
Citation: Abu, M.; Zahri, N.A.H.;

Amir, A.; Ismail, M.I.; Yaakub, A.;

Anwar, S.A.; Ahmad, M.I. A

Comprehensive Performance

Analysis of Transfer Learning

Optimization in Visual Field Defect

Classification. Diagnostics 2022, 12,

1258. https://doi.org/10.3390/

diagnostics12051258

Academic Editor: Christoph Palm

Received: 12 March 2022

Accepted: 17 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

A Comprehensive Performance Analysis of Transfer Learning
Optimization in Visual Field Defect Classification
Masyitah Abu 1, Nik Adilah Hanin Zahri 1,*, Amiza Amir 1, Muhammad Izham Ismail 2, Azhany Yaakub 3,
Said Amirul Anwar 4 and Muhammad Imran Ahmad 4

1 Center of Excellence for Advanced Computing, Faculty of Electronic Engineering Technology, Universiti
Malaysia Perlis, Kangar 01000, Malaysia; masyitah@studentmail.unimap.edu.my (M.A.);
amizaamir@unimap.edu.my (A.A.)

2 Institute of Engineering Mathematics, Faculty of Applied and Human Sciences, Universiti Malaysia Perlis,
Arau 02600, Malaysia; izham@unimap.edu.my

3 Department of Ophthalmology & Visual Science, School of Medical Sciences, Universiti Sains Malaysia,
Kubang Kerian 16150, Malaysia; azhany@usm.my

4 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia;
said@unimap.edu.my (S.A.A.); m.imran@unimap.edu.my (M.I.A.)

* Correspondence: adilahhanin@unimap.edu.my

Abstract: Numerous research have demonstrated that Convolutional Neural Network (CNN) models
are capable of classifying visual field (VF) defects with great accuracy. In this study, we evaluated
the performance of different pre-trained models (VGG-Net, MobileNet, ResNet, and DenseNet)
in classifying VF defects and produced a comprehensive comparative analysis to compare the
performance of different CNN models before and after hyperparameter tuning and fine-tuning.
Using 32 batch sizes, 50 epochs, and ADAM as the optimizer to optimize weight, bias, and learning
rate, VGG-16 obtained the highest accuracy of 97.63 percent, according to experimental findings.
Subsequently, Bayesian optimization was utilized to execute automated hyperparameter tuning and
automated fine-tuning layers of the pre-trained models to determine the optimal hyperparameter
and fine-tuning layer for classifying many VF defect with the highest accuracy. We found that the
combination of different hyperparameters and fine-tuning of the pre-trained models significantly
impact the performance of deep learning models for this classification task. In addition, we also
discovered that the automated selection of optimal hyperparameters and fine-tuning by Bayesian
has significantly enhanced the performance of the pre-trained models. The results observed the best
performance for the DenseNet-121 model with a validation accuracy of 98.46% and a test accuracy of
99.57% for the tested datasets.

Keywords: VF defect; CNN; hyperparameter; fine-tuning

1. Introduction

The optic pathway is an anatomical pathway connected to the brain, which sends a
signal to the retina of the human vision. The damage to the optic pathway that can result
in varied losses in sections of the human vision is known as Visual Field (VF) defects. VF
deficits can indicate several serious optic pathway illnesses such as tumors or strokes. The
border and extent of defects in the visual field suggest different types of defects and the
risk of various optic pathway illnesses. A variety of defects can develop in human vision;
for example, Figure 1 shows that lesions can occur in any part of VF. The defect pattern can
suggest a variety of disorders. The dark color represents the localization of defects in the
visual field. VF defects studied in this work are categorized as follows:

a. Right-to-left homonymous hemianopia—A VF defect condition that affects half of
the eye, possibly both eyes or only the right and left eyes. Hemianopia can indicate a
brain bleed, hemorrhage, tumor, or plus collection.

Diagnostics 2022, 12, 1258. https://doi.org/10.3390/diagnostics12051258 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12051258
https://doi.org/10.3390/diagnostics12051258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics12051258
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12051258?type=check_update&version=2

Diagnostics 2022, 12, 1258 2 of 26

b. Left/right/lower/upper quadrantanopia—A VF defect in the quarter section of
the eye at several locations (right, left, higher, or lower). This defect indicates an
abnormality in the temporal and parietal parts of the brain, which can cause brain
stroke, hemorrhage, tumor, or plus collection.

c. Inferior/superior defect field—A VF defect occurs in half of the VF’s upper or lower
half. This defect can signal the possibility of retinal detachment or malignancy in the
eye.

d. Central Scotoma—A defect pattern that appears as large or small spots in the VF’s
center, either right or left. This vision impairment is connected to a greater risk of
central macula problems.

e. Tunnel vision—A VF defect associated with glaucoma, a disease that manifests as
peripheral VF loss in the early stage, constricting the field and ending up with tunnel
vision before total blindness occurs.

f. Normal VF—Included in the study as a baseline condition.

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 27

a. Right-to-left homonymous hemianopia—A VF defect condition that affects half of
the eye, possibly both eyes or only the right and left eyes. Hemianopia can indicate a
brain bleed, hemorrhage, tumor, or plus collection.

b. Left/right/lower/upper quadrantanopia—A VF defect in the quarter section of the
eye at several locations (right, left, higher, or lower). This defect indicates an abnor-
mality in the temporal and parietal parts of the brain, which can cause brain stroke,
hemorrhage, tumor, or plus collection.

c. Inferior/superior defect field—A VF defect occurs in half of the VF’s upper or lower
half. This defect can signal the possibility of retinal detachment or malignancy in the
eye.

d. Central Scotoma—A defect pattern that appears as large or small spots in the VF’s
center, either right or left. This vision impairment is connected to a greater risk of
central macula problems.

e. Tunnel vision—A VF defect associated with glaucoma, a disease that manifests as
peripheral VF loss in the early stage, constricting the field and ending up with tunnel
vision before total blindness occurs.

f. Normal VF—Included in the study as a baseline condition.

Figure 1. VF Defect Regions [1].

Until recently, studies have proposed various methods to classify specific eye dis-
eases from various kinds of eye images, such as glaucoma [2–4] or diabetic retinopathy
[5,6]. Thus, having a consistent and accurate framework for automatically classifying mul-
tiple patterns from eye imaging has become crucial for detecting patterns that may be-
come indicators of several optic pathway diseases. Nowadays, other than traditional ma-
chine learning, researchers have been exploring deep learning to classify multiple diseases
or defects [7–9]. One of them includes the work by Abu et al. (2021), which proposed a
custom 10-layer CNN to classify six visual field defect patterns. Their experimental work
produced high accuracy of 96% compared to other machine learning methods such as
SVM and Classic Neural Network [7].

Inspired by [7], instead of designing a custom layer of CNN for visual field defect
classification, the current work extends their work by focusing on the existing pre-trained

Figure 1. VF Defect Regions [1].

Until recently, studies have proposed various methods to classify specific eye diseases
from various kinds of eye images, such as glaucoma [2–4] or diabetic retinopathy [5,6].
Thus, having a consistent and accurate framework for automatically classifying multiple
patterns from eye imaging has become crucial for detecting patterns that may become
indicators of several optic pathway diseases. Nowadays, other than traditional machine
learning, researchers have been exploring deep learning to classify multiple diseases or
defects [7–9]. One of them includes the work by Abu et al. (2021), which proposed a custom
10-layer CNN to classify six visual field defect patterns. Their experimental work produced
high accuracy of 96% compared to other machine learning methods such as SVM and
Classic Neural Network [7].

Inspired by [7], instead of designing a custom layer of CNN for visual field defect
classification, the current work extends their work by focusing on the existing pre-trained
CNN models (VGG-Net [10], MobileNet [11,12], ResNet [13], and DenseNet [14]) to conduct
the same task. This is an approach of reusing previously developed models to solve a similar
problem to speed up computation in the deep learning framework [15–17]. These pre-
trained models were chosen because they have produced high-performance classification

Diagnostics 2022, 12, 1258 3 of 26

on eye image datasets in many previous studies [5,18–20]. Furthermore, CNN and pre-
trained models also showed better performance in several medical image datasets, but each
medical image only compared the hyperparameter in one pre-trained model [21–23]. Hence,
more analysis of the pre-trained model will be conducted in this work. In addition, Bayesian
optimization was later used to perform hyperparameter tuning and fine-tuning against
all models. Hyperparameter tuning [6,24] is a search process for the ideal parameters
that define the model architecture, such as epoch, batch size, optimizer, etc. As for the
fine-tuning process [25,26], it is performed to adjust the layers of the pre-trained models so
that the target dataset (visual field defect images) may be tuned with the source dataset
and the over-fitting issue can be solved.

In this work, model optimization was performed to adjust the pre-trained models
in the deep learning framework to adapt or refine the input-output pair data [15,27] and
improve the classification accuracy for multiclass visual field defects. Furthermore, we
perform a comparative analysis of the performances of the different pre-trained models
and the effects of Bayesian optimization in choosing a suitable hyper-parameter for the
pre-trained model on the visual field defect classification task. Finally, the combination of
different hyperparameters and fine-tuning layers chosen during the optimization process
was analyzed. The analysis aims to investigate the effect of the combination of different
hyperparameters and fine-tuning layers in the pre-trained models on the classification
performance of the visual field defect dataset. In this regard, the main focus of our work is
to answer the following research questions:

1. What is the performance of transfer learning models in visual field defect classification?
2. What is the performance of transfer learning after applying Bayesian optimization?
3. How does a combination of different hyperparameter tuning and fine-tuning layers

by Bayesian optimization affect the performance of the transfer learning models in
visual field defect classification?

4. How does the fine-tuning of network layers affect the performance of the transfer
learning models in visual field defect classification?

This paper is organized as follows: Section 2 presents a review of previous related
works. Section 3 explains the main features of the visual field image datasets. Section 4
discusses the experimental framework for conducting the performance analysis of visual
field defect classification. Section 5 reports the analysis of pre-trained models in visual
field defect classification and the performance of automated hyperparameter tuning and
automated fine-tuning layers on the pre-trained models using Bayesian optimization. Lastly,
Section 6 presents the conclusion and potential for future research.

2. Related Works

This section surveys the latest literature on VF defect classification using the deep
learning method. The latest assessment on automated hyperparameters and fine-tuning
layers of the transfer learning method using Bayesian optimization is subsequently ad-
dressed. Finally, this section also summarizes existing knowledge on machine learning
and deep learning in the classification of VF defects. In addition, it describes the image
classification hyperparameters and fine-tuning process.

Previous research on VF defects has focused on detecting glaucoma [2] and the pro-
gression of glaucoma [4]. Kucur et al. [2] implemented a custom CNN with ten layers of
feature learning to identify glaucoma in VF defects. They used two types of VF image
datasets: Humphrey Field Analyzer 24-2 and OCTOPUS 101 G1, collected at Rotterdam
Eye Hospital from 201 patients. The OCTOPUS 101 G1 dataset had an accuracy of 84.5%,
whereas the Humphrey Field Analyzer 24-2 dataset had 98.5% [2]. Park et al. [4] utilized
Humphrey Field Analyzer 24-2 data from Pusan National University Hospital’s glaucoma
clinic (South Korea). A training dataset of 1408 images and testing of 281 images were
utilized in their dataset. The deep learning method used in their work is called Recurrent
Neural Network (RNN) [28]. The pattern of glaucoma change over time was also identified

Diagnostics 2022, 12, 1258 4 of 26

using RNN. The proposed method utilized RNN to detect glaucoma progression from 2005
until 2018, and the accuracy obtained was 88% [4].

Other studies on hyperparameters are limited to VF defects; however, some works
have been done on retinal image datasets and other medical images. For example,
Shankar et al. [6] developed a new automated Hyperparameter Tuning Inception-v4
(HPTI-v4) model for Diabetic Retinopathy (DR) detection and classification from color
fundus images [6]. The MESSIDOR DR datasets [29] had undergone three processes to
obtain high accuracy in their work. First, the datasets were pre-processed using contrast
enhancement through CLAHE; and segmentation using a histogram. Subsequently, the fea-
tures from the pre-processing process were extracted using their proposed work HITP-v4,
and the output was classified using Multi-Layer Perceptron (MLP) with ten-fold cross-
validation. For the best result, Bayesian optimization chose epoch: 500, learning rate: 0.001,
and momentum: 0.9 during automated hyperparameter tuning. Their results were also
compared with other works and showed the highest accuracy of 99.49% [6]. In the recent
study on COVID-19 chest X-ray image data, M. Loey et al. (2022) developed a Bayesian
optimization-based convolutional neural network to recognize COVID-19 on 10,848 chest
X-ray images (3616 COVID-19, 3616 normal cases, and 3616 Pneumonia). They had built a
new classifier for using CNN layers, and the layers hyperparameter will be tuned using
Bayesian Optimization. They had compared their work with others and had obtained
96% accuracy [30].

