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Abstract: Diabetes is one of the main causes of the rising cases of blindness in adults. This micro-

vascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an ex-

panding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a 

powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to 

coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) com-

plications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-

income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in 

DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-

cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue 

characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) tech-

niques has facilitated the handling of large cohorts in a big data framework to identify atheroscle-

rotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk strat-

ification of patients with DR. Thus, this review focuses on understanding the pathophysiology of 

DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk 

stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and 

atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how 

AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-

19 framework. 

Keywords: diabetic retinopathy; atherosclerosis; cardiovascular disease; surrogate biomarkers; ar-

tificial intelligence; risk stratification; risk assessment 

 

1. Introduction 

The mortality of 17.9 million people every year in the world is due to cardiovascular 

diseases (CVD) [1]. Meanwhile, atherosclerosis is considered one of the main leading 

causes of CVD [2,3], and several other factors, such as prolonged diabetes mellitus (DM) 

and lifestyle factors, are attributed to it as well. Diabetes is a chronic disease and is re-

sponsible for 1.5 million deaths worldwide [4,5]. The number of people suffering from 
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diabetes is rising every year. A 2018 consensus report suggested that 34.2 million people 

had diabetes, out of which 7.3 million remained undiagnosed [6]. The poor healthcare 

system in developing countries has led to a further worsening of the condition. There are 

currently 285 million people in the world who have diabetes mellitus (DM). By 2030, the 

number of people suffering from DM is expected to rise to 439 million [7]. Apart from 

being a leading factor in causing CVD, diabetes also doubles the threat of stroke [8,9]. 

Uncontrolled DM leads to blindness, renal failure, myocardial infarction, and lower limb 

amputation [10]. Specifically, it often leads to diabetic retinopathy (DR), a pathological 

condition affecting the vision. Globally, DR affects 93 million people [11,12]. Therefore, it 

is important to know the causes of diabetes that lead to the formation of DR and the role 

of retinal imaging in evaluating the stages of DR. 

DM develops due to increased levels of blood sugar in our bodies, causing damage 

to blood vessels as time progresses [13,14]. This affects the tiny network of blood vessels 

in the eye [15]. Since the retina of the eye is a sensory membrane that requires a regular 

supply of blood [16], a person suffering from diabetes may experience vision loss after 

suffering damage to these blood vessels. This well-known condition is DR [17,18]. Fur-

thermore, poor glycemic control, high cholesterol, microalbuminuria, smoking, and vas-

oconstriction from high blood pressure all contribute to some of the risk factors associated 

with DR [19–21]. 

Many investigations have found a link between DR and CVD [22,23]. DR is an indi-

cation of active and uncontrolled diabetes and thereby increases the risk of CVD [24,25]. 

They can also trigger inflammatory responses that can contribute to atherosclerosis also 

causes CAD and worsening CVD [3,24,25]. Obesity, hypertension, and hyperlipidemia are 

major risk factors for both DR and CVD [26]. Several studies link more severe Atheroscle-

rotic Cardiovascular Disease (ASCVD) to more advanced DR stages [27–30]. Therefore, 

DR promotes CVD it is imperative to understand the association between DR and CVD to 

minimize heart attacks, cardiovascular events (CVE), and the risk of stroke [31,32]. 

Retinal imaging is a vital practice in DR investigation with increasing DR, alterations 

such as hard exudate development and hemorrhage development elevate the risk of CVD 

[33]. Using retinal imaging to track DR changes is critical to determining the severity of 

DR [34]. When assessing CVD risk, coronary imaging is recommended [35]. Furthermore, 

coronary artery imaging is required to observe plaque in CAD. Effective imaging methods 

for detecting coronary plaque include intravascular ultrasonography and optical coher-

ence tomography [36]. There are various previous studies [22,26,37–39] that do not clearly 

explain the details, which includes (i) direct studies of DR-CVD using AI (ii) granular risk 

prediction using AI (iii) studies of bias in AI (iv) DR-CVD in a surrogate framework and 

(v) effect of COVID-19 on DR-CVD. Thus, there is a clear need for (i) reliable and auto-

mated carotid plaque risk assessment, (ii) CVD risk stratification, and (iii) early monitor-

ing of atherosclerotic disease in DR patients. These three elements are critical in the detec-

tion of high-risk CVD in DR patients from worsening. 

The healthcare industry has been revolutionized by Artificial Intelligence (AI). Many 

medical applications have utilized Machine Learning (ML) and Deep Learning (DL) algo-

rithms [40,41]. AI-based solutions are data-driven, using database information to make 

judgments. It finds non-linear relationships between input predictors and cardiovascular 

outcomes [42]. ML-based algorithms may employ complicated, non-linear relationships 

among several input risk predictors (or attributes) at once, unlike existing statistical risk 

prediction models [42,43]. To create predictions, DL algorithms extract features directly 

from the input data, for example, carotid wall tissue characterization, picture segmenta-

tion, and CVD risk stratification [44]. The use of DL algorithms (CNNs) to extract features 

and then train/test an ML classifier to gain final classification has also been demonstrated 

[45,46]. Recently, retinal pictures have been used to predict coronary artery calcium scores 

and estimate CVD risk [47,48]. ML and DL-based algorithms have been used to predict 

diabetic retinopathy [49–52]. Therefore, it is possible by reducing the requirement for hu-
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man intervention, AI-based solutions enable the examination of image-based retinal in-

puts [53]. Several carotid ultrasonography applications utilizing AI-based algorithms 

have shown promise [54,55]. Thus, these AI-based algorithms may be used to concur-

rently handle CVD and DR diseases in patient risk assessment. 

This study focuses on the use of low-cost carotid ultrasound imaging to better un-

derstand the pathophysiology of diabetes, diabetes-related kidney disease, and cardiovas-

cular disease. The use of surrogate imaging for CAD visualization also assists in the cate-

gorization of DR patients into suitable CVD risk groups [56,57]. Patients at high risk of 

developing diabetic complications can be identified using machine learning and deep 

learning techniques [58]. An overview of the disease in a COVID-19-influenced environ-

ment provides insight into the current issues for disease treatment and pathogenesis. Fig-

ure 1 illustrates the pathophysiology cycle of DR and CVD. 

