WI, USA; and n = 24 patients with
Intera Achieva 1.5 Philips Healthcare, Best, The Netherlands) equipped with a 16-channel
body phased-array coil. All patients underwent contrast-enhanced MRI with a dedicated
liver protocol, in accordance with LI-RADS v2018 technical recommendations [23] which
include the following sequences: axial T2-weighted turbo or fast spin-echo (with and
without fat saturation) sequences, axial dual gradient-recalled echo T1-weighted sequence
(in-phase and opposed-phase), and axial diffusion weighted imaging acquired with b
values of 0, 150 and 800 s/mm?. Axial T1-weighted three-dimensional gradient-recalled
echo sequences with fat suppression (Liver Acquisition with Volume Acceleration, LAVA,
General Electric; or T1-weighted high-resolution isotropic volume examination, THRIVE,
Philips Healthcare) were obtained before and after contrast agent administration. De-
tailed parameters of T1-weighted three-dimensional gradient-recalled echo sequences are
reported in Supplementary Table S1.

A weight-based dose of 0.025 mmol/Kg of gadoxetate disodium (Gd-EOB-DTPA,
Primovist, Bayer Healthcare, Berlin, Germany) was injected at 1 mL/sec, followed by
20-mL saline flush at the same injection rate, using an automatic injector (Medrad® Spectris
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Solaris® EP, Bayer Healthcare, Berlin, Germany). Post-contrast phases were acquired on late
hepatic arterial (12-14 s after the detection of contrast bolus), portal venous (PVP, 50-60 s
after the detection of contrast bolus), transitional (at 3 min and 5 min), and hepatobiliary
(HBP, 20 min) phases.

2.3. MRI Qualitative Analysis

Two radiologists (E.V. and R.C., with seven and six years of experience in liver imag-
ing), blinded to the lesions” outcome, reviewed all the gadoxetate disodium-enhanced MRI
exams in consensus using the LI-RADS v2018 diagnostic algorithm [24]. The radiologists
recorded the presence of major features including size, nonrim arterial phase hyperen-
hancement (nonrim APHE), nonperipheral “washout” (evaluated on PVP only due to the
injection of gadoxetate disodium), enhancing “capsule”, threshold growth, and assigned
a final category based on LI-RADS diagnostic table [24]. Additionally, ancillary features
favoring malignancy (not HCC in particular or HCC in particular), and ancillary features
favoring benignity were recorded as defined by LI-RADS algorithm [24]. Notably, due to
the very low frequency of ancillary features favoring benignity in our cohort (only HBP
isointensity detected in one observation) they were not included for further analysis.

2.4. Segmentation and Radiomics Feature Extraction

Lesion segmentation was performed using the research software Radiomics, version 1.2.2
(Siemens Healthineers, Forchheim, Germany), by the same radiologists in consensus, with
an interval time of one month from qualitative analysis to avoid recall biases. Post-contrast
axial T1-weighted three-dimensional gradient-recalled echo sequences acquired on PVP,
3’ transitional, and HBP were used for lesion segmentation and radiomics feature ex-
traction. T2-weighed and diffusion weighted imaging were already assessed in prior
investigations [19,20]. The late hepatic arterial phase was not included due to the known
possible respiratory-motion artifacts in the images acquired after the injection of gadoxetate
disodium compared to other gadolinium-based contrast agents, and to limit the confound-
ing factors associated with the contrast injection rate [25,26]. Selected sequences were
anonymized and sent to a dedicated workstation equipped with a research radiomics soft-
ware (Radiomics, version 1.2.2; Siemens Healthineers, Forchheim, Germany) [27]. A region
of interest was manually drawn within the lesion margins, including the whole tumor visu-
alized in consecutive slices (Figure 2). The radiomic tool accesses the PyRadiomics package
(Version 1.3.0) implemented in Python which calculates 854 radiomics features categorized
into three main categories (i.e., intensity, shape, and texture radiomics features), including
18 first order histogram-based features, 24 gray-level co-occurrence matrix (GLCM), 14 gray
level dependence matrix (GLDM), 16 grey-level run-length matrix (GLRLM), 16 grey-
level zone length matrix (GLZLM), 5 neighboring gray tone difference matrix (NGTDM),
17 shape-based, and 743 wavelet-based radiomics features.
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Figure 2. Gadoxetate disodium-enhanced MRI before transarterial embolization in a 74-year-old man
with hepatitis C-related cirrhosis and a 27-mm hepatocellular carcinoma. Images shows example of
whole tumor segmentation (circles) on axial (A), sagittal (B), and coronal (C) hepatobiliary phase
images with volumetric lesion reconstruction (D).