A. Monshi et al. [31] developed CovidXrayNet based on the EfficientNetB0 pre-trained
model to optimize data augmentation and CNN hyperparameters. Two datasets were
used to evaluate CovidXrayNet: CovidCXR (960 X-ray dataset) and Covidx (15,496 X-ray
dataset). Both datasets contain three disease classes: COVID-19, pneumonia, and normal.
This work optimized the data augmentation parameters based on image resize, rotate,
zoom, warp, lighting, and flip. Next, the best data augmentation was tested using the
transfer learning method to find the CNN hyperparameters such as epoch, batch size,
and loss function for CovidCXR and Covidx. The CovidXrayNet method achieved a high
accuracy of 95.82% with 30 epochs, 32 batch sizes, and cross-entropy label smoothing [31].
Another work that optimizes hyperparameters in transfer learning has been done by Loey
& Mirjalili [32]. They used transfer learning to detect COVID-19 from cough sounds, and
the dataset contained 1457 (755 COVID-19 and 702 healthy). ResNet-18 showed the highest
accuracy of 95.33% of the chosen models, with SGD as the optimizer [32].

Besides hyperparameter tuning, the fine-tuning process is also essential in trans-
fer learning to find the best pre-trained layer for a particular dataset. Several works
have successfully developed an automated fine-tuning method to achieve the best results.
Y. Wang et al. [25] improved the fine-tuning method that Y. Guo et al. [33] developed. Spot-
Tune is a method developed by Y. Guo et al. [33] that tunes transfer learning at a specific
point in the layers. Subsequently, Y. Wang et al. [25] enhanced SpotTune by tuning the trans-
fer learning layer based on several parts of the layer and renamed the method as MultiTune.
Both methods follow the adaptive fine-tuning process by using a policy network to decide
if the image should be routed through fine-tuning or by using the layers of a pre-trained
model. Y. Wang et al.’s [25] work, Spottune, and Multitune were compared using two
types of datasets: Aircraft [34] and CIFAR100 [35]. They concluded that their method is
the best by obtaining 59.59% for Aircraft, which is 4% higher than the Spottune method,
and 79.31% for CIFAR100, which is 1% higher than the Spottune method. Since ResNets act
like ensembles of shallow classifiers and are robust to residual block swapping [27], both
approaches utilized the ResNet pre-trained model for fine-tuning.

Most studies on VF datasets using Humphrey VF image have only focused on detect-
ing glaucoma and the progression of glaucoma patterns against time by using a custom
model of deep learning. Fewer studies utilized transfer learning on VF datasets to detect
multiple defect patterns from the Humphrey VF image. Therefore, pre-trained models
were optimized to conduct VF image classification. Due to the lack of studies on transfer
learning models for VF datasets, the potential of optimizing pre-trained models to improve

Diagnostics 2022, 12, 1258 5 of 26

VF classification performance has yet to be explored. Since the re-use of pre-trained models
for solving a similar problem can speed up the computational process, further experimental
studies and analysis on the optimization of transfer learning are necessary to analyze and
investigate the effect of the combination of different hyperparameters and fine-tuning
layers in VF defect classification. Therefore, four types of pre-trained models have been
proposed based on their performance in previous work, and Bayesian optimization was
used to optimize the hyperparameter in the model.

3. Dataset Characteristics

This work combined three datasets collected from different public dataset sources.
The first dataset is the Humphrey 10-2 Swedish Interactive Threshold Algorithm (SITA)
standard VF [36,37], which contains Humphrey 10-2 VF images collected from 200 patients.
The second dataset is from Humphrey 24-2 in Rotterdam Eye Hospital, which consists of
Humphrey 24-2 VF images from 139 patients [38,39]. In addition, the RT_dataset is from
Kucur et al. [2,40], which consists of Humphrey 24-2 VF images of 161 patients. This dataset
was also collected from the Rotterdam Eye Hospital. These datasets have extracted images
of 1200 VF defects with six defect patterns. Table 1 shows all of the datasets collected and
used to create a distribution of VF defects.

Table 1. Distribution of VF Defects from Collected Datasets.

Type of VF Defect No. of Record

Central scotoma 188
Right/Left hemianopia 205

Right/left/upper/lower quadrantanopia 150
Normal 273

Tunnel vision 207
Superior/inferior defect field 177

There are several types of Humphrey VF testing protocols depending on the type of
machine used by ophthalmologists to plot VF. The VF images utilized in this study come
from two distinct testing procedures, which produce VF images with a 10-2 test grid and
a 24-2 test grid, respectively. The difference between these types of VF datasets is the
evaluated point plot by the machine. The 10-2 testing procedure evaluates 68 points in the
central 10 degrees, and the pattern shape is similar to a circle. In contrast, the 24-2 testing
procedure uses a 54-point test to assess 24 degrees temporally and 30 degrees nasally. The
shape is pointy—whether on the right side or left side of the eye, depending on the eye
position being tested [41]. Figure 2 depicts the VF images of normal Humphrey VF (HVF)
10-2 and normal Humphrey VF (HVF) 24-2.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 27

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

The traditional examination method for identifying the defects listed in Table 2 re-
quires experience, skills, and more time to produce consistent results when dealing with
complex cases. For example, the defect patterns for central scotoma and tunnel vision
show almost similar defect characteristics, as well as the defect patterns between hemian-
opia, quadrantanopia, and superior. Therefore, many researchers have recently explored
and proposed an effective mechanism using deep learning to classify VF defects to aid
physicians in producing fast, consistent, and accurate diagnostic results. However, due to
the lack of datasets from VF, optimization of the transfer learning models is the most ef-
fective and efficient technique to increase the performance of VF defect classification.
Therefore, several transfer learning models have been built. Thus, experimental studies

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Diagnostics 2022, 12, 1258 6 of 26

Compared to other frequently used eye datasets for optical disease detection, such
as fundus images and OCT images, Humphrey VFs are used to detect the optic pathway
that causes visual loss. In contrast, fundus images and OCT images are used to detect the
damage happening in the eye layers [41]. Therefore, these datasets were proposed to detect
VF loss that cannot be detected using fundus or OCT images. In addition, various patterns
of VF defects can be mapped using Humphrey VF; however, in this work, we performed
classification and analysis based on the five types of defect patterns, as shown in Table 2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Right/left hemianopia

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Right/left/upper/lower quadrantanopia

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Tunnel vision

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 28

(a) (b)

Figure 2. Normal VF Images: (a) HVF 10-2; (b) HVF 24-2.

Table 2. Types of VF Defects.

Defect Type VF Image

Central scotoma

Right/left hemianopia

Right/left/upper/lower quadrantanopia

Tunnel vision

Superior/inferior defect field

The traditional examination method for identifying the defects listed in Table 2 re-
quires experience, skills, and more time to produce consistent results when dealing with
complex cases. For example, the defect patterns for central scotoma and tunnel vision show
almost similar defect characteristics, as well as the defect patterns between hemianopia,
quadrantanopia, and superior. Therefore, many researchers have recently explored and
proposed an effective mechanism using deep learning to classify VF defects to aid physi-
cians in producing fast, consistent, and accurate diagnostic results. However, due to the
lack of datasets from VF, optimization of the transfer learning models is the most effective
and efficient technique to increase the performance of VF defect classification. Therefore,
several transfer learning models have been built. Thus, experimental studies and analyses
are needed to compare these models and obtain the ideal hyperparameters and fine-tuned
setting for the VF defect classification task.

Diagnostics 2022, 12, 1258 7 of 26

4. Framework

This section explains the proposed system’s framework to optimize the transfer learn-
ing models for VF defect classification and analyze their performance. First, the VF datasets
must undergo pre-processing before feeding them to the pre-trained models for classi-
fication. Next, the classification of VF defects was conducted in two phases. The first
phase is VF classification using 8 different pre-trained models (VGG-16 [10], VGG-19 [10],
MobileNet [11], MobileNetV2 [12], ResNet-50 [13], ResNet101 [13], DenseNet-121 [14],
and DenseNet-169 [14]) without performing Bayesian optimization. In the second phase,
hyperparameter tuning and fine-tuning were performed against all pre-trained models
using the Bayesian optimization method, and VF classification was performed, analyzed,
and evaluated. The framework of the proposed work is shown in Figure 3.

Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 27

and analyses are needed to compare these models and obtain the ideal hyperparameters
and fine-tuned setting for the VF defect classification task.

4. Framework
This section explains the proposed system’s framework to optimize the transfer

learning models for VF defect classification and analyze their performance. First, the VF
datasets must undergo pre-processing before feeding them to the pre-trained models for
classification. Next, the classification of VF defects was conducted in two phases. The first
phase is VF classification using 8 different pre-trained models (VGG-16 [10], VGG-19 [10],
MobileNet [11], MobileNetV2 [12], ResNet-50 [13], ResNet101 [13], DenseNet-121 [14],
and DenseNet-169 [14]) without performing Bayesian optimization. In the second phase,
hyperparameter tuning and fine-tuning were performed against all pre-trained models
using the Bayesian optimization method, and VF classification was performed, analyzed,
and evaluated. The framework of the proposed work is shown in Figure 3.

Figure 3. The framework of a comprehensive analysis of automated hyperparameters and auto-
mated fine-tuning for pre-trained models.

4.1. Pre-Processing
The pre-processing method was performed on VF images using KERAS pre-pro-

cessing and OpenCV as the pre-processing tools to convert the image representation. VF

Figure 3. The framework of a comprehensive analysis of automated hyperparameters and automated
fine-tuning for pre-trained models.

4.1. Pre-Processing

The pre-processing method was performed on VF images using KERAS pre-processing
and OpenCV as the pre-processing tools to convert the image representation. VF datasets
in RGB format were converted into greyscale using OpenCV to collect information from
the source image to improve image quality as much as possible [42,43].

The VF datasets are divided into two parts: right eyes and left eyes. Thus, the datasets
were split and labeled as “right” and “left” to increase the number of datasets and avoid

Diagnostics 2022, 12, 1258 8 of 26

exchange during the augmentation process. The data augmentation process will generate
changed copies of images in the datasets while retaining the predictive characteristics of the
images. This process aims to increase the training image for VF defect classification. During
data augmentation, the VF images are randomly rotated (rotations of 30, 45, and 135),
cropped, and set to different brightness levels [44,45].

Finally, the images were resized to 224 × 224 and 256 × 256 using the OpenCV
package. Since the datasets come from different sources, the dataset sizes also differ. A
medium-sized image is most suitable for transfer learning when dealing with layer feature
learning. Evidently, the 224 × 224 and 256 × 256 images demonstrated high accuracy in
many previous works [26,46]. The image size is important because if the image dimensions
are too small, it will affect the loss and accuracy of the model. In contrast, if the dimensions
are too large, the small feature is consequently difficult to learn during the training process
because the image’s resolution becomes blurred.

4.2. Pre-Trained Models

Several efficient pre-trained CNNs have been developed for image processing prob-
lems. However, the pre-trained models must be trained and analyzed in the input layer
to transfer information from the source dataset to the target dataset. In this paper, four
pre-trained models with different numbers of depths were analyzed.

VGG-Net [10] is built to evaluate the increase in network depth with a small con-
volutional filter (3 × 3). The depths of 16 and 19 layers of VGG-Net show a significant
improvement over the previous configuration. Therefore, both depths were integrated into
a model known as VGG-16 and VGG-19. In VGG-Net, the input image is passed through a
stack of convolutional layers [7,47] and then connected to the Max-pooling layers [2,7]. The
max-pooling layers are executed over a 2 × 2 pixel window, with a stride of 2. After that, a
stack of convolutional layers is followed by fully connected (FC) layers. The last layer is
the Softmax layer [2,7] since this work entails multiclass image classification. The depth
of VGG-Net can be changed by increasing the number of convolutional layers in conv3,
conv4, and conv5. The architecture of VGG-Net is illustrated in Figure 4.

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 27

datasets in RGB format were converted into greyscale using OpenCV to collect infor-
mation from the source image to improve image quality as much as possible [42,43].

The VF datasets are divided into two parts: right eyes and left eyes. Thus, the datasets
were split and labeled as “right” and “left” to increase the number of datasets and avoid
exchange during the augmentation process. The data augmentation process will generate
changed copies of images in the datasets while retaining the predictive characteristics of
the images. This process aims to increase the training image for VF defect classification.
During data augmentation, the VF images are randomly rotated (rotations of 30, 45, and
135), cropped, and set to different brightness levels [44,45].

Finally, the images were resized to 224 × 224 and 256 × 256 using the OpenCV pack-
age. Since the datasets come from different sources, the dataset sizes also differ. A me-
dium-sized image is most suitable for transfer learning when dealing with layer feature
learning. Evidently, the 224 × 224 and 256 × 256 images demonstrated high accuracy in
many previous works [26,46]. The image size is important because if the image dimen-
sions are too small, it will affect the loss and accuracy of the model. In contrast, if the
dimensions are too large, the small feature is consequently difficult to learn during the
training process because the image’s resolution becomes blurred.

4.2. Pre-Trained Models
Several efficient pre-trained CNNs have been developed for image processing prob-

lems. However, the pre-trained models must be trained and analyzed in the input layer
to transfer information from the source dataset to the target dataset. In this paper, four
pre-trained models with different numbers of depths were analyzed.

VGG-Net [10] is built to evaluate the increase in network depth with a small convo-
lutional filter (3 × 3). The depths of 16 and 19 layers of VGG-Net show a significant im-
provement over the previous configuration. Therefore, both depths were integrated into
a model known as VGG-16 and VGG-19. In VGG-Net, the input image is passed through
a stack of convolutional layers [7,47] and then connected to the Max-pooling layers [2,7].
The max-pooling layers are executed over a 2 × 2 pixel window, with a stride of 2. After
that, a stack of convolutional layers is followed by fully connected (FC) layers. The last
layer is the Softmax layer [2,7] since this work entails multiclass image classification. The
depth of VGG-Net can be changed by increasing the number of convolutional layers in
conv3, conv4, and conv5. The architecture of VGG-Net is illustrated in Figure 4.