The main contributions of this study are as follows: (i) establishment of DR-CVD hy-

pothesis (Section 3); (ii) carotid arterial imaging surrogate biomarker for DR-CVD frame-

work (Section 4); (iii) establishment of AI-based CVD risk assessment (Section 5); (iv) 

workflow design for CVD risk assessment in presence of DR and COVID-19 (Section 6); 

(v) benchmarking our current CVD paradigm against previous studies (Section 7). 

 

Figure 1. Pathophysiology cycle of DR and CVD. 

2. Search Strategy 

The search strategy follows the PRISMA model, which is shown in Figure 2. Two 

popular databases, PubMed and Google Scholar, were used to find and screen the relevant 

articles using keywords such as “diabetic retinopathy”, “diabetes”, “CVD”, “diabetic ret-

inopathy and CVD”, “diabetic retinopathy and coronary artery disease”, “retinal imag-

ing”, “carotid imaging”, “artificial intelligence”, “atherosclerotic plaque tissue classifica-

tion and characterization”, “artificial intelligence”, “diabetic retinopathy, diabetes and 

COVID-19”, “atherosclerosis and COVID-19”. A total of 82 articles on PubMed and 1790 

articles on Google scholar were identified. Advanced criteria, such as time and relevance, 
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were applied to reduce the list to 500 articles. Out of which 198 articles were screened for 

inclusion in this review, and a final list was provided. The three exclusion criteria were as 

follows: (i) studies that were not connected to our objectives, (ii) articles that were not 

relevant, and (iii) research that had insufficient data in the studies. Thus, 270 studies were 

ultimately selected after the exclusion of 1000, 200, and 225 investigations (labeled with 

the letters E1, E2, and E3), for a total of 275 studies. The complete screening process is 

shown in Figure 2. 

 

Figure 2. Search strategy based on the PRISMA model. 

3. Diabetic Retinopathy 

Diabetes is defined by abnormally high blood glucose levels (hyperglycemia) in the 

body [59]. This is primarily owing to the body’s poor production and/or usage of insulin 

[60]. If left unchecked, diabetes’ metabolic abnormalities can result in a plethora of acute 

and chronic consequences [61]. Chronic problems are further classified as microvascular 

or macrovascular. Neuropathy, diabetic retinopathy, and nephropathy are all examples 

of microvascular consequences. Ischemic heart disease, cerebrovascular illness, and pe-

ripheral vascular disease are all macrovascular consequences [62–64]. 

Among these, DR is the most recurrent and common complication [65–67]. It is char-

acterized as a complex ocular manifestation of diabetes that leads to the alteration of var-

ious pathways affecting the retina [66,68,69]. The basic indicators of DR include loss of 

pericytes, microaneurysms, lipid deposits (exudates), neovascularization, thickening of 

the basement membrane, and breaking down of the blood–retinal barrier [68]. 

The Human eye is a vital organ that consists of the cornea, pupil, iris, retina, lens, 

and sclera [69]. 

The retina, which is a thin layer of highly metabolically active tissues positioned near 

the optic nerve, is one of these. On the interior, it encircles the rear of the eye [70,71]. The 

retina’s function is to receive light signals focused by the lens and convert them to neural 

impulses [72]. Additionally, it transmits these impulses to the brain for visual recognition. 



Diagnostics 2022, 12, 1234 6 of 42 
 

 

Hyperglycemia impairs the function of the retina’s vascular endothelial cells [73]. In gen-

eral, the four major pathways involved in the prognosis of DR are (i) increased polyol 

pathway flux, (ii) activation of protein kinase C (PKC), (iii) increased advance glycation 

end products (AGE) formation, and (iv) polyol pathways (Figure 3) [74]. 

 

Figure 3. Pathophysiology of diabetic retinopathy. 

These pathways interchangeably cause oxidative stress and can lead to inflammation 

and apoptosis [75]. Further, neurovascular damage which includes neural dysfunction, 

retinal hypoxia, and increased vascular permeability can ultimately lead to DR [76]. Neo-

vascularization leads to hemorrhage and fibrosis, which further leads to traction [77]. 

Different stages of DR throughout disease progression can be classified based on ret-

inal imaging as mild, moderate, severe non-proliferative DR (NPDR), and proliferative 

DR (PDR) [78] (Figure 4). Glycation is the microvascular abnormality that leads to micro-

vascular leakage, causing NPDR, and microvascular occlusion causes PDR [79]. Microan-

eurysm, along with blot hemorrhage, is observed in mild NPDR. Moderate NPDR is char-

acterized by hard exudates in the retina, while severe NPDR has multiple hemorrhages 

and soft exudates [80]. In PDR, the new blood vessels do not supply enough nourishment 

to the retina. Further, they are soft, fragile, and at high risk of rupture and bleeding, caus-

ing severe vision loss or even blindness. Advanced forms of PDR may also lead to retinal 

detachment and blindness [81]. An important additional complication of the DR is dia-

betic macular edema (DME) [82], which reflects the main reason behind the loss of vision 

and blindness in DR patients. The macula is a part of the eye required for central vision if 

the leakage of fluid happens in the macula (specifically to the fovea) it causes swelling, 

affecting the primary area of focus [83]. DME occurs as a different severity of DR, which 

is both NPDR and PDR [84]. 
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Figure 4. Stages of diabetic retinopathy (courtesy of AtheroPoint, Roseville, CA, USA; permission 

granted). 

A change in the structure and cellular content of the microvasculature such as ather-

osclerosis is a sign of early DR [85,86]. Thus, the pathogenesis of DR has several contrib-

uting factors that are driven by atherosclerosis. Several studies have shown that endothe-

lial permeability, neo-angiogenesis, and plaque micro-vascularization are all influenced 

by a blood vessel’s vasa vasorum (a network of small blood vessels that supply the walls 

of larger blood vessels) [87]. Recent pieces of evidence suggest that in patients with dia-

betes, vasa vasorum shows evolutionary changes [88]. It is the same as the beginning stage 

of the retina, in which endothelial dysfunction and loss of capillaries predominate [88]. 