A detailed description of the features can be found in the online documentation of
PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/features.html, accessed on
20 January 2022).

2.5. Lesions Outcome

Evaluation of treatment response at contrast-enhanced exams performed at one month
after treatment was used as reference standard for this study. Treatment response was
evaluated using the modified RECIST criteria (mRECIST) [28]. Patients were classified
as complete response (disappearance of any intratumoral arterial enhancement), partial
response (>30% decrease of intratumoral enhancement of target lesion), stable disease
(neither partial response or progression disease), and progressive disease (>20% increase
in size of target lesion) [28]. Patients with complete response and partial response were
considered as objective response.

2.6. Statistical Analyses of Qualitative Features

Categorical variables were expressed as numbers and percentages. Continuous vari-
ables were reported using median and interquartile ranges (IQR) according to the Shapiro—
Wilk normality test. Analysis of clinical variables and LI-RADS qualitative imaging features
was conducted using the Pearson x? or Fisher exact test to assess differences between cat-
egorical variables, and Mann-Whitney U test to assess differences between continuous
variables. A p value < 0.05 was considered for statistical significance. Statistical analyses
were performed using SPSS Software (Version 20.0. Armonk, NY, USA: IBM Corp.).
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2.7. Radiomics Models Construction

Two different radiomics models were built, including a statistical model based on
logistic regression with elastic net penalty (model 1) and a computational model based
on an innovative hybrid descriptive-inferential feature extraction method that combines
the point biserial correlation and the logistic regression (model 2) [29,30]. Each model
was tested for the prediction of complete response and objective response in the analyzed
phases (PVP, 3’ transitional, and HBP). The models were constructed including the dataset
of 854 radiomics features, the combined dataset of 12 clinical variables, and 19 LI-RADS
qualitative imaging features. Predictive performances of the models were summarized by
using receiver operating characteristics (ROC), areas under the ROC curve (AUC) with 95%
confidence interval (95% CI), sensitivity, specificity, and accuracy.

2.8. Radiomics Model 1

For the logistic regression model, the dataset on each phase was randomly split into
training set (80%) and test set (20%). For features selection, a logistic model with elastic net
(e-net) penalty was fit on the training set. The tuning hyper-parameters alpha and lambda
were found in the following way: a grid search of alpha values is carried out in the interval
[0.5, 1] and, for each fixed alpha, the best lambda is found by a 5-fold cross-validation. The
e-net is preferred to the LASSO in order to reduce the chance of selecting zero features. The
interval [0.5, 1] is chosen as in this step we are more interested in feature selection than
decorrelating the features.

For features decorrelation, two reduced training set and test set were created on the
ground of the selected features. A logistic regression model with ridge penalty [31] was fit,
while lambda is newly estimated by 5-fold cross-validation.

Statistical analyses were performed by a dedicated statistician (M.E. with 16 years of
experience) by using the R packages glmnet [32] and islasso [33] at steps 1-2, respectively.