Figure 4. VGG-Net Model.

Residual Network (ResNet) [31] is structured to solve the problems associated with
deep learning. The ResNet model intelligently attempts to handle several low-level, mid-
level, and high-level features. The individual networks are trained to retrieve minor frag-
ments of knowledge. The term “residual” can be understood as throwing away the func-
tionality acquired in the previous layer. ResNet, for example, ResNet-50, ResNet-101, and
ResNet-152 can be implemented in a limited layer depth, and the depth of the layer can
be changed by adding or removing the convolutional layer in conv4. The number after

Figure 4. VGG-Net Model.

Residual Network (ResNet) [31] is structured to solve the problems associated with
deep learning. The ResNet model intelligently attempts to handle several low-level, mid-
level, and high-level features. The individual networks are trained to retrieve minor
fragments of knowledge. The term “residual” can be understood as throwing away the
functionality acquired in the previous layer. ResNet, for example, ResNet-50, ResNet-101,
and ResNet-152 can be implemented in a limited layer depth, and the depth of the layer
can be changed by adding or removing the convolutional layer in conv4. The number after
ResNet represents the convolutional layers used in the model [31]. The convolutional layers
in ResNet are concatenated into groups of convolutional to obtain multiscale maximal
features from the input images. Figure 5 shows an example of the ResNet Model.

Diagnostics 2022, 12, 1258 9 of 26

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 27

ResNet represents the convolutional layers used in the model [31]. The convolutional lay-
ers in ResNet are concatenated into groups of convolutional to obtain multiscale maximal
features from the input images. Figure 5 shows an example of the ResNet Model.

Figure 5. ResNet Model.

MobileNet [11] are lightweight CNN models designed for small devices like mobiles
and Raspberry Pi. The structure of the MobileNet network is based on depth-separated
convolutions (Conv Dw) to reduce the model parameters and shorten the training time of
CNN [11]. Another version of MobileNet called MobileNetV2 [12] is based on an inverted
residual structure where the linkage between the sparse bottlenecks is designed to reduce
the parameters of the previous mobile architecture and make it more lightweight. In ad-
dition, the connection between the feature learning layers and fully connected layers are
linked by the Global Average Pooling [47] layer in both MobileNet models, which signif-
icantly reduces the forward error estimation failure rate while reducing the model size.
Figures 6 and 7 show the architecture of MobileNet.

Figure 6. MobileNet Model.

Figure 7. MobileNetV2 Model.

For the DenseNet [14] model, each layer is connected to every other layer in a feed-
forward fashion. The feature maps of all previous layers are used as inputs for each layer,
and the feature maps of the original layer are used as inputs in all subsequent layers. As
a result, DenseNets [14] have several compelling advantages:

Figure 5. ResNet Model.

MobileNet [11] are lightweight CNN models designed for small devices like mobiles
and Raspberry Pi. The structure of the MobileNet network is based on depth-separated
convolutions (Conv Dw) to reduce the model parameters and shorten the training time of
CNN [11]. Another version of MobileNet called MobileNetV2 [12] is based on an inverted
residual structure where the linkage between the sparse bottlenecks is designed to reduce
the parameters of the previous mobile architecture and make it more lightweight. In
addition, the connection between the feature learning layers and fully connected layers
are linked by the Global Average Pooling [47] layer in both MobileNet models, which
significantly reduces the forward error estimation failure rate while reducing the model
size. Figures 6 and 7 show the architecture of MobileNet.

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 27

ResNet represents the convolutional layers used in the model [31]. The convolutional lay-
ers in ResNet are concatenated into groups of convolutional to obtain multiscale maximal
features from the input images. Figure 5 shows an example of the ResNet Model.

Figure 5. ResNet Model.

MobileNet [11] are lightweight CNN models designed for small devices like mobiles
and Raspberry Pi. The structure of the MobileNet network is based on depth-separated
convolutions (Conv Dw) to reduce the model parameters and shorten the training time of
CNN [11]. Another version of MobileNet called MobileNetV2 [12] is based on an inverted
residual structure where the linkage between the sparse bottlenecks is designed to reduce
the parameters of the previous mobile architecture and make it more lightweight. In ad-
dition, the connection between the feature learning layers and fully connected layers are
linked by the Global Average Pooling [47] layer in both MobileNet models, which signif-
icantly reduces the forward error estimation failure rate while reducing the model size.
Figures 6 and 7 show the architecture of MobileNet.

Figure 6. MobileNet Model.

Figure 7. MobileNetV2 Model.

For the DenseNet [14] model, each layer is connected to every other layer in a feed-
forward fashion. The feature maps of all previous layers are used as inputs for each layer,
and the feature maps of the original layer are used as inputs in all subsequent layers. As
a result, DenseNets [14] have several compelling advantages:

Figure 6. MobileNet Model.

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 27

ResNet represents the convolutional layers used in the model [31]. The convolutional lay-
ers in ResNet are concatenated into groups of convolutional to obtain multiscale maximal
features from the input images. Figure 5 shows an example of the ResNet Model.

Figure 5. ResNet Model.

MobileNet [11] are lightweight CNN models designed for small devices like mobiles
and Raspberry Pi. The structure of the MobileNet network is based on depth-separated
convolutions (Conv Dw) to reduce the model parameters and shorten the training time of
CNN [11]. Another version of MobileNet called MobileNetV2 [12] is based on an inverted
residual structure where the linkage between the sparse bottlenecks is designed to reduce
the parameters of the previous mobile architecture and make it more lightweight. In ad-
dition, the connection between the feature learning layers and fully connected layers are
linked by the Global Average Pooling [47] layer in both MobileNet models, which signif-
icantly reduces the forward error estimation failure rate while reducing the model size.
Figures 6 and 7 show the architecture of MobileNet.

Figure 6. MobileNet Model.

Figure 7. MobileNetV2 Model.

For the DenseNet [14] model, each layer is connected to every other layer in a feed-
forward fashion. The feature maps of all previous layers are used as inputs for each layer,
and the feature maps of the original layer are used as inputs in all subsequent layers. As
a result, DenseNets [14] have several compelling advantages:

Figure 7. MobileNetV2 Model.

For the DenseNet [14] model, each layer is connected to every other layer in a feed-
forward fashion. The feature maps of all previous layers are used as inputs for each layer,
and the feature maps of the original layer are used as inputs in all subsequent layers. As a
result, DenseNets [14] have several compelling advantages:

i. Alleviate the vanishing gradient problem.
ii. Strengthen feature propagation.
iii. Encourage feature reuse.
iv. Substantially reduce the number of parameters.

Diagnostics 2022, 12, 1258 10 of 26

The layers of DenseNet work similarly to ResNet, but the convolutional layer can
be removed and added at Dense Block 3 and 4. Figure 8 shows the architecture of the
DenseNet model. In this work, the pre-trained model’s fully connected layers are made up
of flattened layers [7], dense layers [7], and dropout layers [7,48].

Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 27

i. Alleviate the vanishing gradient problem.
ii. Strengthen feature propagation.
iii. Encourage feature reuse.
iv. Substantially reduce the number of parameters.

The layers of DenseNet work similarly to ResNet, but the convolutional layer can be
removed and added at Dense Block 3 and 4. Figure 8 shows the architecture of the Dense-
Net model. In this work, the pre-trained model’s fully connected layers are made up of
flattened layers [7], dense layers [7], and dropout layers [7,48].

Figure 8. DenseNet Model.

4.3. Bayesian Optimization
The Bayesian optimization technique optimizes objective functions (hyperparame-

ters in the model architecture) that usually take only minutes or hours to evaluate com-
pared to manual tuning [49]. This method is excellent for optimizing continuous domains
with fewer than 20 dimensions, and it tolerates stochastic noise in the function evaluations
[49]. Bayesian optimization is a fast method for the global optimization of unknown ob-
jective functions. Formally, it is solved using Equation (1) [6]. In this case, the maximum
performance of the model was generated against a set of hyperparameters. 𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥∈ 𝑓 𝑥 , (1)

The two important processes in Bayesian optimization are the surrogate model and
the acquisition function. A surrogate model is represented using the Gaussian process to
fit the observed data points [50]. A Gaussian process is a useful tool for defining assump-
tions for smoothly changing functions in space. The Gaussian distribution’s characteristics
enable us to calculate the predicted means and variances in closed form. It is defined by a
mean function, x, and a covariance function, k(x, x′). The function expressed in Equation
(2) [6] is a sample of a Gaussian process: 𝑓 𝑥 ~𝐺𝑃 𝜇 𝑥 , 𝑘 𝑥, 𝑥 , (2)

Bayesian optimization uses a technique similar to sequential experimental design
and decision theories to predict utility. The task of the utility function is to estimate how
much information a given observation can provide [51]. In Bayesian optimization, these
utility functions are referred to as acquisition functions. The acquisition function helps
achieve the optimum underlying function by exploring and exploiting regions where the
uncertainty of the function is significant, and the predicted function values can be in-
creased. The acquisition function can also be successfully optimized to retrieve the next
point for assessment [6,52]. The acquisition function used is an expected improvement
since it is assumed that this function improves the current default parameter in Bayesian
to the best estimation. The expected improvement is expressed in Equation (3): 𝐸𝐼 𝑥 ≡ 𝔼 𝑓 𝑥 𝑓 𝑥 (3)

where 𝑥 is the best point to observe before the next point.
In this case, the initial sample was well-distributed over the domain, and the surro-

gate function has a bias towards the part of the domain where the optimum is located.
The dropout hyperparameter in transfer learning was evaluated during the optimization.
Based on the default hyperparameter setting, an overabundance of samples around the

Figure 8. DenseNet Model.

4.3. Bayesian Optimization

The Bayesian optimization technique optimizes objective functions (hyperparameters
in the model architecture) that usually take only minutes or hours to evaluate compared
to manual tuning [49]. This method is excellent for optimizing continuous domains with
fewer than 20 dimensions, and it tolerates stochastic noise in the function evaluations [49].
Bayesian optimization is a fast method for the global optimization of unknown objec-
tive functions. Formally, it is solved using Equation (1) [6]. In this case, the maximum
performance of the model was generated against a set of hyperparameters.

x∗ = arg max
x∈X

f (x), (1)

The two important processes in Bayesian optimization are the surrogate model and the
acquisition function. A surrogate model is represented using the Gaussian process to fit the
observed data points [50]. A Gaussian process is a useful tool for defining assumptions for
smoothly changing functions in space. The Gaussian distribution’s characteristics enable
us to calculate the predicted means and variances in closed form. It is defined by a mean
function, x, and a covariance function, k(x, x′). The function expressed in Equation (2) [6] is
a sample of a Gaussian process:

f (x) ∼ GP
(
µ(x), k

(
x, x′

))
, (2)

Bayesian optimization uses a technique similar to sequential experimental design
and decision theories to predict utility. The task of the utility function is to estimate how
much information a given observation can provide [51]. In Bayesian optimization, these
utility functions are referred to as acquisition functions. The acquisition function helps
achieve the optimum underlying function by exploring and exploiting regions where the
uncertainty of the function is significant, and the predicted function values can be increased.
The acquisition function can also be successfully optimized to retrieve the next point for
assessment [6,52]. The acquisition function used is an expected improvement since it is
assumed that this function improves the current default parameter in Bayesian to the best
estimation. The expected improvement is expressed in Equation (3):

EI(x) ≡ E
[

f (x)− f
(

x+t
)]

(3)

where x+t is the best point to observe before the next point.
In this case, the initial sample was well-distributed over the domain, and the surro-

gate function has a bias towards the part of the domain where the optimum is located.
The dropout hyperparameter in transfer learning was evaluated during the optimization.
Based on the default hyperparameter setting, an overabundance of samples around the
known optimum point should be expected. The x function represents the input parameter
(hyperparameter) and f (x) is the model (pre-trained models) used. The process of x and f (x)
is visualized as True (unknown) in the graph, and the True (unknown) graph shows that

Diagnostics 2022, 12, 1258 11 of 26

the accuracy decreases as the dropout rate increases. The µGP (x) shows the acquisition
function that estimates the optimum dropout rates (x) after every surrogate model (Gaus-
sian Process) is fitted with the transfer learning model (f (x)). There were 11 observations;
hence, the probability of obtaining the best accuracy is higher. The observations were
selected by the local maximum depending on the acquisition function. The estimation
of the µGP (x) graph follows the pattern of True (unknown). Figure 9 shows the effect of
changes in the dropout hyperparameter on the model’s accuracy.

Diagnostics 2022, 12, x FOR PEER REVIEW 11 of 27

known optimum point should be expected. The x function represents the input parameter
(hyperparameter) and f(x) is the model (pre-trained models) used. The process of x and
f(x) is visualized as True (unknown) in the graph, and the True (unknown) graph shows
that the accuracy decreases as the dropout rate increases. The µGP (x) shows the acquisi-
tion function that estimates the optimum dropout rates (x) after every surrogate model
(Gaussian Process) is fitted with the transfer learning model (f(x)). There were 11 observa-
tions; hence, the probability of obtaining the best accuracy is higher. The observations
were selected by the local maximum depending on the acquisition function. The estima-
tion of the µGP (x) graph follows the pattern of True (unknown). Figure 9 shows the effect
of changes in the dropout hyperparameter on the model’s accuracy.