This results in an unstable plaque and favors plaque rupture. As discussed earlier, hard 

exudates present in the moderate stages of NPDR also account for their association with 

CVD and plaque formation [84]. Hard exudates appear in the retina due to leakage of 

lipids and proteinaceous material through the endothelial barrier. It is also responsible for 

the appearance of plaque in large arteries [89]. Elevated blood pressure has also been as-

sociated with DR and is a significant biomarker in atherosclerotic disease [90]. 
According to another study [88], there is a link between diabetes and CVD, high 

plasma LDL cholesterol, and proteinuria. The development and progression of retinopa-

thy may be more severe in patients with diabetes and signs of atherosclerosis, necessitat-

ing more frequent examinations and therapies in these patients. As a result, it is necessary 

to develop appropriate treatment choices. 

3.1. The Biological Link between DR and CVD 

A vascular relationship cause exists between DR and CVD, it is observed that reti-

nopathy is a microvascular dysfunction caused due to endothelial dysfunction that results 

in arteriolar wall leakage [91]. These small arteriolar and capillary bed leakage causes ret-

inopathy and nephropathy. However, large arterial wall leakage causes lipid accumula-

tion, consequently leading to a pathogenic cascade of atherosclerosis [92]. Hyperglycemia 

causes inflammation by releasing reactive oxygen species, advanced glycation end prod-

ucts, cytokines, and chemokines [93]. These collectively cause oxidative stress and endo-

thelial dysfunction that facilitates the entry of monocytes and macrophages. Sequentially, 

endothelial dysfunction also helps low-density lipoprotein (LDL) particles penetrate the 

intimal wall of the vessel in a process called transcytosis [94]. Further, the LDL particles 

get oxidized and form OxLDL, due to the inflammatory markers process [95–97]. Addi-

tionally, endothelial dysfunction activates the scavenger receptors (SRc) known as SR-

AI/II, SR-BI, and the cluster of differentiation 36 (CD36). These results in intracellular up-

take of oxLDL by macrophages in the arterial intima and help in the formation of foam 

cells [98,99] (see Figure 5). Over time, the foam cells die, contributing to the production of 
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interstitial collagen and elastin inside the foam cells resulting in the formation of the ne-

crotic core [100]. Collectively, these overall sequential steps initiate the platelet aggrega-

tion and adhesion favors the atherosclerotic plaque formation causing micro and macro-

vascular complications [101]. 

 

Figure 5. The biological link between DR and CVD (courtesy of AtheroPoint, Roseville, CA, USA; 

permission granted). 

Coronary artery disease is the most common type of heart disease and is often known 

as cardiovascular disease as well as coronary heart disease. It has been shown that diabe-

tes can cause blood vessels to thicken, which can progress to CHD [102]. Thus, a person 

with DR should be at an elevated risk of CHD/CAD. To study this, we went through re-

cent literature and found several interesting attributes. In a study by Barlovic et al. [103], 

it was observed that 416 CVD events occurred during 12,872 person-years of follow-up. 

Severe diabetic retinopathy (SDR) was seen to increase CVD risk, particularly for periph-

eral artery disease (PAD) in long-standing type 1 diabetes [104]. 

Hecke et al. [105] examined a cohort of 2237 type 1 diabetic patients in their study. 

After 7.9 years of follow-up, 64 people had died and 128 people had new CVD. People 

who had nonproliferative and proliferative retinopathy were more likely to die from any 

cause and have a higher risk of having a heart attack or suffering from stroke than people 

who did not have retinopathy [106]. They found that people with type 1 diabetes who 

have non-proliferative or proliferative retinopathy have an increased risk of all-cause 

death and new CVD. Another study by Pradeepa et al. [107] showed that in South Indian 

patients with type 2 diabetes, the prevalence of CAD was significantly higher in patients 

with DR compared to those without. In subjects with glycated hemoglobin (HbA1c) levels 
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> 7% (p = 0.002), a significant association was observed between DR and CAD. Some peo-

ple who had eye-bleeding or microaneurysms had a higher risk of having a heart attack, 

and those who had cotton wool spots had an increased chance that they would have a 

heart attack or have another stroke. The same study by Kawasaki et al. [108] concluded 

that type 2 diabetic patients with even a mild stage of DR, such as dot hemorrhages are 

already at risk of CHD. Ellis et al. [109] in their study suggested that understanding the 

link between DR and CVD would lead to refined treatment strategies leading to person-

alized treatment strategies. In another study, by Cheung et al. [110], out of 214 participants 

that had DR, there were 209 CHD events. The presence of DR was linked to a two-fold 

increase in the incidence of CHD events and a three-fold increase in fatal CHD events. 

Table 1 presents the link between DR and CHD. 

Table 1. The link between DR and CHD. 

Citations Year PDR a CVD b RI c CHD d CI e AI f RS g 
DR-CVD 

Link 
SOC h 

Hecke et al. [105] 2005          

Cheung et al. 

[110] 
2007          

Kawasaki et al. 

[108] 
2013          

Ellis et al. [109] 2013          

Pradeepa et al. 

[107] 
2015          

Um et al. [111] 2015          

Barlovic et al. 

[103] 
2018          

Xu et al. [112] 2020          

PDR a: Pathophysiology of Diabetic Retinopathy, CVD b: Cardiovascular Diseases, RI c: Retinal Im-

aging, CHD d: Coronary Heart Disease, CI e: Carotid Imaging, AI f: Artificial Intelligence, RS g: Risk 

Stratification, SOC h: Strength of Correlation. 

Um et al. [111] explained that people with type 2 diabetes and PDR had a more severe 

coronary artery calcification and both were more likely to have CHD, compared to pa-

tients without DR. Thus, in asymptomatic patients with type 2 diabetes, PDR can be a 

predictor of CHD. Xu et al. [79] concluded that DR was a risk marker for CVD. Their find-

ings indicated that DR predicts a doubled mortality of CVD in diabetes. This clearly 

showed that DR was strongly related to CVD. All the above studies demonstrate our hy-

pothesis holds that DR is responsible for the worsening of CVD. 

Diabetic Retinopathy Imaging and Cardiovascular Disease: Establishing the Hypothesis 

The human eye is a vital organ that helps in the direct and non-invasive visualization 

of DR changes. Direct visualization of neurovasculature of the eye can be done via non-

invasive imaging modalities [26]. Several studies indicate an increased risk of CVD asso-

ciated with DR patients. A study reported that retinopathy signs are associated with cor-

onary artery calcification and may be markers for atherosclerotic disease [113]. The retinal 

arteriolar narrowing was observed as a marker of coronary microvascular disease [35]. 