2.9. Radiomics Model 2

For the computational model, the point-biserial correlation coefficient (rpb) was cal-
culated between each feature and the corresponding outcome in order to obtain the most
discriminative features, avoiding overfitting problems and repetition of multiple features
with high similarity or with incidental statistical significance [29,30]. The absolute value
of rpb was used to sort the radiomics features in descending order. Next, a cycle was
started to add one column at a time performing a logistic regression analysis. The p value
of the current iteration was compared with the previous iteration. If this did not decrease,
the cycle was interrupted. In this way, the features with valuable association with the
outcome were identified. Subsequently, the Discriminant Analysis (DA) was used as a
method for features classification [34] in order to overcome the unbalanced dataset issue
which occurred in the case of complete response where 14 patients were compared with
37 patients (see Section 3.2). As reported in prior studies [35,36]. unbalanced datasets do
not have a negative effect on DA performance. Furthermore, Model 2 was tested in a k-fold
cross-validation fashion grouping data into training and test sets maintaining the same
outcome percentage of the original dataset to preserve any data imbalances. In addition,
the “k-fold” strategy was used in such a way as to guarantee disjointed test sets. Thus,
the dataset was divided into equal k = 5 subsets, and the holdout method was repeated
5 times. In other words, each time a different fold never used during the training was left
for test. Then, the performance of each k-model was averaged to make the results more
robust, and to avoid optimistic results. The k = 5 was empirically determined through the
trial-and-error method (k range: 5-15, step size of 5).

Computational analysis of radiomics features was conducted by a computer engineer
(A.C., with 9 years of experience on computational data analysis).
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3. Results
3.1. Population

Overall, 51 unifocal treatment-naive HCCs (median size 20 mm, IQR 16-30 mm)
imaged with gadoxetate disodium-enhanced MRI were analyzed in the final population.
Forty-seven (92.2%) lesions were classified as LR-5, while four (7.8%) were categorized
as LR-4, and proved to be HCC at percutaneous liver biopsy. According to mRECIST
criteria, 14 (27.4%) patients were classified as complete response, 15 (29.4%) as partial
response, 19 (37.3%) as stable disease, and 3 (5.9%) as progressive disease. Objective
response (complete and partial responses) was obtained in 29 (56.9%) patients.

3.2. Clinical and Qualitative Imaging Analysis

Differences in clinical and laboratory variables according to the response assessment
are reported in Table 1. Only platelet count resulted significantly higher in patients with
complete response compared to patients lacking complete response (median 115.1 x 103 /pL
vs. 80.0 x 103/uL; p = 0.021). No statistically significant differences were observed in
patients with or without objective response.

Table 1. Differences in clinical characteristics according to the post-treatment response.

CR

CR +PR SD + PD

Characteristics 1 = 14) PR + SD + PD (n = 37) p Value (1 = 29) o =22) p Value
Age (years) 72.5 (65.0, 75.7) 74.0 (67.0, 78.5) 0.526 73.0 (65.0, 79.5) 73.5 (69.5,77.2) 0.614
Sex

9 (64.3) 28 (75.7) 20 (69.0) 17 (77.3)
Males 0.490 0.510
Females 5 (35.7) 9 (24.3) 9 (31.0) 5(22.7)
Etiology of
cirrhosis 12 (85.8) 31 (83.8) 24 (82.8) 19 (86.4)
Hepatitis C 1(7.1) 5 (13.5) 0.649 4(13.8) 2(9.1) 0.864
Hepatitis B 1(7.1) 1(2.7) 1(3.4) 1(4.5)
NAFLD
Albumin (g/dL) 34 (3.3,3.9) 3.6 (3.2,3.9) 0.767 34(3.2,3.9) 3.7 (34, 4.0) 0.147
Creatinine
(mg/dL) 0.8 (0.7, 0.9) 0.8 (0.7, 1.0) 0.670 0.8 (0.7, 1.0) 0.8 (0.7, 1.0) 0.803
Bilirubin
(mg/dL) 0.8 (0.6, 1.1) 0.8 (0.6, 1.2) 0.983 0.8 (0.6, 1.4) 0.8 (0.6, 1.0) 0.661
Fialtgaljti‘;““t 115.1 (97.0, 170.7) 80.0 (59.5, 120.0) 0.021 101.0 (63.0,130.5)  86.5 (60.2, 120.7) 0.697
INR 1.0 (1.0, 1.1) 1.0 (1.0, 1.2) 0.380 1.0 (1.0, 1.1) 1.0 (1.0, 1.2) 0.985
a-fetoprotein
(ng/mL) 10.3 (3.7, 122.0) 5.0 (2.9, 47.1) 0.597 8.4 (2.7,41.7) 5.0 (2.9,121.2) 0.886
Child-Pugh
Class 14 (100) 31 (83.8) 26 (89.7) 19 (86.4)
A 0(0) 6(162) 0.170 3(103) 3 (13.6) 1.000
B
Ascites 0 (0) 8 (21.6) 0.088 5(17.2) 3 (13.6) 1.000
Varices 10 (71.4) 29 (78.4) 0.715 22 (75.9) 17 (77.3) 0.906