Figure 9. Bayesian optimization tuning dropout rate for VGG-Net.

In the pre-trained learning models, several hyperparameters can be tuned for opti-
mization. Therefore, in this work, 12 optimal hyperparameters, including the fine-tuning,
were selected to be optimized by Bayesian during the training and validation process. The
hyperparameters for the automated optimization include learning rate [53], filter size [7],
feature maps [7], pooling [7], activation function [54], batch size [53,54], epoch [53,54],
optimizer [55], and dropout rate [7,48]. The learning rate [49] is used to tune the conver-
gence of the model’s accuracy as its loss approaches the minimum value with decreasing
tendency. However, it also depends on the optimizer used. Feature maps and pooling are
essential for tuning the weight of the neural network when it comes to feature learning.
The hyperparameter tuning and fine tuning process will define the total parameters used
by the models.

The activation function [54] suppresses irrelevant data points in the datasets. Recti-
fied Linear Unit (ReLU) [54] and sigmoid activation [54] functions are frequently used for
image classification and show good performance in previous works [54] since the image
data consists of a positive number either in grayscale or RGB format. Both methods have
their advantages when it comes to deep learning. In terms of the computational process,
ReLU has more advantages because the computational process is simple and requires only
a forward and backward pass, while sigmoid requires an exponential computation [54].
Thus, for the vanishing gradient in the graph, the sigmoid has more advantages because
it is derivatively very close to zero and easier to saturate than ReLU, which saturates only
when the input is less than zero [54].

The batch size determines the number of datasets that the learning algorithm goes
through before changing the internal model parameters. In contrast, the epoch determines
the learning algorithm’s processing time in the entire training dataset [49]. Therefore, the
batch size depends on the number of datasets used in the models; it can produce a good
result if the datasets are evenly distributed among the group. In a previous work [32], it
was shown that the higher the epoch, the higher the accuracy—but taking into account

Figure 9. Bayesian optimization tuning dropout rate for VGG-Net.

In the pre-trained learning models, several hyperparameters can be tuned for opti-
mization. Therefore, in this work, 12 optimal hyperparameters, including the fine-tuning,
were selected to be optimized by Bayesian during the training and validation process. The
hyperparameters for the automated optimization include learning rate [53], filter size [7],
feature maps [7], pooling [7], activation function [54], batch size [53,54], epoch [53,54],
optimizer [55], and dropout rate [7,48]. The learning rate [49] is used to tune the conver-
gence of the model’s accuracy as its loss approaches the minimum value with decreasing
tendency. However, it also depends on the optimizer used. Feature maps and pooling are
essential for tuning the weight of the neural network when it comes to feature learning.
The hyperparameter tuning and fine tuning process will define the total parameters used
by the models.

The activation function [54] suppresses irrelevant data points in the datasets. Rectified
Linear Unit (ReLU) [54] and sigmoid activation [54] functions are frequently used for image
classification and show good performance in previous works [54] since the image data
consists of a positive number either in grayscale or RGB format. Both methods have their
advantages when it comes to deep learning. In terms of the computational process, ReLU
has more advantages because the computational process is simple and requires only a
forward and backward pass, while sigmoid requires an exponential computation [54]. Thus,
for the vanishing gradient in the graph, the sigmoid has more advantages because it is
derivatively very close to zero and easier to saturate than ReLU, which saturates only when
the input is less than zero [54].

The batch size determines the number of datasets that the learning algorithm goes
through before changing the internal model parameters. In contrast, the epoch determines
the learning algorithm’s processing time in the entire training dataset [49]. Therefore, the
batch size depends on the number of datasets used in the models; it can produce a good
result if the datasets are evenly distributed among the group. In a previous work [32], it
was shown that the higher the epoch, the higher the accuracy—but taking into account the
types and size of the dataset [53]. Therefore, the epoch and batch size were set as default
parameters in this work. Bayesian optimization will choose the best epoch and batch size
suitable for VF defect classification.

Diagnostics 2022, 12, 1258 12 of 26

Besides accuracy, the loss is also an essential factor in image classification during the
training phase in transfer learning. For this reason, an optimizer is used to modify the
attributes of the neural network, such as weights and learning rate, to minimize losses
inside the deep learning layers during training. ADAM, SGD, Adadelta, and RMSprop
were utilised in this study to alter the weight and acceleration time inside the model layers
of each pre-trained model. This optimizer focuses on the inner optimize in deep learning,
which handles weight and bias throughout the fitting process. While Bayesian Optimization
handles the outer optimization in deep learning by selecting the optimal hyperparameters
for the layer feature maps, filter size, activation function, pool size, dropout, and fine
tuning, Bayesian Optimization is responsible for the outer optimization. Then, epoch and
batch size are optimized by Bayesian Optimization so that the highest level of accuracy may
be achieved, while weight and bias are optimized by ADAM, SGD, Adadelta, or RMSprop.
Thus, it explains that each optimizer serves a distinct purpose in various aspects of deep
learning. A different optimizer gives a different performance depending on the model’s
architecture used to classify the image. Optimizer is part of hyperparameter that will be
optimized by Bayesian optimization in deep learning. Due to the different parameters
and weights produced by different pre-trained models, a dropout rate is used to avoid
over-fitting in the model by removing nodes in the neural network [48].

On the other hand, Bayesian optimization is performed to select the optimal combina-
tion of hyperparameters to evaluate the overall deep learning framework. The combination
of hyperparameters in this work consists of 12 hyperparameters, which were combined to
investigate and analyze the automated hyperparameters and the fine-tuning layers that
include freezing the upper or lower network layer. The automated hyperparameters and
automated fine-tuning will go through 11 evaluation processes to determine a set of optimal
hyperparameters and layers that will produce high accuracy for VF defect classification.
To evaluate the hyperparameter and fine tuning the pre-trained layers using Bayesian
optimization, a default value for the hyperparameter and fine-tuning layers must be set to
guide Bayesian optimization in selecting the optimal hyperparameter in the group area.
Setting the default parameter is critical to ensure that the Bayesian optimization process
achieves the correct group objective.

4.4. Model Evaluation

The hyperparameter in the pre-trained model optimized by Bayesian optimization is
stored in the model; and then tested to obtain the accuracy, precision, recall, and F1 score
using Equations (4)–(7). Equations (4)–(7) explain these metrics for generic class k, where
TP refers to True Positives classifications, FN denotes False Negatives classifications, TN
presents True Negatives classifications, and FP denotes False Positives classifications [31].
The value of K represents the number of classes.

Accuracy =
∑K

k=1
TNk+TPk

TNk+TPk+FNk+FPk

K
(4)

Precision =
∑K

k=1
TPk

TPk+FPk

K
(5)

Recall =
∑K

k=1
TPk

TPk+FNk

K
(6)

F1 score = 2× Precision× Recall
Precision−1 + Recall−1 (7)

5. Experimental Results and Discussion

In this section, we analyze and discuss the comparison of the classification performance
of VF defects based on Bayesian optimization in the transfer learning models. The VF
datasets were split in a ratio of 80:10:10 for training, validation, and testing. The analysis of

Diagnostics 2022, 12, 1258 13 of 26

VF defect classification was divided into three parts. The first part consists of validating the
performance of pre-trained models (VGG-16, VGG-19, ResNet-50, ResNet-101, MobileNet,
MobileNetV2, DenseNet-121, and DenseNet-169) with two different image sizes: 224 × 224
and 256 × 256. The second part includes validating the performance of transfer learning
after performing automated hyperparameter tuning and automated fine-tuning against
all of the pre-trained models using Bayesian optimization. Finally, the last part consists
of an analysis of the transfer learning performance when certain layers are frozen while
performing the automated hyperparameter tuning process. The optimum result obtained
from the hyperparameters and automated fine-tuning for each pre-trained model was
saved in a file format to store structured data and test the accuracy of each class of VF
defect. The algorithm was written in the Python language using the KERAS (Tensorflow
backend) neural network computing framework. The algorithm was executed on an Intel
Core i7-10 processor with 8 GB of RAM, using an RTX 2080 as the GPU.

5.1. Part I: Validation Results and Analysis before Bayesian Optimization

In this part, validation data was used to evaluate the pre-trained models to observe
the effects of different transfer learning architectures on the VF defect datasets. For this
task, the images were resized into 224 × 224 and 256 × 256 dimensions. As the image size
increases, the number of parameters of the model also increases. In Table 3, the parameters
without and with VF represent the parameters extracted before and after the target dataset
was transferred inside the pre-trained models, respectively, and the increasing image size
affects the parameters extracted by the model, in addition to increasing the layer count.

Table 3. Parameters of each pre-trained model.

Model Image Size
Parameter

Validation Accuracy (%)
without VF with VF

VGG-16
224

14,714,688
14,865,222 97.63

256 14,911,302 96.55

VGG-19
224

20,024,384
20,174,918 96.34

256 20,220,998 17.69

MobileNet
224

3,228,864
3,529,926 88.79

256 3,622,086 94.41

MobileNetV2
224

2,257,984
2,634,310 70.91

256 2,749,510 39.24

ResNet50
224

23,587,712
24,189,830 90.46

256 24,374,150 86.66

ResNet101
224

42,658,176
43,260,294 95.69

256 43,444,614 92.91

DenseNet121
224

7,037,504
7,338,566 74.72

256 7,430,726 94.20

DenseNet169
224

12,642,880
13,132,102 97.20

256 13,281,862 93.27

Based on the experimental results in Table 3, the 224× 224 image size produced a good
result compared to the 256 × 256 image size for most of the pre-trained models. Ideally, a
larger image size contributes to a high number of parameters for the pre-trained models
and increases the classification accuracy. In certain cases, however, accuracy will decrease
because the larger image size introduces too many features and leads to overfitting during
training and testing data. This may also apply to the increasing size of model architecture,
e.g., model layers. The work of Joseph and Balaji [52] has also demonstrated that enlarging
the image alone will not improve performance. Therefore, the model architecture must be
highlighted to capture all features from the bottom to the top layers.

Diagnostics 2022, 12, 1258 14 of 26

From Figure 10, it can be concluded that for VF defect classification, when the number
of parameters optimized by transfer learning is less than ten thousand, the highest accuracy
obtained is 88% for the image size of 224 × 224. This is because underfitting occurs when
the method cannot achieve higher accuracy due to insufficient parameters to process the
data. In contrast, if the number of parameters for the VF datasets is too high, overfitting
may occur and cause the accuracy plot to become unstable with the lowest accuracy to be
selected. However, the problem can still be solved through k-fold cross-validation or by
choosing an optimal hyperparameter for the models.

Diagnostics 2022, 12, x FOR PEER REVIEW 14 of 27

Table 3. Parameters of each pre-trained model.

Model Image Size
Parameter

Validation Accuracy (%)
without VF with VF

VGG-16
224

14,714,688
14,865,222 97.63

256 14,911,302 96.55

VGG-19 224 20,024,384 20,174,918 96.34
256 20,220,998 17.69

MobileNet 224 3,228,864 3,529,926 88.79
256 3,622,086 94.41

MobileNetV2 224 2,257,984 2,634,310 70.91
256 2,749,510 39.24

ResNet50 224 23,587,712 24,189,830 90.46
256 24,374,150 86.66

ResNet101 224 42,658,176 43,260,294 95.69
256 43,444,614 92.91

DenseNet121 224 7,037,504 7,338,566 74.72
256 7,430,726 94.20

DenseNet169 224 12,642,880 13,132,102 97.20
256 13,281,862 93.27

Figure 10. Validation of pre-trained model accuracy on a 224-image size.

5.2. Part II: Validation Results and Analysis after Bayesian Optimization
In this part, investigation and analysis were conducted to observe the effects of the

combination of different hyperparameters and fine-tuning layers by a Bayesian optimizer.
VF defect classification was validated with 10% of the validation of datasets. Five-fold
cross-validation was applied during the optimization process to avoid validation accuracy
that is higher than training accuracy (over-fitting). The best validation accuracy optimized
by Bayesian optimizer was used for the testing process based on the overall framework in
Figure 1 and was applied to all pre-trained models, VGG-Net, MobileNet, ResNet, and
DenseNet. The hyperparameters and fine-tuning were set in a range and listed as a refer-
ence for Bayesian optimization. In this work, the hyperparameters are as follows: Convo-
lutional layer feature maps that range from 32–64; convolutional layer filter sizes that

Figure 10. Validation of pre-trained model accuracy on a 224-image size.

In this work, models with parameters above 12,000,000 achieved over 90% accuracy.
With 32 batch sizes, 50 epochs, and ADAM as optimizers of pre-trained models, they can
achieve high accuracy with the VGG-16 model. Since the parameters of the pre-trained
models can be optimized to fit the datasets, Bayesian optimization was, therefore, used to
investigate the combination of different hyperparameters and fine-tuning of the pre-trained
models for the VF defect classification task.

5.2. Part II: Validation Results and Analysis after Bayesian Optimization

In this part, investigation and analysis were conducted to observe the effects of the
combination of different hyperparameters and fine-tuning layers by a Bayesian optimizer.
VF defect classification was validated with 10% of the validation of datasets. Five-fold
cross-validation was applied during the optimization process to avoid validation accuracy
that is higher than training accuracy (over-fitting). The best validation accuracy optimized
by Bayesian optimizer was used for the testing process based on the overall framework
in Figure 1 and was applied to all pre-trained models, VGG-Net, MobileNet, ResNet,
and DenseNet. The hyperparameters and fine-tuning were set in a range and listed as
a reference for Bayesian optimization. In this work, the hyperparameters are as follows:
Convolutional layer feature maps that range from 32–64; convolutional layer filter sizes
that range from 1–3; convolutional layer activation functions that include ADAM, SGD,
Adadelta, and RMSprop; learning rate that ranges from 0.00001–0.1; batch size that ranges
from 1–32; epoch that ranges from 10–200; dropout that ranges from 0.1–0.9.