Alonso et al. [37] identified that Type 2 diabetic patients with DR had more athero-

sclerosis in their carotid arteries. Another study reported a significant association of in-

creased carotid intima-media thickness (cIMT) with DR and peripheral vascular disease 

(PVD) [114]. Concomitant diabetic cardiomyopathy was indicated in those suffering from 

advanced DR. These people usually have or will have chronic or recurrent heart failure 

[115]. Thus, we hypothesize that the condition of the heart could be altered during differ-
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ent stages of DR. Furthermore, patients with macular edema (ME) and proliferative dia-

betic retinopathy (PDR) are at the highest risk of developing CVD [84]. To classify CVD 

risk for different stages of DR, it is necessary to generate an output of these stages in the 

form of retinal scans. Therefore, retinal or ocular imaging modalities have an increasingly 

vital role in the management of diabetes, diabetic retinopathy, and the prognostication of 

associated events. 

Retinal imaging is a diagnostic tool primarily used in the diagnosis of retinal diseases 

as well as in monitoring retinal conditions with time. The three principal technologies 

used in retinal imaging are (i) fundus camera imaging, (ii) scanning laser ophthalmos-

copy, and (iii) optical coherence tomography (OCT). 

3.2. Fundus Camera Imaging 

Thirty- to fifty-degree field-of-view images were provided by standard fundus pho-

tography. This includes the macula and optic nerve [116]. 3D, semi-transparent, and reti-

nal tissues projected onto the imaging plane are acted upon by reflected light to generate 

two-dimensional (2D) representations [117]. Fundus camera imaging has been used ex-

tensively in DR imaging [33,118]. It provides imaging of blood vessels, lesions, hemor-

rhages, and exudates that are pre-symptomatic stages of retinopathy. The standard ultra-

wide field, fundus autofluorescence, and smartphone-based fundus photography are sev-

eral types of fundus imaging techniques [119] that are quick and simple. It covers a larger 

retinal field and has high patient compliance (see Figure 6). However, 3D layer visualiza-

tion is not possible for some pathologies like macular edema and age-related macular de-

generation, but using such 3D scans provides a quick diagnosis. Fundus imaging has ad-

vantages on the cost side, being usually a quarter of the price of an OCT scanner. Recently, 

cost-effective smartphone-based fundus imaging cameras have been developed that can 

provide good-quality retinal images. 

 

 

Figure 6. (A) Retinal images were taken using an IR camera [120]; (B) imaging using nun IR portable 

fundus camera [120] (Courtesy of oDocs Eye Care, Dunedin, New Zealand, reproduced with per-

mission). 
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3.3. Optical Coherence Tomography 

OCT is a reproducible, non-invasive imaging modality that allows easy detection 

[121]. It has provided new areas of understanding in ophthalmology. This optical scan-

ning technique uses near-infrared light and can be thought of as “optical ultrasound” 

when interpreting these scans [35]. OCT images are high-resolution scans (1–15 mm) with 

a penetration depth of 2 to 3 mm in human tissue [36] (see Figure 7). It gives a cross-

sectional view of internal retinal structures and helps in detecting possible markers of 

neurodegeneration. 

 

 

Figure 7. (A) HRA + OCT imaging with a Spectralis HRA+ device Binarized optical coherence to-

mography pictures with varying degrees of DR severity, as well as non-segmented angiograms, are 

shown in (B). (a) There is no DR. (b) Mild NPDR if any. (c) NPDR of a moderate level. (d) A very 

bad case of NPDR. (e) It is a PDR and it is important to note that the following CDI and FD values 

are the same: CDI is 0.358 and FD is 1.56, CDI is 0.351 and FD is 1.57, CDI is 0.342 and FD is 1.59, 

CDI is 0.340 and FD is 1.60 and CDI is 0.335 and FD is 1.61. Nonproliferative diabetes retinopathy 

is referred to as NPDR, while proliferative diabetic retinopathy is referred to as PDR. 

3.4. Optical Coherence Tomography and Angiography 



Diagnostics 2022, 12, 1234 12 of 42 
 

 

OCT does not directly measure blood flow velocity, distinguish arteries and veins, or 

detect vascular permeability changes. In addition, hence ICGA and FA remain common 

methods to visualize blood flow [116]. However, FA and ICGA are slow and cannot pro-

duce topographic 3D images. The advent of OCTA in 2012 revolutionized ophthalmology 

[117]. It aids in the non-invasive examination of retinal and choroid anatomy and vascu-

lature [26]. It helps in the non-invasive evaluation of the structure and vasculature within 

the retina and choroid [26]. Thus, with help of these imaging techniques, we can effec-

tively access DR and associated CVD risk. Table 2. Shows the difference between FI and 

OCT. 

Table 2. Difference between FI and OCT. 

Modality Image Formation RF # Features of Interest Limitations 

FI 
Colour photograph 

of the retinal surface. 
7–20 

Blood vessels, lesions, 

exudates, hemorrhages. 

Dilation of pupils is of-

ten needed. 

OCT 
Near-infrared light 

penetrates the retina. 
4 

The internal retinal 

structure is shown in 

cross-section, including 

changes in the nerve fi-

ber layer. 

Susceptible to media 

opacities, does not visu-

alize blood. 

#: Resolution factor; FI: fundus imaging; OCT: optical coherence tomography. 

3.5. DR and CVD: Does our Hypothesis Hold True? 

The advances in retinal imaging technology and its power to diagnose DR give a very 

strong edge for risk stratification in DR. The question, therefore, arises if patients suffering 

from DR can be used for direct CVD evaluation and risk stratification, or do all the grades of DR 

increase the risk of CVD? 

A recent study, called Action for Health in Diabetes (AHEAD) between DR and CVD, 

was conducted on type 2 diabetes patients having a cohort size of 4098 participants [122]. 