Note. Continuous variables are expressed as median and interquartile range (25th to 75th percentile), categorical
variables are expressed as numbers and percentages. Categorical variables were compared using the Pearson x2 or
Fisher exact test and continuous variables using the Mann-Whitney U test. Statistically significant values (p < 0.05)
are highlighted in bold. Abbreviations: CR: Complete Response; PR: Partial Response; SD: Stable Disease; PD:
Progressive Disease; NAFLD: Nonalcoholic Fatty Liver Disease.

There were no statistically significant differences in frequency of LI-RADS major
features and ancillary features favoring malignancy in HCCs according to treatment
response (Table 2).
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Table 2. Differences in LI-RADS major and ancillary features favoring malignancy according to
treatment response.

CR PR +SD + PD CR +PR SD + PD

Characteristics (1 = 14) (= 37) p Value (1 = 29) (n = 22) p Value
Size (mm) 23.0 (14.7,27.0)  20.0 (16.0, 31.5) 0.642 22.0 (15.5,28.0)  20.0 (16.0, 32.0) 0.593
Nonrim APHE 13 (92.9) 36 (97.3) 0.478 27 (93.1) 22 (100) 0.500
Nonperipheral “washout” 11 (78.6) 32 (86.5) 0.668 22 (75.9) 21 (95.5) 0.117
Enhancing “capsule” 6 (42.9) 17 (45.9) 0.843 12 (41.4) 11 (50.0) 0.581
Threshold growth 0 (0) 4 (10.8) 0.565 3(10.3) 1(4.5) 0.624
US visibility as

discrete nodule 4 (28.6) 5(13.5) 0.236 5(17.2) 4(18.2) 1.000
Subthreshold growth 5(35.7) 9 (24.3) 0.490 6 (20.7) 8 (36.4) 0.214
Corona enhancement 1(7.1) 2(54) 1.000 2 (6.9) 1(4.5) 1.000
Fat sparing in solid mass 1(7.1) 3(8.1) 1.000 3(10.3) 1(4.5) 0.625
Restricted diffusion 9 (64.3) 24 (64.9) 1.000 18 (62.1) 15 (68.2) 0.651
Mild-moderate T2

hyperintensity 7 (50.0) 20 (54.1) 0.796 13 (44.8) 14 (63.6) 0.183
Iron sparing in solid mass 0(0) 0 (0) NA 0 (0) 0(0) NA
Transitional phase

hypointensity 9 (64.3) 33(89.2) 0.093 21 (72.4) 21 (95.5) 0.060
HBP hypointensity 12 (85.7) 32 (86.5) 1.000 24 (82.8) 20 (90.9) 0.684
Nonenhancing “capsule” 0(0) 1(2.7) 1.000 1(3.4) 0(0) 1.000
Nodule-in-nodule

architecture 1(7.1) 3(8.1) 1.000 2 (6.9) 2(9.1) 1.000
Mosaic architecture 1(7.1) 3(8.1) 1.000 1(3.4) 3(13.6) 0.303
Fat in mass, more than

adjacent liver 2(14.3) 7 (18.9) 1.000 4(13.8) 5(22.7) 0.474
Blood products in mass 1(7.1) 0 (0) 0.275 1(3.4) 0(0) 1.000

Note. Continuous variables are expressed as median and interquartile range (25th to 75th percentile), categorical
variables are expressed as numbers and percentages. Categorical variables were compared using the Pearson x>
or Fisher exact test and continuous variable (size) using the Mann-Whitney U test. NA: Not Available since this
feature was never encountered. Statistically significant values (p < 0.05) are highlighted in bold. Abbreviations:
CR: Complete Response; PR: Partial Response; SD: Stable Disease; PD: Progressive Disease; APHE: Arterial Phase
Hyperenhancement; HBP: Hepatobiliary Phase.