For fine-tuning, the layers were divided into two groups: upper layer and lower layer,
which were chosen by dividing the pre-trained model layers into two parts to obtain the
number of layers. There are four groups of fine-tuning layers: false/false (freeze all layers),
true/true (unfreeze all layers), true/false (unfreeze upper layer), and false/true (unfreeze

Diagnostics 2022, 12, 1258 15 of 26

lower layer). The 11 calls were made in Bayesian optimization to evaluate the performance
of the pre-trained models. The hyperparameter tuning will be done first, then the layer will
be fine-tuned to optimize the models to utilize pre-trained network weights as initialization
for VF to be trained on ImageNet from the same domain. Subsequently, the weight and the
parameters will be optimized and the performance will be evaluated.

The experimental results in Table 4 show the performance of each pre-trained model
after optimization. The first pre-trained model optimized by Bayesian is VGG-16. The
performance is above 90% when the activation set is ReLU because ReLU only picks
max (0, x); therefore, the gradient is either greater than zero or less than equal to zero,
while the sigmoid graph approaches zero and tends to vanish the gradient. Besides, some
hyperparameters choose ReLU as the activation function, but the accuracy is low due to
the optimizer’s effect and that the learning rate for the optimizer causes the optimizer to
set the limit for training accuracy as a result of no improvement in the testing process.

Table 4. Validation of automated hyperparameter tuning and automated fine-tuning of each pre-
trained model.

Model

Hyperparameter Fine-Tuned Validation
Accuracy

(%)
Feature
Map

Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

VGG-16

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 97.72
43 2 Sigmoid 1 RMSprop 0.0002 29 42 0.6 TRUE TRUE 20.69
52 2 ReLU 2 ADAM 0.0006 19 54 0.7 FALSE FALSE 98
48 1 Sigmoid 1 RMSprop 0.0161 27 92 0.2 TRUE FALSE 20.69
53 2 Sigmoid 2 ADAM 0.0081 15 103 0.8 FALSE TRUE 17.24
52 2 Sigmoid 2 Adadelta 0.0507 18 69 0.3 TRUE TRUE 20.69
39 3 Sigmoid 2 RMSprop 0.0513 11 13 0.6 TRUE TRUE 18.1
53 1 ReLU 1 ADAM 0.0046 9 11 0.8 FALSE FALSE 20.69
55 3 ReLU 1 Adadelta 0.0813 31 24 0.3 FALSE TRUE 93.97
34 2 Sigmoid 2 RMSprop 0.0002 15 66 0.8 TRUE TRUE 20.69
32 2 ReLU 1 SGD 0.0001 1 200 0.1 TRUE FALSE 95.73

VGG-19

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.69
60 2 Sigmoid 2 ADAM 0.0031 9 144 0.3 TRUE FALSE 20.69
60 2 Sigmoid 1 SGD 0.0082 23 169 0.6 TRUE FALSE 20.69
33 2 ReLU 2 ADAM 0.0004 31 166 0.4 FALSE FALSE 97.84
35 2 ReLU 1 SGD 0.0338 23 57 0.2 TRUE TRUE 93.84
46 1 Sigmoid 1 ADAM 0.0008 19 163 0.1 FALSE FALSE 20.69
54 2 ReLU 2 RMSprop 0.0048 30 193 0.5 FALSE FALSE 20.69
40 3 ReLU 2 ADAM 0.0248 6 101 0.7 TRUE FALSE 20.69
35 2 Sigmoid 1 ADAM 0.0002 30 73 0.2 FALSE FALSE 20.69
40 3 ReLU 1 RMSprop 0.0046 31 36 0.1 TRUE TRUE 20.69
41 1 ReLU 1 RMSprop 0.0002 13 79 0.8 TRUE FALSE 53.28

MobileNet

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 93.58
45 2 Sigmoid 2 SGD 0.0322 15 96 0.6 TRUE FALSE 18.44
60 3 Sigmoid 1 RMSprop 0.0018 18 138 0.3 FALSE FALSE 29.26
41 2 Sigmoid 2 Adadelta 0.0003 9 61 0.8 TRUE TRUE 20.69
48 2 Sigmoid 2 ADAM 0.0002 9 135 0.4 TRUE FALSE 15.51
57 1 ReLU 2 Adadelta 0.0055 7 106 0.2 TRUE FALSE 94.4
45 2 ReLU 2 Adadelta 0.001 13 154 0.4 TRUE FALSE 93.62
57 3 Sigmoid 1 SGD 0.0001 20 65 0.3 TRUE FALSE 20.69
32 2 Sigmoid 1 ADAM 0.0531 2 45 0.9 FALSE FALSE 20.69
57 1 ReLU 2 RMSprop 0.0005 32 21 0.4 TRUE TRUE 95.13
52 2 Sigmoid 1 RMSprop 0.0319 5 133 0.2 FALSE FALSE 17.16

Diagnostics 2022, 12, 1258 16 of 26

Table 4. Cont.

Model

Hyperparameter Fine-Tuned Validation
Accuracy

(%)
Feature
Map

Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

MobileNetV2

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 92.5
58 1 ReLU 1 RMSprop 0.0053 14 16 0.7 FALSE FALSE 20.82
49 3 ReLU 1 Adadelta 0.0009 17 189 0.8 TRUE FALSE 36.42
44 3 ReLU 1 RMSprop 0.0003 26 43 0.4 TRUE TRUE 86.47
44 3 ReLU 1 SGD 0.01 14 65 0.6 TRUE TRUE 81.77
36 2 ReLU 2 RMSprop 0.0001 11 67 0.4 FALSE FALSE 95.6
64 2 ReLU 2 RMSprop 0.0134 7 119 0.7 FALSE TRUE 20.69
51 2 Sigmoid 2 RMSprop 0.0015 24 181 0.1 TRUE FALSE 74.05
51 1 Sigmoid 1 RMSprop 0.0006 6 168 0.5 TRUE TRUE 76.38
52 2 ReLU 2 SGD 0.0022 14 66 0.3 FALSE FALSE 52.93
46 3 ReLU 1 RMSprop 0.0003 21 33 0.1 FALSE TRUE 84.01

ResNet-50

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 97.33
63 3 ReLU 2 RMSprop 0.0601 25 101 0.4 TRUE TRUE 47.85
50 3 ReLU 1 RMSprop 0.0005 30 174 0.8 FALSE TRUE 97.28
50 1 Sigmoid 1 ADAM 0.0051 16 18 0.8 FALSE FALSE 21.25
54 2 Sigmoid 1 ADAM 0.0048 7 157 0.2 FALSE TRUE 74.18
41 1 Sigmoid 2 ADAM 0.0364 24 129 0.3 FALSE TRUE 22.63
45 1 ReLU 1 RMSprop 0.0189 13 12 0.3 FALSE TRUE 85.6
41 2 Sigmoid 2 Adadelta 0.0142 11 66 0.9 TRUE TRUE 97.46
50 2 ReLU 2 ADAM 0.0017 23 178 0.3 TRUE TRUE 95.6
46 2 ReLU 2 Adadelta 0.0049 25 13 0.8 TRUE FALSE 75
51 2 ReLU 2 RMSprop 0.0076 32 200 0.1 TRUE TRUE 96.25

ResNet-101

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 96.07
42 2 ReLU 2 RMSprop 0.061 15 110 0.6 FALSE TRUE 75.47
52 2 Sigmoid 1 RMSprop 0.003 32 106 0.2 FALSE TRUE 19.01
61 3 ReLU 2 Adadelta 0.0023 20 54 0.7 TRUE FALSE 93.36
45 2 Sigmoid 2 ADAM 0.0001 10 87 0.3 FALSE FALSE 45.13
36 2 Sigmoid 1 SGD 0.0029 19 133 0.1 FALSE TRUE 96.67
38 2 ReLU 1 ADAM 0.0011 12 130 0.7 TRUE FALSE 96.29
44 3 ReLU 2 SGD 0.0002 16 182 0.6 FALSE TRUE 96.8
58 2 Sigmoid 2 SGD 0.0001 18 32 0.4 FALSE FALSE 96.77
32 2 Sigmoid 2 Adadelta 0.1 18 66 0.9 TRUE FALSE 93.92
36 1 ReLU 2 ADAM 0.0016 7 113 0.1 TRUE FALSE 96.94

DenseNet-121

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 97.96
63 1 Sigmoid 1 ADAM 0.0329 24 61 0.1 TRUE TRUE 71.38
38 2 Sigmoid 2 RMSprop 0.0687 22 38 0.8 FALSE FALSE 83.58
44 1 ReLU 2 SGD 0.0324 9 167 0.7 FALSE TRUE 97.89
41 2 Sigmoid 2 ADAM 0.0003 15 67 0.6 FALSE FALSE 76.59
51 3 ReLU 2 Adadelta 0.0091 17 195 0.8 FALSE FALSE 98.45
49 1 ReLU 1 Adadelta 0.0333 11 85 0.7 FALSE TRUE 98.06
60 2 ReLU 1 ADAM 0.0217 18 111 0.1 TRUE FALSE 89.44
34 1 Sigmoid 2 SGD 0.0024 10 136 0.4 TRUE FALSE 82.46
47 2 Sigmoid 1 RMSprop 0.01 14 67 0.7 TRUE FALSE 95.39
55 2 Sigmoid 2 ADAM 0.0044 18 142 0.7 TRUE FALSE 76.72

DenseNet-169

64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 94.27
52 2 ReLU 1 ADAM 0.0183 25 52 0.5 FALSE FALSE 87.93
40 2 Sigmoid 1 RMSprop 0.0108 14 69 0.8 TRUE TRUE 96.29
38 2 ReLU 1 Adadelta 0.0022 24 143 0.3 FALSE FALSE 98.43
52 2 ReLU 2 ADAM 0.0005 11 188 0.3 TRUE TRUE 97.76
43 3 ReLU 1 ADAM 0.0013 24 76 0.2 TRUE TRUE 96.85
42 1 ReLU 2 ADAM 0.0004 19 156 0.6 FALSE TRUE 97.93
54 2 ReLU 1 RMSprop 0.0049 4 176 0.8 FALSE FALSE 91.98
45 3 Sigmoid 2 RMSprop 0.0003 25 20 0.5 FALSE FALSE 52.84
49 1 Sigmoid 1 SGD 0.0061 2 178 0.4 FALSE FALSE 96.9
35 3 ReLU 1 ADAM 0.0621 19 109 0.4 TRUE FALSE 16.72

For the epoch in VGG-16, the larger the epoch size, the higher the accuracy; however,
this also depends on other hyperparameters such as dropout. The accuracy decreases if the
dropout is too large for the network. Meanwhile, the three hyperparameters of the feature
map, filter size, and pooling size are interrelated for producing the number of parameters
for the model through calculation (width of filter size × height of filter size × the number

Diagnostics 2022, 12, 1258 17 of 26

of previous filters + 1) × the number of feature maps). Each layer of the convolutional
neural network will be linked to each other until the classification layer is approached. The
larger the number of extracted parameters, the higher the degree of accuracy. As for the
pre-trained VGG-19 model, the activation function part is the same as the VGG-16 model,
which means that ReLU shows the best performance compared to sigmoid. Regarding
the optimizer and the learning rate, it was observed that the high learning rate chosen for
ADAM did not lead to any improvement in accuracy above 20.69%.

The MobileNet model has the lowest accuracy compared to other models, even after
automatic tuning of hyperparameters and fine-tuning. Although the small number of
parameters has caused underfitting for this model, MobileNet is still lightweight compared
to others. After Bayesian optimization, the results showed that MobileNet’s performance
increased by 5% for MobileNet and 23% for MobileNetV2. Thus, since the magnitude of
the gradients may vary depending on the weight of the network, the RMSprop optimizer
has shown high accuracy for the MobileNet model with an appropriate learning rate.
This is because RMSprop addresses this problem by maintaining a moving average of the
quadratic gradient and adjusting the updates to the weights by this magnitude [53].

In ResNet, both ResNet50 and ResNet101 showed stably high accuracy for most of the
hyperparameter tuning and fine-tuning processes. This is because ResNet adds shortcuts
between layers to avoid distortions that occur in deeper and more complex networks [54].
From Table 4, it can be seen that ResNet with low accuracy below 25% has a small number
of kernel sizes and sigmoid as the activation function. Since ResNet dominates the low-level
to high-level features, the decreasing kernel size of a convolutional layer can lead to the
reduction of parameters; thus, the feature extraction is reduced again and disturbs the
performance of the model. Besides, the Sigmoids have a tendency to make the gradient
disappear. However, this can be avoided by choosing an appropriate optimizer and learning
rate, which helps maximize the efficiency of the output.