The authors showed that there was an increase in CVD composite that affected the micro-

vascular disease (MVD) having the following statistics [(HR 1.34, 95% CI 1.11–1.61), CAD 

(HR 1.24, 95% CI 1.01–1.52), stroke (HR 1.55, 95% CI 1.03–2.33), and cardiovascular mor-

tality (HR 1.26, 95% CI 0.72–2.22)]. This was clear evidence of worsening CVD due to DR 

progression. There was another recent study that showed a reduction in LV function due 

to diabetes-related microvascular complications, which was evaluated using the global 

longitudinal strain (GLS) [29]. Asymptomatic patients with DM had reduced GLS and 

were independent of other cardiovascular risk factors. Microvascular problems were more 

prevalent in patients with non-obstructive coronary artery disease. Furthermore, the bur-

den of microvascular problems was linked to a higher load of coronary artery plaque bur-

den (CAPB). 

In another study, conducted on a cohort from China having type 2 diabetes mellitus 

(T2DM), it was shown that ASCVD was strongly associated with DR [27]. The authors 

showed that the association of DR with ASCVD was significantly higher compared to pa-

tients with non-ASCVD (ChiSquare: χ2 = 5.805, p-value = 0.016). The authors further 

demonstrated that DR was an independent statistical indicator in the presence of ASCVD 

having the odds ratio (OR) (95% CI): 2.321 (1.152–4.678), p-value = 0.018. 

Further, only PDR was linked with ASCVD [OR (95% CI): 8.333 (1.813–38.304), p-

value = 0.006]. The connection remained after adjusting for ASCVD risk variables [OR 

(95% CI): 7.466 (1.355–41.137), p = 0.021]. Future risk of CVD, MI, and CHF [30], was asso-

ciated to DR severity in 2020. DR enhanced the incidence of CVD, MI, and CHF mortality. 

In their study, there were 77,376 patients, including 59.8% men, 31.28% non-Hispanic 

Whites, and 41.48% Hispanics. Minimal NPDR increased the likelihood of CVA (1.31; 95% 

CI, 1.18–1.46), MI (1.30; 95% CI, 1.15–1.46), and death (1.29; 95 percent CI, 1.19–1.40). HR 
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1.15; 95% CI 1.05–1.25. Patients with symptomatic NPDR and proliferative diabetic reti-

nopathy showed increased mortality (HR, 1.55; 95% CI, 1.32–1.82); (HR, 1.92; 95 percent 

CI, 1.57–2.34); CHF: HR, 1.96; 95% CI, 1.47–2.59; and death: HR, 1.87; 95% CI, 1.36–2.56. 

3.6. Descriptive Analysis Validating the DR-CVD Hypothesis 

Mimoun et al. [123] showed the relationship between the retinal microvasculature 

challenges and (a) white matter lesions in the brain leading to stroke and (b) coronary 

calcification leading to heart failure. These retinal microvasculature challenges consisted 

of reduced (i) arteriolar diameter, (ii) venular dilatation, and (iii) retinopathy lesions. The 

authors showed ventricular dilation was due to the presence of diabetes, obesity, and met-

abolic disorders. The authors further presented that retinopathy is correlated with cere-

bral white matter lesions in the brain leading to stroke. This was evidenced by an MRI of 

the brain. On the heart side, the authors showed that these microvasculature challenges 

were related to coronary calcification leading to heart failure. From this study, we con-

clude that there is a direct relationship between retinal damage due to diabetes and coro-

nary artery calcification. Thus, since carotid artery disease is a surrogate marker of coro-

nary artery disease, we can adopt carotid artery disease biomarkers for CVD risk assess-

ment in diabetic retinopathy patients. 

Flammer et al. [124] in their study concluded that there are various common charac-

teristics observed between the eye and the heart. The authors showed that an increase in 

retinal vein occlusions or retinal arterial, cataracts, age-related macular degeneration, and 

an increase in intraocular pressure (IOP) trigger atherosclerosis and risk factors like 

dyslipidemia, diabetes, and systemic hypertension. This directly leads to cardiovascular 

diseases. Another study by Seidelman et al. [125] found a link between bigger retinal ven-

ules and narrower retinal arterioles and cardiovascular health. Pooled Cohort Equations 

(PCE) were used by the authors to look at the risk of CVD. This study took 10,470 men 

and women from the Atherosclerosis Risk in Communities (ARIC) study who had never 

had heart failure or heart disease before. People who took part in this study were tracked 

for 16 years. They had 1779 heart disease events, 548 ischemic strokes, 1395 heart failure 

events, and 2793 deaths. The authors proved that the hypothesis was correct by compar-

ing the hazard ratio (HR), 1.13; the 95 percent confidence interval (CI), 1.08–1.18; the HR, 

1.18; the CI, 1.07–1.31; the HR, 1.10; and the CI, 1.00–1.20 per 1-SD increase and narrower 

retinal arterioles and venules (HR, 1.06; 95 percent CI, 1.01–1.11; HR, 1.14; 95 percent CI, 

1.03–1.26; and HR, 1.13; 95 percent CI, 1.03–1.24 per 1-SD decrease). We think that eye 

diseases, like narrower retinal arterioles and wider retinal venules, raise the risk of is-

chemic stroke and coronary artery disease. 

It has been observed that CHF impairs retinal microvascular dilatation in response 

to flicker light. It was shown that retinal vessel analysis can be a new and valuable tool to 

non-invasively assess microvascular problems in heart failure. In their investigation, 

Freitas et al. [126] looked at the hemodynamics of the ocular artery in individuals with 

congestive heart failure. Comparing patients with chronic heart failure with Liew et al. 

[92] explain the connection of retinal vascular fractal dimension (Df) with coronary heart 

disease mortality offering a global network of vascular architecture. They looked at Df and 

14-year CHD mortality in a population-based study of 3303 people aged 49 or older. The 

development of the clinical cardiovascular disease may be a result of suboptimal micro-

vascular branching. Naegele et al. [127] the control group, this study found that the occur-

rence of orbital vasoconstriction in response to reduced cardiac output was observed in 

the former group. The investigators also discovered that a lower diastolic velocity and a 

greater resistance index in the ocular artery were associated with coronary heart disease. 

As a result, the authors concluded that further research into the impact of these discover-

ies on the anatomy and function of the optic nerve head is warranted. Liao et al. [128] 

concluded in their findings that generalized narrowing of the retinal arterioles independ-

ent of blood pressure and other vascular factors is related to greater stiffness of the carotid 
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arteries. This further supported the relation between macrovascular and microvascular 

disease in stroke pathogenesis. 