3.3. Performance of Radiomics-Based Models
3.3.1. Radiomics Model 1

The most discriminative features selected from clinical variables, LI-RADS qualitative
imaging features, and radiomics-based features through the logistic regression with elastic
net penalty are reported in Supplementary Table S2.

Performances of the statistical models tested by using the logistic regression are
reported in Table 3 for the training set, and Table 4 for the test set. Corresponding ROC
curves are illustrated in Figure 3 for the training set, and in Figure 4 for the test set. Model
1 on HBP showed the highest performance in the test set for predicting complete response,
with an AUC of 1.000 (95% CI 1.000-1.000, p < 0.001), sensitivity of 100%, and specificity
of 100%. Model 1 on PVP showed the highest performance in the test set for predicting
objective response, with an AUC of 0.733 (95% CI 0.405-1.000, p = 0.163), sensitivity of
100%, and specificity of 40.0%.
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Table 3. Performance of logistic model with ridge penalty (radiomics model 1) based on the selected
features for predicting complete response and objective response (complete and partial response) in
the training set.

Sensitivity Specificity Accuracy AUC (95% CI) p Value
Prediction of complete response
PVP 100 100 100 1.000 (1.000-1.000) <0.001
3’ TP 100 100 100 1.000 (1.000-1.000) <0.001
HBP 100 90.0 92.5 0.984 (0.957-1.000) <0.001
Prediction of objective response
PVP 87.0 64.7 77.5 0.872 (0.765-0.979) <0.001
3’ TP 100 100 100 1.000 (1.000-1.000) <0.001
HBP 94.1 100 97.5 1.000 (1.000-1.000) <0.001

Note. Sensitivity, specificity, and accuracy are reported as percentages. The area under the receiver operating
characteristic curve (AUC) with 95% confidence interval (CI) was calculated to assess the diagnostic performance.
Abbreviations: PVP: Portal Venous Phase; 3’ TP: 3 min Transitional Phase; HBP: Hepatobiliary Phase.

Table 4. Performance of logistic model with ridge penalty (radiomics model 1) based on the selected
features for predicting complete response and objective response (complete and partial response) in

the test set.
Sensitivity Specificity Accuracy AUC (95% CD) p Value
Prediction of complete response
PVP 87.5 33.3 72.7 0.667 (0.251-1.000) 0.431
3’ TP 75.0 33.3 63.6 0.750 (0.429-1.000) 0.127
HBP 100 100 100 1.000 (1.000-1.000) <0.001
Prediction of objective response
PVP 100 40.0 72.7 0.733 (0.405-1.000) 0.163
3’ TP 40.0 66.7 54.5 0.667 (0.305-1.000) 0.367
HBP 20.0 100 63.6 0.600 (0.193-1.000) 0.630

Note. Sensitivity, specificity, and accuracy are reported as percentages. The area under the receiver operating
characteristic curve (AUC) with 95% confidence interval (CI) was calculated to assess the diagnostic performance.
Abbreviations: PVP: Portal Venous Phase; 3' TP: 3 min Transitional Phase; HBP: Hepatobiliary Phase.
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Figure 3. ROC curves of the radiomics model 1 in the training set for predicting complete response
on portal-venous (A), 3’ transitional (B), and hepatobiliary (C) phases, and for predicting objective
response on portal-venous (D), 3’ transitional (E), and hepatobiliary (F) phases.
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Figure 4. ROC curves of the radiomics model 1 in the test set for predicting complete response
on portal-venous (A), 3’ transitional (B), and hepatobiliary (C) phases, and for predicting objective
response on portal venous (D), 3’ transitional (E), and hepatobiliary (F) phases.

3.3.2. Radiomics Model 2

The most discriminating features, selected from clinical variables, LI-RADS qualitative
imaging features, and quantitative imaging-based features by the hybrid descriptive-
inferential feature extraction method, are reported in Supplementary Table S3.