The DenseNet model also performed well for both DenseNet 121 and Dense-Net 169.
As explained in Section 4, the architecture of ResNet and DenseNet is a combination of
convolutional layers and pooling layers, but the way they combine the layers is differ-
ent. ResNet uses summation to combine all the preceding feature maps, while DenseNet
concatenates them all [55]. Interestingly, DenseNet has shown better accuracy after hy-
perparameters and fine-tuning because it has a higher capacity with multilayer features
during concatenation. However, the problem is that the more layers are used, the more
training time is required because the number of parameters is larger compared to ResNet.
As for ResNet, summing layers causes the performance to become lighter and stabilize at
high performance; however, this still depends on the dataset used. Hyperparameters and
fine-tuning help increase the performance of the DenseNet layer, especially the optimizer
and the learning rate. As for DenseNet, the Adadelta optimizer shows a high performance
of over 98% due to its robustness to a large network architecture [56].

The combination of different hyperparameters and fine-tuning layers has a great
impact on the transfer learning models, especially on the activation function and optimizer
with the learning rate. Based on our experiment, the ReLU activation function gave the best
overall performance. However, as for the optimizer and learning rate, it depends on the
model structure used to classify VF defects. ADAM performed well in the VGG-Net model
because it uses adaptive learning rate performance to find the individual rates for each
parameter, and the VGG-Net structure consists only of convolutional layers and pooling
layers for ADAM to evaluate each parameter in each layer. On the contrary, optimizers
such as RMSprop and Adadelta performed extremely well on complex structures such as
ResNet and DenseNet. On the other hand, SGD produces a good performance rate only if a
suitable learning rate is set. In terms of convolutional layer feature maps, filter size and
pooling, it can be concluded that the larger the hyperparameters, the higher the accuracy.
However, the number of filter sizes and pooling sizes must not be too large; otherwise, they
will exceed the size of the feature maps and cannot be processed.

Diagnostics 2022, 12, 1258 18 of 26

As for the batch size, the accuracy of VF detection increases when the batch size is
larger for ADAM and SGD optimizers; however, for RMSprop and Adadelta, the batch size
should be small. The relationship between the batch size and the optimizer was found in
the curve plot between the number of epochs and accuracy. As for ADAM and SGD, the
higher the batch size, the less stepper the graph is drawn. Meanwhile, for RMSprop and
Adadelta, the higher the batch size, the more stepper the graph is plotted.

This process is called an asymptotic behavior and this problem can also be applied
to the learning rate in the optimizer; however, in the learning rate, the graph becomes
stepper when the batch size is larger, showing that the model has difficulty in achieving
high accuracy [57]. In terms of the epoch, it can be concluded that the larger the epoch, the
higher the accuracy—up to a certain limit before overfitting occurs.

The automated hyperparameter tuning and automated fine-tuning using Bayesian
optimization in the four pre-trained models (VGG-Net, ResNet, MobileNet, and DenseNet)
were carried out to investigate and analyze the effects of the combination of different
hyperparameters and fine-tuning layers on each model. Each pre-trained model was
divided into two different numbers of layers: VGG-16, VGG-19, ResNet50, ResNet101,
MobileNet, MobileNetV2, DenseNet-121, and DenseNet-169. Based on the experiment
setup in Table 4, the automated hyperparameter tuning and automated fine-tuning using
Bayesian optimization were able to achieve high accuracy above 90%. However, the specific
impact of each hyperparameter tuning and the fine-tuning process is unknown.

During validation of automated hyperparameter tuning and automated fine-tuning
using Bayesian optimization, VGG-16, ResNet-50, MobileNetV2, and DenseNet-121 showed
the highest accuracy for each pre-trained model. However, based on the experiment
results in Table 4, since hyperparameters and fine-tuning were experimented together, it
is unclear which fine-tuning has the greatest impact on the models. Therefore, a separate
experiment with four fine-tuning processes (freezing all layers, freezing upper layers,
freezing lower layers, and thawing all layers) was conducted using the Bayesian optimizer.
In this experiment, the performance of different fine-tuning and automatic hyperparameter
optimizations was evaluated based on the convergence plot.

Figure 11 shows the performance of pre-trained models with four different fine-tuning
layers. To perform fine-tuning, the pre-trained layers were frozen (untrainable) and not
frozen (trainable). First, all layers in the pre-trained models were frozen and only VGG-
16 and MobileNetV2 achieved accuracy above 90%, while ResNet-50 and DenseNet-121
achieved accuracy below 90%. VGG-16 performed best when all layers were frozen,
achieving the highest accuracy and tuned only twice by Bayesian.

Second, validation was performed while the upper layers of the pre-trained models
were frozen. The performance of the models did not change significantly, except that the
accuracy of the performance decreased slightly compared to when all layers were frozen.
Despite the slight degradation in performance, Bayesian required fewer calls to achieve the
best accuracy when the upper layers were frozen instead of all layers. Third, validation
was performed while the lower layers of the pre-trained model were frozen. As a result,
ResNet-50, DenseNet-121, and MobileNetV2 achieved high accuracy above 90% in the first
round of tuning and the best accuracy above 95% in the second round of tuning for ResNet-
50 and DenseNet-121. Finally, validation was performed while all pre-trained layers were
not frozen. The results showed that ResNet-50, MobileNetV2 and DenseNet-121 achieved a
high accuracy of 95%, except for VGG-16, which achieved about 80%.

It can be concluded that the performance is best when the lower layer is not frozen.
This is because the lower part of the feature layers is combined with the fully linked layer,
and this shows that fine-tuning has a significant impact on the models based on the datasets
used. Besides, it was observed that the upper parts of the feature layers have large feature
maps, which leads to the need to update more weights and parameters. A sudden large
feature map set for the layer could also have led to overfitting.

Diagnostics 2022, 12, 1258 19 of 26

Diagnostics 2022, 12, x FOR PEER REVIEW 19 of 27

Figure 11 shows the performance of pre-trained models with four different fine-tun-
ing layers. To perform fine-tuning, the pre-trained layers were frozen (untrainable) and
not frozen (trainable). First, all layers in the pre-trained models were frozen and only
VGG-16 and MobileNetV2 achieved accuracy above 90%, while ResNet-50 and DenseNet-
121 achieved accuracy below 90%. VGG-16 performed best when all layers were frozen,
achieving the highest accuracy and tuned only twice by Bayesian.

(a) (b)

(c) (d)

Figure 11. Validation of pre-trained models when some layers were frozen: (a) Freeze all layers (the
upper and lower layers of the model are FALSE); (b) Freeze upper layers of the model (the upper
layers are FALSE and the lower layers are TRUE); (c) Freeze lower layers of the model (the upper
layers are TRUE and the lower layers are FALSE; (d) Unfreeze all layers of the model (the upper
and lower layers are TRUE.

Second, validation was performed while the upper layers of the pre-trained models
were frozen. The performance of the models did not change significantly, except that the
accuracy of the performance decreased slightly compared to when all layers were frozen.
Despite the slight degradation in performance, Bayesian required fewer calls to achieve
the best accuracy when the upper layers were frozen instead of all layers. Third, validation
was performed while the lower layers of the pre-trained model were frozen. As a result,
ResNet-50, DenseNet-121, and MobileNetV2 achieved high accuracy above 90% in the
first round of tuning and the best accuracy above 95% in the second round of tuning for

Figure 11. Validation of pre-trained models when some layers were frozen: (a) Freeze all layers (the
upper and lower layers of the model are FALSE); (b) Freeze upper layers of the model (the upper
layers are FALSE and the lower layers are TRUE); (c) Freeze lower layers of the model (the upper
layers are TRUE and the lower layers are FALSE; (d) Unfreeze all layers of the model (the upper and
lower layers are TRUE.

However, for VGG-16, by freezing all layers, the model performed well because
the layers consist of only one convolutional layer and one max-pooling layer, making the
extracted features and weights from the source data compatible with the target data. Table 3
shows that the parameters extracted from VGG-16 are neither too large nor too small when
trained with the source data. Freezing all layers in this model is not efficient because it is
time-consuming and some of the previously set weights are already suitable for the target
data set. Excessive retraining of the model may lead to overfitting. In conclusion, the
fine-tuning of the network layers have specific effects on the validation performance of
each model, which are mainly influenced by the architecture of the model itself.

5.3. Part III: Classification Results and Analysis after Bayesian Optimization

Previously, these datasets were tested with a ten-layer convolutional neural network
model based on a previous study by Kucur et al. [2], which achieved an accuracy of 96%.
Therefore, the same datasets were used to analyze the performance of VF defects in the
transfer learning framework with automated hyperparameter tuning and automated fine-

Diagnostics 2022, 12, 1258 20 of 26

tuning by Bayesian optimization. The performance of this work in a 10% test data was
computed in accuracy, precision, F1 score, and recall of VF defects in distinguishing between
the six classes of VF defects (central, hemianopia, normal, quadrantanopia, superior, and
tunnel).

The cross-entropy loss function was used in this study because it is most commonly
used for classification problems. Evidently, automated hyperparameter tuning and auto-
mated fine-tuning can fit the parameters and weights of the models to the datasets and
obtain high accuracy for each pre-trained model. The performance results are shown
in Table 5. In this work, after hyperparameter tuning and fine-tuning, the performance
of DenseNet-121 reached similar accuracy to the work of Kucur et al., which performed
classification of only two types of disease, glaucoma and nonglaucoma, from the RT dataset.
With the exception of pre-trained MobileNet models, which have more parameters than
MobileNetV2, most other models achieved accuracy greater than 95%.

Table 5. Comparison of the testing results of automated hyperparameter tuning and automated
fine-tuning for the pre-trained models.

Method Precision (%) Recall (%) F1 (%) Accuracy (%) Loss

VGG-16 97.66 97.66 97.50 98.28 0.0760
VGG-19 96.66 96.83 96.66 97.84 0.1701

MobileNet 92.00 93.83 91.50 92.45 0.3170
MobileNetV2 97.66 97.93 97.66 97.84 0.3087

ResNet-50 97.33 97.83 97.33 97.41 0.0792
ResNet-101 96.66 96.33 96.33 96.55 0.1346

DenseNet-121 99.83 99.83 99.66 99.57 0.0048
DenseNet-169 98.83 98.83 98.66 98.92 0.0774

For each pre-trained model, the optimal tuning of the model determined by Bayesian
optimization was used. The precision of each VF class by different pre-trained models
is shown in Table 5. In this work, six different types of VF defects were classified and
Figure 12 shows the confusion matrices for the six groups (central, hemianopia, normal,
quadrantanopia, superior, and tunnel) from the classification. The test confusion matrix is
shown in Figure 12a,b for the two VGG-Net models (VGG-16 and VGG-19), with an overall
accuracy of 98.28% and 97.84%, respectively.

For VGG-16, superior achieved a precision of 100%, quadrantanopia achieved 98%
with 2% misclassification as tunnel vision, hemianopia achieved 96% with 3% misclassifica-
tion as quadrantanopia and tunnel vision, and normal achieved 97% with 3% misclassi-
fication as central scotoma. On the other hand, VGG-19 attained a precision of 100% for
superior and hemianopia, 99% for quadrantanopia with 1% misclassification as tunnel
vision, 96% for normal with 4% misclassification as tunnel vision, and 92% for tunnel vision
with 6% misclassification as superior and 3% misclassified as a central scotoma.

The overall accuracy for the two MobileNet models (MobileNet and MobileNetV2) is
92.45% and 97.84%, respectively. In MobileNet, central scotoma, hemianopia, and normal
have a precision of 100%, quadrantanopia has a precision of 97% with 2% misclassifi-
cation as central scotoma and 1% as hemianopia, superior has a precision of 99% with
1% misclassification as tunnel vision, and lastly, tunnel vision has a precision of 56%
with 37% misclassification as superior, 3% as hemianopia and normal, and 1% as central
scotoma. Meanwhile, MobileNetV2 has a precision of 100% for hemianopia, superiority,
and quadrantanopia, 99% for central scotoma with 1% tunnel misclassification, 97% for
normal with 3% central scotoma misclassification, and finally 90% for tunnel vision with
6% misclassification as superiority, 3% as quadrantanopia, and 1% as hemianopia.

Diagnostics 2022, 12, 1258 21 of 26

Diagnostics 2022, 12, x FOR PEER REVIEW 21 of 27

12 shows the confusion matrices for the six groups (central, hemianopia, normal, quad-
rantanopia, superior, and tunnel) from the classification. The test confusion matrix is
shown in Figure 12a,b for the two VGG-Net models (VGG-16 and VGG-19), with an over-
all accuracy of 98.28% and 97.84%, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Cont.

Diagnostics 2022, 12, 1258 22 of 26Diagnostics 2022, 12, x FOR PEER REVIEW 22 of 27

(g) (h)

Figure 12. Confusion matrices for VGG-Net, MobileNet, ResNet, and DenseNet: (a) Confusion ma-
trix for VGG-16; (b) Confusion matrix for VGG-19; (c) Confusion matrix for MobileNet; (d) Confu-
sion matrix for MobileNetV2; (e) Confusion matrix forf ResNet-50; (f) Confusion matrix for ResNet-
101; (g) Confusion matrix for DenseNet-121; (h) Confusion matrix for DenseNet-169.

For VGG-16, superior achieved a precision of 100%, quadrantanopia achieved 98%
with 2% misclassification as tunnel vision, hemianopia achieved 96% with 3% misclassifi-
cation as quadrantanopia and tunnel vision, and normal achieved 97% with 3% misclas-
sification as central scotoma. On the other hand, VGG-19 attained a precision of 100% for
superior and hemianopia, 99% for quadrantanopia with 1% misclassification as tunnel
vision, 96% for normal with 4% misclassification as tunnel vision, and 92% for tunnel vi-
sion with 6% misclassification as superior and 3% misclassified as a central scotoma.