McClintic et al. [129] presented a literature survey to study the relationship between 

abnormalities of retinal microvascular and coronary heart disease. Since the traditional 

CVD risk, stratification had limitations; the authors used retinal vasculature as a screening 

mechanism for CVD risk stratification. The authors particularly proposed a change in the 

guideline for women who had a low risk for CVD, which is typically ineffective by tradi-

tional risk methods. Table 3 provides a summary of the above-listed findings. 

Table 3. Studies showing evidence for the DR-CVD hypothesis. 

SN Author Year 
Imaging De-

vice 
Comorbidity 

DR-

CVD 

Link 

Conclusion 

1. Liao et al. [128] 2004 
Retinal imag-

ing 

hypertension, 

dyslipidemia, and 

diabetes mellitus 

 

Macro and mi-

crovascular dis-

ease support 

stroke progno-

sis. 

2. 
Minmoun et al. 

[123] 
2009 

Laser Dop-

pler flowme-

try 

Retinal microvascu-

lar abnormalities 
 

retinopathy is 

correlated with  

white matter le-

sions in the 

brain and coro-

nary calcifica-

tion 

3. 
McClintic et al. 

[129] 
2010 

Retinal imag-

ing 
Type 2 diabetes  

Retinal vascula-

ture abnormali-

ties were related 

to coronary 

heart disease 

4. Liew et al. [130] 2010 
Retinal imag-

ing 
CHD  

Fractal analysis 

on microvascu-

lature predicted 

CHD mortality 

5. 
Freitas et al. 

[126] 
2011 

Color Dop-

pler imaging 
CHF  

Abnormalities in 

the optic nerve 

head in the eyes 

were related to 

CHF 

6. 
Flammer et al. 

[124] 
2012 

Color Dop-

pler imaging 

 

dyslipidemia, DM, 

or systemic hyper-

tension 

 

 

CVD was found 

to be associated 

with macular 

degeneration 

and impaired 

autoregulation 

in the eyes. 

7. 
Seidelmann et 

al. [125] 
2016 

Retinal ves-

sel imaging  

ASCVE or heart fail-

ure (HF) 
 

Reduction in ret-

inal arterioles  

and enlargement 
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of retinal ven-

ules showed 

stroke and CHD 

8. 
Naegele et al.  

[127] 
2017 

Dynamic 

Retinal Ves-

sel Analyzer 

Smoking, hyperten-

sion, dyslipidemia, 

and diabetes melli-

tus 

 

In patients with 

CHF, the re-

sponsiveness of 

the retinal mi-

crovascular dila-

tation to flicker-

ing light was re-

duced. 

4. Carotid Imaging for CVD Risk Assessment in DR Patients 

DR can act as an indicator not just for cardiovascular or coronary artery diseases, but 

also for cerebrovascular diseases. Figure 8 shows how the link between carotid ultrasound 

and coronary artery disease, both having the common thread of atherosclerosis. Figure 8a 

shows the visualization of the carotid and coronary scans using radiation-free ultrasound 

scans. Figure 8b shows the typical low-cost and portable ultrasound measurement device 

used for screening the carotid arteries. 

Thus, there are two reasons for studying the surrogate markers for CVD. First, it has 

already been proven that DR is associated with carotid artery disease. Second, DR is asso-

ciated with coronary artery disease which in turn is associated with a carotid atheroscle-

rotic disease that acts as a surrogate marker for coronary artery disease [131,132]. 

In support of the former case, several studies have been published that links DR to 

carotid artery disease [27,30]. Similarly, several important studies have been published 

that link carotid artery disease to coronary artery disease [131–133]. Thus, this section is 

focused on (a) the relationship between DR and carotid artery disease and (b) carotid ar-

tery as a surrogate marker for coronary artery disease. 

 

Figure 8. (a) The carotid artery is employed as a proxy for coronary artery disease. (b) Imaging 

gadget with a linear ultrasound probe scanning the carotid artery. (Courtesy of AtheroPoint, Rose-

ville, CA, USA; produced with permission). 

4.1. DR and Cerebrovascular/Carotid Artery Disease 
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A recent study investigated whether minute retinal microvascular changes indicate 

DR, and if this could cause arterial stiffening [28]. The authors hypothesized that retinal 

microvascular dysfunction may be seen in patients with carotid stiffness. Their findings 

indicated that stiffness was associated with a decreased ability of the retina to dilate in 

response to flickering light. Additionally, this link was shown to be greater in persons 

having type 2 diabetes. A further study by Lee et al. [134] explained the disruption of the 

common carotid artery (CCA) could lead to retinal ischemia. This is because of the oph-

thalmic artery (OpA), which is a retinal artery supplying blood from the internal carotid 

artery (ICA). The retinal blood supplying vessel is the OpA. 

Several studies by Drinkwater et al. showed that carotid artery disease is inde-

pendently associated with the retinal microvascular disease as assessed by OCTA in type 

2 diabetes [135–137]. In another study, by Lu et al. [138], a link between time in range (TIR) 

and macrovascular disease was suggested after seeing an increase in cIMT associated with 

TIR. Meanwhile, DR was seen to be an independent predictor of subclinical cardiovascu-

lar disease [38]. With the risk of carotid artery disease, it is also vital to look at coronary 

artery disease. Since both these diseases hold a link, this will cause the condition of DR to 

worsen. 

4.2. Carotid Artery Disease—A Surrogate of Coronary Artery Disease or Cardiovascular Disease 

There is a risk to the heart and brain due to vascular diseases [139,140]. Both carotid 

and coronary arteries have a common genetic makeup. This link is well established due 

to the similarity of the structure between the aortic arch, coronary artery, and carotid ar-

tery. Even though these arteries stem from a different major artery, they follow symmet-

rical courses (see Figure 9). Thus, carotid artery disease could be considered a surrogate 

biomarker for CAD [141,142]. 

 

Figure 9. The origination of the left and right carotid arteries (courtesy of AtheroPoint, Roseville, 

CA, USA; reproduced with permission). 