Performances of the models tested by using the discriminant analysis are shown in
Table 5. Corresponding ROC curves are illustrated in Figure 5. The model based on the
HBP showed the highest diagnostic performance for predicting complete response, with an
AUC of 0.861 (95% CI 0.737-0.984, p = 0.010), sensitivity of 75.5%, and specificity of 82.8%.
Models on PVP and HBP demonstrated similar performances for predicting objective
response, with an AUC of 0.791 (95% CI 0.667-0.915, p = 0.002), sensitivity of 71.3%, and
specificity of 61.7% on PVP, and AUC of 0.790 (95% CI 0.649-0.931, p = 0.031), sensitivity of
58.8%, and specificity of 90.1% on HBP.

Table 5. Performance of Discriminant Analysis (radiomics model 2) based on the selected features for
predicting complete response and objective response (complete and partial response).

Sensitivity  Specificity Accuracy AUC (95% CI) p Value

Prediction of complete response

PVP 66.6 56.6 63.8 0.757 (0.626-0.888) 0.002

3’ TP 66.1 72.8 67.9 0.795 (0.654-0.936) 0.024

HBP 75.5 82.8 77.5 0.861 (0.737-0.984) 0.010
Prediction of objective response

PVP 71.3 61.7 65.8 0.791 (0.667-0.915) 0.002

3’ TP 54.1 65.6 60.7 0.585 (0.414-0.755) 0.049

HBP 58.8 90.1 76.7 0.790 (0.649-0.931) 0.031

Note. Sensitivity, specificity, and accuracy are reported as percentages. The area under the receiver operating
characteristic curve (AUC) with 95% confidence interval (CI) was calculated to assess the diagnostic performance.
Abbreviations: PVP: Portal Venous Phase; 3’ TP: 3 min Transitional Phase; HBP: Hepatobiliary Phase.
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Figure 5. ROC curves of the Discriminant Analysis (radiomics model 2) for predicting complete
response on portal-venous (A), 3’ transitional (B), and hepatobiliary (C) phases, and for the prediction
of objective response on portal-venous (D), 3’ transitional (E), and hepatobiliary (F) phases.

4. Discussion

Our study tested the performance of statistical and computational models based
on the combination of clinical data, qualitative LI-RADS-defined imaging features, and
radiomics features extracted from PVP, 3’ transitional phase, and HBP for the prediction
of response after TAE in patients with unifocal HCC. Our results demonstrate that both
models constructed through statistical and computational analyses had an almost perfect
performance for the prediction of complete response using HBP images. For the prediction
of objective response, the performances were higher on PVP and HBP when using the
computational models, while performance of statistical-based models were lower in the
test set. Notably, both models were mostly based on the selection of wavelet radiomics
features, with most of the selected features being gray-level co-occurrence matrix. The
differences in the final diagnostic performances may be related to the smaller number
of patients included in the test set when testing the statistical models, especially when
assessing complete response. Due to the large number of included features, the point-
biserial correlation coefficient was adopted in the computational model to select the most
discriminative features and to avoid overfitting problems. Importantly, only platelet count
was significantly different between patients with complete response compared to non-
responders, and none of the LI-RADS-based qualitative imaging features could predict
response in our cohort.

Nowadays, there are no robust predictors of optimal response after transarterial
treatments in patients with HCC. Optimal patients’ selection for transarterial treatments is a
key factor for prolonged survival outcomes [37]. Predictive models using only conventional
clinical, biochemical, and radiological variables are not able to provide a reliable prediction
of the complete radiological response in clinical practice [3,4]. This is concordant with our
results, in which only platelet count was retained in the final combined models for the
prediction of complete response. In clinical practice, indications for transarterial treatments
are mostly based on HCC tumor stage, technical feasibility, and compensated hepatic
function [37]. Nevertheless, intermediate stage HCC includes a wide spectrum of lesions
with heterogeneous biological aggressiveness that cannot be anticipated by conventional
radiological features. Radiomics has the potential to provide additional quantitative data
that can be correlated with tumor biological aggressiveness [7]. Our study supports the
applications of radiomics on gadoxetate disodium MRI for the assessment of patients
before intraarterial treatments. The integration of radiomics features could be particularly



Diagnostics 2022, 12, 1308

12 0f 15

relevant in clinical practice for selecting the optimal candidates to intraarterial treatments,
while patients with radiomics features suggestive of poor response could benefit of early
switching to alternative treatments, including the most recent systemic therapies with
combination of immunotherapy and antiangiogenic drugs [38].