The overall accuracy for the two MobileNet models (MobileNet and MobileNetV2) is
92.45% and 97.84%, respectively. In MobileNet, central scotoma, hemianopia, and normal
have a precision of 100%, quadrantanopia has a precision of 97% with 2% misclassification
as central scotoma and 1% as hemianopia, superior has a precision of 99% with 1% mis-
classification as tunnel vision, and lastly, tunnel vision has a precision of 56% with 37%
misclassification as superior, 3% as hemianopia and normal, and 1% as central scotoma.
Meanwhile, MobileNetV2 has a precision of 100% for hemianopia, superiority, and quad-
rantanopia, 99% for central scotoma with 1% tunnel misclassification, 97% for normal with
3% central scotoma misclassification, and finally 90% for tunnel vision with 6% misclassi-
fication as superiority, 3% as quadrantanopia, and 1% as hemianopia.

The overall accuracy of the two ResNet models (ResNet-50 and ResNet-101) is 97.41%
and 96.55%, respectively, as shown in Figure 12e,f. In ResNet-50, normal, quadrantanopia,
and superior achieved a precision of 100%, hemianopia achieved a precision of 98% with
2% misclassification as quadrantanopia, central scotoma achieved a precision of 97% with
3% misclassification as normal, and tunnel vision has a precision of 89% with 4% misclas-
sification as superior, 6% as quadrantanopia, and 1% as central scotoma. Meanwhile, Res-
Net-101 has a precision of 100% for normal and superior, 98% for hemianopia with 1%
misclassification as superior and central scotoma, 97% for quadrantanopia with 2% mis-
classification as central scotoma, and 1% as hemianopia, 93% for central scotoma with 3%
misclassification as central scotoma and 4% misclassification as normal vision, and preci-
sion of 92% for tunnel vision with 3% misclassification as quadrantanopia and 3% mis-
classification as a central scotoma.

In Figure 12g,h, the overall accuracy for the two DenseNet models (DenseNet-121
and DenseNet-169) is 99.57% and 98.92%, respectively. In DenseNet-121, five types of de-
fects attained a precision of 100%: central scotoma, hemianopia, normal, quadrantanopia,

Figure 12. Confusion matrices for VGG-Net, MobileNet, ResNet, and DenseNet: (a) Confusion matrix
for VGG-16; (b) Confusion matrix for VGG-19; (c) Confusion matrix for MobileNet; (d) Confusion
matrix for MobileNetV2; (e) Confusion matrix forf ResNet-50; (f) Confusion matrix for ResNet-101;
(g) Confusion matrix for DenseNet-121; (h) Confusion matrix for DenseNet-169.

The overall accuracy of the two ResNet models (ResNet-50 and ResNet-101) is 97.41%
and 96.55%, respectively, as shown in Figure 12e,f. In ResNet-50, normal, quadrantanopia,
and superior achieved a precision of 100%, hemianopia achieved a precision of 98% with
2% misclassification as quadrantanopia, central scotoma achieved a precision of 97% with
3% misclassification as normal, and tunnel vision has a precision of 89% with 4% mis-
classification as superior, 6% as quadrantanopia, and 1% as central scotoma. Meanwhile,
ResNet-101 has a precision of 100% for normal and superior, 98% for hemianopia with
1% misclassification as superior and central scotoma, 97% for quadrantanopia with 2% mis-
classification as central scotoma, and 1% as hemianopia, 93% for central scotoma with
3% misclassification as central scotoma and 4% misclassification as normal vision, and
precision of 92% for tunnel vision with 3% misclassification as quadrantanopia and 3% mis-
classification as a central scotoma.

In Figure 12g,h, the overall accuracy for the two DenseNet models (DenseNet-121 and
DenseNet-169) is 99.57% and 98.92%, respectively. In DenseNet-121, five types of defects
attained a precision of 100%: central scotoma, hemianopia, normal, quadrantanopia, and
superior, except for tunnel vision, which obtained a precision of 99% with 1% misclassi-
fication as a central scotoma. As for DenseNet-169, a 100% precision was obtained for
hemianopia, normal, and superior. For quadrantanopia, a 9% precision was obtained with
1% misclassification as superior. A 97% precision was achieved for central scotoma with
3% misclassification as tunnel vision, while a 99% precision was achieved for tunnel vision
with 1% misclassification as central scotoma and normal. From Table 5, it can be concluded
that automated hyperparameter tuning and automated fine-tuning have a significant im-
pact on the classification performance by achieving more than 90% of precision for most
pre-trained models with small misclassification for each class.

Figure 13 shows the feature learned by the best pre-trained model, DenseNet-121,
before and after automated optimization. Feature learning is part of the deep learning
framework where a set of techniques is applied to learn a feature—a representation of raw
input data before the classification. As can be seen in the figure, the different hyperparame-
ters used in transfer learning will affect the feature learned by the layers. The image input
in Figure 13a shows the features of hemianopia defects before automated hyperparameter
tuning and tuning. In the figure, the features are blurred, and the structure of some images
is difficult to be classified as hemianopia. On the contrary, Figure 13b shows clearer features
that represent the image of hemianopia after optimization.

Diagnostics 2022, 12, 1258 23 of 26

Diagnostics 2022, 12, x FOR PEER REVIEW 23 of 27

and superior, except for tunnel vision, which obtained a precision of 99% with 1% mis-
classification as a central scotoma. As for DenseNet-169, a 100% precision was obtained
for hemianopia, normal, and superior. For quadrantanopia, a 9% precision was obtained
with 1% misclassification as superior. A 97% precision was achieved for central scotoma
with 3% misclassification as tunnel vision, while a 99% precision was achieved for tunnel
vision with 1% misclassification as central scotoma and normal. From Table 5, it can be
concluded that automated hyperparameter tuning and automated fine-tuning have a sig-
nificant impact on the classification performance by achieving more than 90% of precision
for most pre-trained models with small misclassification for each class.

Figure 13 shows the feature learned by the best pre-trained model, DenseNet-121,
before and after automated optimization. Feature learning is part of the deep learning
framework where a set of techniques is applied to learn a feature—a representation of raw
input data before the classification. As can be seen in the figure, the different hyperparam-
eters used in transfer learning will affect the feature learned by the layers. The image input
in Figure 13a shows the features of hemianopia defects before automated hyperparameter
tuning and tuning. In the figure, the features are blurred, and the structure of some images
is difficult to be classified as hemianopia. On the contrary, Figure 13b shows clearer fea-
tures that represent the image of hemianopia after optimization.

(a) (b)

Figure 13. Feature learn by DenseNet-121 before and after Bayesian: (a) Before applying Bayesian
optimization; (b) After applying Bayesian optimization.

6. Conclusions and Future Works
Different transfer learning models show different performance rates in classifying VF

defects. An experiment before hyperparameter tuning and fine-tuning was performed for
the transfer learning models, and the VGG-16 pre-trained model showed the best perfor-
mance of 97.63% compared to other pre-trained models based on 32 batch sizes, 50 epochs,
and ADAM as the optimizer. Since the hyperparameters and fine-tuning layers are the
important aspects of transfer learning, various combinations of different hyperparameters
and fine-tuning layers were tested. The experimental results showed that the optimal
choice of hyperparameters and fine-tuning could improve the performance of pre-trained
models. However, when an inappropriate tuning is chosen, the classification performance
decreases. To avoid this problem and reduce the time for selecting an optimal hyperpa-
rameter and fine-tuning layer, Bayesian optimization of hyperparameters can be used.

Figure 13. Feature learn by DenseNet-121 before and after Bayesian: (a) Before applying Bayesian
optimization; (b) After applying Bayesian optimization.

6. Conclusions and Future Works

Different transfer learning models show different performance rates in classifying VF
defects. An experiment before hyperparameter tuning and fine-tuning was performed for
the transfer learning models, and the VGG-16 pre-trained model showed the best perfor-
mance of 97.63% compared to other pre-trained models based on 32 batch sizes, 50 epochs,
and ADAM as the optimizer. Since the hyperparameters and fine-tuning layers are the
important aspects of transfer learning, various combinations of different hyperparameters
and fine-tuning layers were tested. The experimental results showed that the optimal choice
of hyperparameters and fine-tuning could improve the performance of pre-trained models.
However, when an inappropriate tuning is chosen, the classification performance decreases.
To avoid this problem and reduce the time for selecting an optimal hyperparameter and
fine-tuning layer, Bayesian optimization of hyperparameters can be used.

In this work, it was observed that Bayesian optimization helps improve the pre-trained
ResNet, MobileNet, and DenseNet models to achieve accuracy above 90% by combining
multiple optimal hyperparameters and fine-tuning based on the Bayesian optimization
process. A comprehensive analysis has shown that each hyperparameter and fine-tuning
has its role in processing the weights and parameters in the pre-trained models. The optimal
tuning of hyperparameters in the pre-trained models helps reduce the loss during training
and validation by changing the complexity of the transfer learning architecture. Based on
the comparison of the combination of different hyperparameters and fine-tuning layers,
the DenseNet-121 pre-trained model is the best model as it achieved a high accuracy of
98.46% during validation and 99.57% during testing. In addition, fine-tuning, i.e., freezing
an appropriate network layer during validation, is also important as it helps to reduce
the time required to train the target dataset. This requires extensive analysis to determine
which network layers should be trained to achieve optimal results. Figure 11 shows that
the right choice in freezing the layers can reduce the evaluation time and help the models
achieve high accuracy of over 90%.

There are also some limitations when it comes to optimizing the hyperparameters and
fine-tuning the transfer learning framework. The image size must be at least 224; otherwise,
the input dimension becomes negative if the size is smaller than 224. On the other hand, if
the images are resized to a larger size, they will be stretched and may become blurred. This
can affect certain features of the images that are critical for medical images. In addition, the
large size of the images can cause higher memory requirements on the hardware. Therefore,

Diagnostics 2022, 12, 1258 24 of 26

the development of transfer learning that can handle small images is proposed in future
works. Combination of difference model can be apply but not recommended because
different model have different layers function so removing layers or change layers by
using automated hyperparameters optimization from the original transfer learning can
also be one of the ways to deal with small images. Since some transfer learning layers are
incompatible with the data set, it is preferable to remove and replace layers rather than
fine-tune to minimize memory issues.

Author Contributions: Conceptualization, M.A., A.A. and N.A.H.Z.; methodology, M.A., A.A. and
N.A.H.Z.; software, M.A. and M.I.I.; validation, M.A., A.A. and N.A.H.Z.; formal analysis, M.A.;
investigation, M.A., A.A. and N.A.H.Z.; resources, M.A.; data curation, A.Y.; writing—original draft
preparation, M.A.; writing—review and editing, A.A. and N.A.H.Z.; visualization, M.A., A.A. and
N.A.H.Z.; supervision, N.A.H.Z. and A.A.; project administration, N.A.H.Z.; funding acquisition,
N.A.H.Z., S.A.A. and M.I.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Universiti Malaysia Perlis (UniMAP) under Ministry of
Higher Education of Malaysia, grant code FRGS/1/2018/ICT05/UNIMAP/02/2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this study, we used publicly available VF defect images, the Rotter-
dam ophthalmic Data Repository [http://www.rodrep.com/longitudinal-glaucomatous-vf-data---
description.html (accessed on 23 September 2021)], S1-Dataset, Github dataset [https://github.com/
serifeseda/early-glaucoma-identification (accessed on 29 September 2021)], and 10-2 Humphrey
SITA dataset [https://datasetsearch.research.google.com/ (accessed on 23 September 2021)]. The VF
defects can be made available for reasonable requests by contacting the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study, as well as in the collection, analysis, or interpretation of data, in the writing of
the manuscript, or in the decision to publish the results.

References
1. Moses, S. Neurologic Anatomy of the Eye. Family Practice Notebook. 2022. Available online: https://fpnotebook.com/eye/

Anatomy/NrlgcAntmyOfThEy.htm (accessed on 13 February 2022).
2. Kucur, Ş.S.; Holló, G.; Sznitman, R. A Deep Learning Approach to Automatic Detection of Early Glaucoma from Visual Fields.

PLoS ONE 2018, 13, e0206081. [CrossRef] [PubMed]
3. Chakravarty, A.; Sivaswamy, J. Joint optic disc and cup boundary extraction from monocular fundus images. Comput. Methods

Programs Biomed. 2017, 147, 51–61. [CrossRef] [PubMed]
4. Park, K.; Kim, J.; Lee, J. Visual Field Prediction using Recurrent Neural Network. Sci. Rep. 2019, 9, 8385. [CrossRef] [PubMed]
5. Patel, R.; Chaware, A. Transfer Learning with Fine-Tuned MobileNetV2 for Diabetic Retinopathy. In Proceedings of the 2020

International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–4. [CrossRef]
6. Shankar, K.; Zhang, Y.; Liu, Y.; Wu, L.; Chen, C.H. Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus

Image Classification. IEEE Access 2020, 8, 118164–118173. [CrossRef]
7. Abu, M.; Zahri, N.A.H.; Amir, A.; Ismail, M.I.; Kamarudin, L.M.; Nishizaki, H. Classification of Multiple Visual Field Defects

using Deep Learning. J. Phys. Conf. Ser. 2021, 1755, 012014. [CrossRef]
8. Chakrabarty, N. A Deep Learning Method for The Detection of Diabetic Retinopathy. In Proceedings of the 2018 5th IEEE Uttar

Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4
November 2018; pp. 1–5.