MRI [143–145], CTA [146], OCT [147], PET [148,149] are some of the common imaging 

modalities utilized for carotid artery imaging and angiography carotid screening. All 
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these modalities have the ability to image carotid plaque [3,149]. Ultrasound is the most 

popular, easy-to-use, high-resolution, economical, and user-friendly image acquisition 

modality able to identify plaque [150–152]. As a result, it has broad application for routine 

preventative screening of atherosclerotic plaque and risk assessment for cardiovascular 

disease [54,151–155]. It is possible to use automated systems to figure out the imaging 

phenotype [156–159]. They can be checked out even more with CT, MRI, or the gold stand-

ard [150,160]. Carotid ultrasound images from the far wall, as well as their structure [161], 

can show cIMT, the total area of plaque in the carotid artery, the carotid artery intima-

media thickness variability (IMTV), and the morphology and height of the plaque. They 

play a big role in the prediction of CVD [54,162]. 

Combining these carotid image-based phenotypes with traditional cardiovascular 

risk variables [55,150,152,163] has been shown to improve CVD risk prediction. According 

to several studies, cIMT and carotid plaque progress annually [164–169]. Blood bi-

omarkers and carotid ultrasonography have been used to predict 10-year risk and also 

improve plaque detection and atherosclerotic disease monitoring [170]. Various studies 

explain the link between carotid and coronary artery disease with help of AI it is possible 

to predict coronary artery disease by using carotid artery [171–174]. 

5. Artificial Intelligence and its Role in Cardiovascular Disease Risk Stratification 

Several of the existing and most recent guidelines by the American College of Cardi-

ology (ACC) and American Heart Association (AHA) recommend the use of some algo-

rithms to perform CVD risk assessment. The estimated risk using risk calculators is used 

to initiate statin therapy in patients to control their overall risk of CVD (Table 4). 

Table 4. CVD risk stratification thresholds for statin initiation. 

Guidelines Risk Score Cut-Off with Statin Initiation 

ACC/AHA 2013 [175] 
Risk Score for 

Pooled Cohorts 

7.5% cutoff for starting a moder-

ate to high-intensity statin 

NICE 2014 [176–178] QRISK2 risk engine 
Offers atorvastatin 20mg daily 

who have a score ≥10% 

Canadian 2012 [179] 
FRS cardiovascular 

disease risk score 

Offers atorvastatin 20mg daily a 

score of 10% 

U.S. Preventive Services Task 

Force [180] 

Risk Score for 

Pooled Cohorts 

Low-to-Moderate Statin Dose in 

Risk > 10% 

Several CVD risk calculators have been developed based on this concept, all within 

a statistical framework. 

The Framingham risk score [181], the systematic coronary risk evaluation score 

(SCORE) [182], QRISK3 [183], and the pooled cohort risk equation created by the Ameri-

can College of Cardiology and the American Heart Association [175] are the most fre-

quently used CVD risk calculators. 

Because they were developed based on specific ethnic cohorts, when applied to di-

verse ethnic populations, they can either underestimate or inflate the risk of cardiovascu-

lar disease. These calculators were built using regression-based techniques that can han-

dle a limited set of risk predictors. 

 Because these CVD risk calculators were developed through the use of regression-

based approaches, they assume that there is a linear relationship between the risk 

predictors and the endpoints. Because of this constraint, a complicated non-linear 

association between the risk predictors and the endpoints is not taken into consider-

ation. 

 The final and most significant difficulty is that such conventional risk factors are ex-

clusively reliant on traditional risk variables, which do not provide any information 
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on atherosclerotic plaque burden in the first place. It is possible to overcome this dif-

ficulty by utilizing low-cost imaging methods. 

Due to these issues, a more reliable and precise CVD risk prediction model is re-

quired. Traditional risk calculators can be improved by including image-based pheno-

types in CVD risk prediction models. Suri et al. [153,184–187] have attempted this by com-

bining automated carotid ultrasonography image-based phenotypes with traditional risk 

variables to produce integrated CVD risk. Ten-year CVD risk was calculated utilizing ca-

rotid ultrasound image-based phenotypes and traditional risk variables (Figure 10). The 

pie figure shows the independent contribution of conventional risk variables and carotid 

imaging phenotypes to 10-year CVD risk. To improve overall accuracy and address other 

issues, improved risk prediction algorithms are required. 

AI-based algorithms have proved themselves to be superior to the existing CVD risk 

calculators [188–190]. This is the reason for the growing interest of clinicians in exploring 

the potential of AI in dealing with several healthcare problems, including the CVD risk 

assessment. AI is primarily categorized into two types of algorithms: machine learning 

and deep learning algorithms. Both of these algorithms require large datasets under a big 

data framework to build their internal models and provide accurate risk assessment [191]. 

Machine learning algorithms require a series of pre-processing steps that involve data 

cleaning, noise reduction [192,193], feature extraction, and feature selection. Several good 

examples can be seen for different disease characterization such as diabetes [194], lung 

[195], thyroid [196,197], liver [198,199], breast [200], and coronary [195]. Figure 11 shows 

the general framework of any ML-based algorithm. 
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Figure 10. Risk predictors make up a big part of a person’s 10-year CVD risk profile when they’re 

looked at for the left common carotid artery (a,b), right common carotid artery (c,d), and the average 

of left and right common carotid artery (AtheroEdge 2.0) (e). This figure was made with permission 

[201] by AtheroPoint, USA. (Courtesy of AtheroPoint, Roseville, CA, USA; reproduced with per-

mission). 
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Figure 11. The generalized architecture of the ML-based system. 

The generalized architecture is commonly divided into two parts that are comprised 

of an offline model and an online model. The offline model deals with the training of an 

ML-based algorithm using the risk factors and endpoints and generates the offline coeffi-

cients. This will then be used under the online model to transform the unseen risk predic-

tors into final CVD risk labels. Both of these offline and online models require handcrafted 

features for the training and prediction of labels. In CVD risk assessment, such features 

can be derived from the patients’ demographic and clinical parameters, including labora-

tory-based blood tests, electronic health records, and imaging modalities. Compared to 

the existing CVD risk assessment, calculators such as Framingham risk score (FRS), 

Pooled cohort risk equation (PCRE), and QRISK3 calculators that can handle only a lim-

ited set of risk factors, ML-based algorithms can deal with a much larger number of risk 

predictors at the same time. Figure 11 shows the generalized architecture of the ML-based 

system. 