Few prior studies explored the value of MRI-based radiomics combined with clin-
ical features for the prediction of tumor response after transarterial treatments [18-22].
Song et al. [18] built a nomogram for prediction of recurrence-free survival after TACE
based on the combination of radiomics features of the entire tumor on PVP with ex-
tracellular contrast agent and clinical variables. Zhao et al. [21] presented a combined
clinical-radiomics model for the prediction of objective response after TACE. In that study,
the radiomics model on PVP on MRI with extracellular contrast agent showed the highest
diagnostic performance (AUC of 0.830) in the validation cohort [21]. Kuang et al. [22]
incorporated radiomics features on T2-weighted and arterial phase images in a nomogram
to predict short-term response after TACE. Interestingly, similarly to our study, low platelet
count was associated with poor response after treatment [22]. Our study proved that
radiomics analysis may be used to predict response also on gadoxetate disodium-enhanced
MRI. In our study the performance of final models including radiomics features was the
highest on HBP images, with a sensitivity of 75.5% and specificity of 82.8% for the pre-
diction of complete response, and a sensitivity of 58.8%, and specificity of 90.1% for the
prediction of objective response, according to the computational analysis results and this
is in line with prior literature demonstrating the role of HBP for HCC diagnosis [39-41].
Most importantly, no prior investigations compared the accuracy of radiomics-models
against LI-RADS-based features. Interestingly, LI-RADS features seem to optimally predict
recurrence-free survival and overall survival after curative surgical resection in patients
with primary liver carcinomas, while there is scarce data on the predictive value of LI-RADS
features in the context of locoregional treatments [42,43].

This single-center retrospective study has multiple limitations that need to be acknowl-
edged. First of all, the study population was small, and the inclusion of only patients with
single treatment-naive HCC and available pre-treatment gadoxetate disodium-enhanced
MRI acquired with the same protocol may have introduced selection biases. Further studies
need to evaluate the performance of radiomics models in large multicentric cohorts before
direct translation into clinical practice. Second, outcomes were based on response assess-
ment using mRECIST criteria at one month, which is a moderate radiological surrogate
of overall survival in patients undergoing transarterial treatments [44]. However, this
remains the most widely used endpoint for treatment decisions. Third, not all the lesions
were proven by pathology. The diagnosis of most HCCs treated in our study was made by
categorization of observations as LR-5 using LI-RADSv2018, which means a 95% pooled
proportion of lesions proven to be HCC at histopathological analysis [45]. Fourth, images
were acquired using 1.5T MR scanners in our study; therefore, these results cannot be
generalized to 3T MR scanners. We also did not evaluate T2-weighted sequences and
diffusion weighted imaging, which were extensively investigated in prior studies [19,20].
Finally, HCC segmentation was performed manually. Although manual segmentation is
still considered the reference standard for radiomics analysis, this is a time-consuming
process that may be prone to inter-reader variability.

5. Conclusions

Radiomics models based on gadoxetate disodium-enhanced MRI can achieve a good
performance for the prediction of response in HCCs treated with TAE. The performance of
radiomics-based models for predicting objective response is the highest when evaluating
the portal venous phase and hepatobiliary phase images.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/diagnostics12061308/s1, Supplementary Table S1: Acquisition
parameters of post-contrast axial T1-weighted three-dimensional gradient-recalled echo sequences
with fat suppression at 1.5T MRI scanners; Supplementary Table 52: Most discriminant features
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identified by using a first features selection performed identified by the statistical model by a logistic
regression with elastic net penalty (radiomics model 1), while the final model was a logistic model
with ridge penalty on the selected features in order to find an uncorrelated solution of clinical variables
for reduction and selection of clinical variables, LI-RADS qualitative features, and radiomics features
according to the post-treatment response; Supplementary Table S3: Most discriminant features
identified by the computational system based on point-biserial-correlation coefficient (radiomics
model 2) for reduction and selection of clinical variables, LI-RADS qualitative features, and radiomics
features according to post-treatment response.
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