9. Vaghefi, E.; Yang, S.; Hill, S.; Humphrey, G.; Walker, N.; Squirrell, D. Detection of Smoking Status from Retinal Images; A
Convolutional Neural Network Study. Sci. Rep. 2019, 9, 1–9. [CrossRef]

10. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
11. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
12. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520. [CrossRef]

http://www.rodrep.com/longitudinal-glaucomatous-vf-data---description.html
http://www.rodrep.com/longitudinal-glaucomatous-vf-data---description.html
https://github.com/serifeseda/early-glaucoma-identification
https://github.com/serifeseda/early-glaucoma-identification
https://datasetsearch.research.google.com/
https://fpnotebook.com/eye/Anatomy/NrlgcAntmyOfThEy.htm
https://fpnotebook.com/eye/Anatomy/NrlgcAntmyOfThEy.htm
http://doi.org/10.1371/journal.pone.0206081
http://www.ncbi.nlm.nih.gov/pubmed/30485270
http://doi.org/10.1016/j.cmpb.2017.06.004
http://www.ncbi.nlm.nih.gov/pubmed/28734530
http://doi.org/10.1038/s41598-019-44852-6
http://www.ncbi.nlm.nih.gov/pubmed/31182763
http://doi.org/10.1109/INCET49848.2020.9154014
http://doi.org/10.1109/ACCESS.2020.3005152
http://doi.org/10.1088/1742-6596/1755/1/012014
http://doi.org/10.1038/s41598-019-43670-0
http://doi.org/10.1109/CVPR.2018.00474

Diagnostics 2022, 12, 1258 25 of 26

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

14. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [CrossRef]

15. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
16. Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A Survey of Transfer Learning; Springer International Publishing: Berlin/Heidelberg,

Germany, 2016. [CrossRef]
17. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the International

conference on artificial neural networks, Rhodes, Greece, 4–7 October 2018; pp. 270–279. [CrossRef]
18. Karthikeyan, S.; Kumar, P.S.; Madhusudan, R.J.; Sundaramoorthy, S.K.; Namboori, P.K.K. Detection of Multiclass Retinal Diseases

Using Artificial Intelligence: An Expeditious Learning Using Deep CNN with Minimal Data. Biomed. Pharmacol. J. 2019, 12, 3.
[CrossRef]

19. Naik, N. Eye Disease Detection Using RESNET. Int. Res. J. Eng. Technol. 2016, 7, 3331–3335.
20. Nazir, T.; Nawaz, M.; Rashid, J.; Mahum, R.; Masood, M.; Mehmood, A.; Ali, F.; Kim, J.; Kwon, H.; Hussain, A. Detection of

Diabetic Eye Disease from Retinal Images Using a Deep Learning Based Centernet Model. Sensors 2021, 21, 5238. [CrossRef]
[PubMed]

21. Mu, N.; Wang, H.; Zhang, Y.; Jiang, J.; Tang, J. Progressive global perception and local polishing network for lung infection
segmentation of COVID-19 CT images. Pattern Recognit. 2021, 120, 108168. [CrossRef]

22. He, J.; Zhu, Q.; Zhang, K.; Yu, P.; Tang, J. An evolvable adversarial network with gradient penalty for COVID-19 infection
segmentation. Appl. Soft Comput. 2021, 113, 107947. [CrossRef] [PubMed]

23. Miranda, M.; Valeriano, K.; Sulla-Torres, J. A Detailed Study on the Choice of Hyperparameters for Transfer Learning in COVID-19
Image Datasets using Bayesian Optimization. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 327–335. [CrossRef]

24. Dewancker, I.; McCourt, M.; Clark, S. Bayesian Optimization Primer. 2015. Available online: chrome-extension:
//oemmndcbldboiebfnladdacbdfmadadm/https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/
pdf/SigOpt_Bayesian_Optimization_Primer.pdf (accessed on 12 February 2022).

25. Wang, Y.; Plested, J.; Gedeon, T. MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for Image Classification. In
Proceedings of the 27th International Conference, ICONIP 2020, Bangkok, Thailand, 18–22 November 2020. [CrossRef]

26. Vrbančič, G.; Podgorelec, V. Transfer Learning with Adaptive Fine-Tuning. IEEE Access 2020, 8, 196197–196211. [CrossRef]
27. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
28. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization. arXiv 2014, arXiv:1409.2329.
29. Google Brain. Messidor DR Dataset. Kaggle 2018. Available online: https://www.kaggle.com/google-brain/messidor2-dr-grades

(accessed on 12 February 2022).
30. Loey, M.; El-Sappagh, S.; Mirjalili, S. Bayesian-based optimized deep learning model to detect COVID-19 patients using chest

X-ray image data. Comput. Biol. Med. 2022, 142, 105213. [CrossRef]
31. Monshi, M.M.A.; Poon, J.; Chung, V.; Monshi, F.M. CovidXrayNet: Optimizing data augmentation and CNN hyperparameters

for improved COVID-19 detection from CXR. Comput. Biol. Med. 2021, 133, 104375. [CrossRef] [PubMed]
32. Loey, M.; Mirjalili, S. COVID-19 cough sound symptoms classification from scalogram image representation using deep learning

models. Comput. Biol. Med. 2021, 139, 105020. [CrossRef] [PubMed]
33. Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4800–4809. [CrossRef]

34. Maji, S.; Kannala, J.; Rahtu, E.; Blaschko, M.; Vedaldi, A. Fine-Grained Visual Classification of Aircraft. arXiv 2013, arXiv:1306.5151.
35. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/

kriz/learning-features-2009-TR.pdf (accessed on 12 February 2022).
36. Google. Dataset Search. Available online: https://datasetsearch.research.google.com/ (accessed on 23 September 2021).
37. Gessesse, G.W.; Tamrat, L.; Damji, K.F. 10–2 Humphrey SITA standard visual field test and white on black amsler grid test results

among 200 eyes [Data set]. PLoS ONE 2020, 15, e0230017. [CrossRef]
38. Bryan, S.R.; Eilers, P.H.; Lesaffre, E.M.; Lemij, H.G.; Vermeer, K.A. Longitudinal Glaucomatous Visual Field Data. Rotterdam

Ophthalmic Data Repository. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4283–4289. Available online: http://www.rodrep.com/
longitudinal-glaucomatous-vf-data---description.html (accessed on 23 September 2021). [CrossRef] [PubMed]

39. Erler, N.S.; Bryan, S.R.; Eilers, P.H.C.; Lesaffre, E.M.E.H.; Lemij, H.G.; Vermeer, K.A. Optimizing Structure-function Relationship
by Maximizing Correspondence between Glaucomatous Visual Fields and Mathematical Retinal Nerve Fiber Models. Investig.
Ophthalmol. Vis. Sci. 2014, 55, 2350–2357. [CrossRef] [PubMed]

40. Kucur, Ş.S. Early Glaucoma Identification. GitHub. Available online: https://github.com/serifeseda/early-glaucoma-
identification (accessed on 29 September 2021).

41. Lifferth, A.; Fisher, B.; Stursma, A.; Cordes, S.; Carter, S.; Perkins, T. 10-2 Visual Field Testing: A Tool for All Glaucoma Stages.
Rev. Optom. 2017, 154, 54–59. Available online: https://www.reviewofoptometry.com/article/ro0717-102-visual-field-testing-a-
tool-for-all-glaucoma-stages (accessed on 29 September 2021).

http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1186/s40537-016-0043-6
http://doi.org/10.1007/978-3-030-01424-7_27
http://doi.org/10.13005/bpj/1788
http://doi.org/10.3390/s21165283
http://www.ncbi.nlm.nih.gov/pubmed/34450729
http://doi.org/10.1016/j.patcog.2021.108168
http://doi.org/10.1016/j.asoc.2021.107947
http://www.ncbi.nlm.nih.gov/pubmed/34658687
http://doi.org/10.14569/IJACSA.2021.0120441
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://static.sigopt.com/b/20a144d208ef255d3b981ce419667ec25d8412e2/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
http://doi.org/10.1007/978-3-030-63820-7_56
http://doi.org/10.1109/ACCESS.2020.3034343
https://www.kaggle.com/google-brain/messidor2-dr-grades
http://doi.org/10.1016/j.compbiomed.2022.105213
http://doi.org/10.1016/j.compbiomed.2021.104375
http://www.ncbi.nlm.nih.gov/pubmed/33866253
http://doi.org/10.1016/j.compbiomed.2021.105020
http://www.ncbi.nlm.nih.gov/pubmed/34775155
http://doi.org/10.1109/CVPR.2019.00494
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://datasetsearch.research.google.com/
http://doi.org/10.1371/journal.pone.0230017.t002
http://www.rodrep.com/longitudinal-glaucomatous-vf-data---description.html
http://www.rodrep.com/longitudinal-glaucomatous-vf-data---description.html
http://doi.org/10.1167/iovs.15-16691
http://www.ncbi.nlm.nih.gov/pubmed/26161990
http://doi.org/10.1167/iovs.13-12492
http://www.ncbi.nlm.nih.gov/pubmed/24644052
https://github.com/serifeseda/early-glaucoma-identification
https://github.com/serifeseda/early-glaucoma-identification
https://www.reviewofoptometry.com/article/ro0717-102-visual-field-testing-a-tool-for-all-glaucoma-stages
https://www.reviewofoptometry.com/article/ro0717-102-visual-field-testing-a-tool-for-all-glaucoma-stages

Diagnostics 2022, 12, 1258 26 of 26

42. Jiang, Z.; Zhang, H.; Wang, Y.; Ko, S. Retinal blood vessel segmentation using fully convolutional network with transfer learning.
Comput. Med. Imaging Graph. 2018, 68, 1–15. [CrossRef]

43. Lei, Z.; Gan, Z.H.; Jiang, M.; Dong, K. Artificial robot navigation based on gesture and speech recognition. In Proceedings of the
2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Wuhan, China, 18–19 October 2014;
pp. 323–327. [CrossRef]

44. Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; Mingguang, H. Efficacy of a Deep Learning System for Detecting Glaucomatous
Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology 2018, 125, 1199–1206. [CrossRef]

45. Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Skin Cancer Classification using Deep Learning and Transfer Learning. In Proceedings
of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 90–93.
[CrossRef]

46. Mahiba, C.; Jayachandran, A. Severity analysis of diabetic retinopathy in retinal images using hybrid structure descriptor and
modified CNNs. Measurement 2019, 135, 762–767. [CrossRef]

47. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
48. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 56, 1929–1958. [CrossRef]
49. Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811.
50. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning. 2006. Available online: http://www.gaussianprocess.

org/gpml/ (accessed on 12 February 2022).
51. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian

Optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]
52. Joy, T.T.; Rana, S.; Gupta, S.; Venkatesh, S. A flexible transfer learning framework for Bayesian optimization with convergence

guarantee. Expert Syst. Appl. 2019, 115, 656–672. [CrossRef]
53. Das, A.; Giri, R.; Chourasia, G.; Bala, A.A. Classification of Retinal Diseases Using Transfer Learning Approach. In Proceedings

of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019.
[CrossRef]

54. Mitra, A.; Banerjee, P.S.; Roy, S.; Roy, S.; Setua, S.K. The region of interest localization for glaucoma analysis from retinal fundus
image using deep learning. Comput. Methods Programs Biomed. 2018, 165, 25–35. [CrossRef]

55. Abu, M.; Amir, A.; Yen, H.L.; Zahri, N.A.H.; Azemi, S.A. The Performance Analysis of Transfer Learning for Steel Defect Detection
by Using Deep Learning. In Proceedings of the 5th International Conference on Electronic Design (ICED), Perlis, Malaysia, 19
August 2020; p. 1755.

56. Zhang, C.; Benz, P.; Argaw, D.M.; Lee, S.; Kim, J.; Rameau, F.; Bazin, J.C.; Kweon, I.S. ResNet or DenseNet? Introducing dense
shortcuts to ResNet. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa,
HI, USA, 3–8 January 2021; pp. 3549–3558. [CrossRef]

57. Hoffer, E.; Hubara, I.; Soudry, D. Train longer, generalize better: Closing the generalization gap in large batch training of neural
networks. Adv. Neural Inf. Process. Syst. 2017, 12, 1732–1742.

http://doi.org/10.1016/j.compmedimag.2018.04.005
http://doi.org/10.1109/SPAC.2014.6982708
http://doi.org/10.1016/j.ophtha.2018.01.023
http://doi.org/10.1109/CIBEC.2018.8641762
http://doi.org/10.1016/j.measurement.2018.12.032
http://doi.org/10.1016/0370-2693(93)90272-J
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
http://doi.org/10.1109/JPROC.2015.2494218
http://doi.org/10.1016/j.eswa.2018.08.023
http://doi.org/10.1109/ICCES45898.2019.9002415
http://doi.org/10.1016/j.cmpb.2018.08.003
http://doi.org/10.1109/WACV48630.2021.00359

	Introduction
	Related Works
	Dataset Characteristics
	Framework
	Pre-Processing
	Pre-Trained Models
	Bayesian Optimization
	Model Evaluation

	Experimental Results and Discussion
	Part I: Validation Results and Analysis before Bayesian Optimization
	Part II: Validation Results and Analysis after Bayesian Optimization
	Part III: Classification Results and Analysis after Bayesian Optimization

	Conclusions and Future Works
	References