ML-based algorithms make the final prediction based on several linear and non-lin-

ear patterns available within the input risk predictors. This is a key specialty of AI-driven 

algorithms, which makes them distinct from several conventional CVD risk calculators. 

Commonly used and popular ML-based algorithms are the support vector machine, ran-

dom forest, decision tree, and extreme gradient boosting [202]. 

Nearly all ML-based algorithms can efficiently distinguish between the low-risk 

CVD patients and the high-CVD-risk patients [203]. In terms of multiclass endpoints, the 

ML-based algorithms have provided better risk stratification compared to the conven-

tional CVD risk calculators [185]. Besides this, the ML-based algorithms also efficiently 

differentiate symptomatic and asymptomatic carotid atherosclerotic plaques [204,205]. 

Recently attempts were made to combine the traditional CVD risk calculators with the 

carotid atherosclerotic plaque-based phenotypes [206]. This combination is referred to as 

integrated risk predictors. Such integrated risk predictors have shown high CVD risk pre-

diction ability under the ML framework compared to using the traditional risk factors 

alone [154]. When compared against the 13 existing CVD risk calculators, such integrated 

feature-based ML systems reported superior performance [207]. This can be seen in Figure 

12, which shows the comparison between the ML algorithms and statistical calculators. 
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It was found that AI-based algorithms had a better overall risk-strategy accuracy of 

92.52 percent than the 13 types of CCVRC. This was more than any of the 13 types. Other 

people have shown that machine learning can be used to make better risk predictions. 

They used carotid ultrasound plaque attributes to enhance the risk prediction precision 

[202,208]. One more ML-based study, by Kakadiaris et al. [190] and Weng et al. [188], also 

found that ML-based algorithms were better than conventional CVD risk calculators 

based on statistics. 

 

Figure 12. Comparing the ML-based CVD risk assessment using AtheroEdge™ 3.0ML with (A) 13 

types of CCVRC and (B) the standard-of-care ASCVD calculator (produced with permission [207]). 

Machine learning has proved to be a boon not only in CVD risk stratification, but also 

in several other areas, including benign and malignant tumor identification [209], charac-

terization of intra-nodular vascularization of thyroid lesions [210], psoriasis identification 

[211], and so on. 

In addition to ML, DL-based algorithms are also powerful in making an accurate and 

reliable diagnosis. DL techniques are the extension of a classical artificial neural network 

and can efficiently be used for medical image analysis, including feature extraction and 

classification [212]. Unlike ML-based algorithms, DL algorithms extract features by them-

selves and perform classification or prediction tasks [213]. In medical imaging, a popular 

algorithm called the convolutional neural network (CNN) has been getting a lot of atten-

tion. This algorithm is based on Deep Learning. CNN can find more high-level features 

than artisanal ones, and it can use them to make medical diagnoses [45,214]. In Figure 13, 

the input image is convolved using a set of kernels (also called filters) that extract multiple 

high-level patterns from the image. 

A pooling operation selects the meaningful and dominant features. During CNN 

training, the backpropagation algorithm learns the overall coefficients of all kernels. Leka-

dir et al. [215] recently employed CNN to classify carotid ultrasound pictures into lipid, 

fibrous, and calcified plaque. CNNs have also been used to assess carotid phenotypes such 

as intima-media thickness and lumen diameter [216–218]. 
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Figure 13. A general architecture of CNN used in medical image analysis application (courtesy of 

AtheroPoint, Roseville, CA, USA). 

Recently, Rim et al. [47] used the DL-based algorithm to predict the CAC score from 

retinal images. The authors proved that the CAC score measured using retinal images was 

comparable to the CT-derived CAC scores. Cheung et al. [48] used the DL-based algo-

rithm to assess the CVD risk via the measurement of retinal vessel caliber. Besides this, 

DL-based algorithms have been widely adopted for the screening of DR patients 

[51,52,219]. Thus, it is very evident that both AI-based algorithms could be used for accu-

rate CVD risk assessment as well as for automatic DR detection. Furthermore, along with 

traditional risk factors, the integration of carotid ultrasound plaque phenotypes could be 

used for preventive screening of patients in atherosclerosis and risk estimation. 

6. DR/CVD in the COVID-19 Framework 

COVID-19 has caused massive global death [219]. It has caused over 5.7 million fa-

talities globally [220]. The coronavirus disease that originated in 2019 is named COVID-

19. It is triggered by SARS-CoV-2 [221] and damages numerous routes [222]. Diabetes type 

1 and 2 patients had an increased incidence of COVID-19 [223,224]. Individuals with ex-

isting CVD are also at risk of COVID-19-related problems [225–229]. Several investiga-

tions have linked (SARS-CoV-2) and ocular symptoms [227,230,231]. COVID-19 symp-

toms range from mild to severe; one of these symptoms includes anosmia (loss of smell). 

Various studies suggest that anosmia is due to the effect of the virus on the olfactory bulbs 

[230]. It has been very well established that olfactory impairment is associated with dia-

betes and related microvascular complications [231]. In COVID-19, patients with DR have 

an elevated risk of unfavorable conditions [232]. Costa et al. [233] recently examined indi-

viduals who had recovered from the COVID-19 acute phase, 15.6% of whom had DR. 

With the ongoing pandemic, it is critical to evaluate these patients’ situations. Several 

studies have reported the difficulties that several countries face in doing DR screening 

amid the pandemic [234,235]. Telemedicine was reported to be a useful solution for DR 

[236]. Telemedicine platforms specific to ophthalmology practice have also been devel-

oped [158,237,238]. It is, therefore, vital to opt for a low-cost, preventive screening tool to 

provide effective treatment strategies and risk stratification for these patients as soon as 

possible. These patients are risking life and limb in the ongoing pandemic [201,224]. 
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6.1. Adverse Effects of COVID-19 on DR Patients 

This section shows how DR was affected during the COVID-19 period. The im-

portance of DR during pandemic times has risen several folds. DR management has been 

suspended because of SARS-CoV-2, which has hampered access to diabetes-related med-

ical consultations and retinal tests [237]. Many DR screening services and referral initia-

tives have been negatively impacted by the COVID-19 pandemic [238]. 

In the COVID-19 period, diabetes was related to a greater probability of unfavorable 

DR outcomes due to the worsening of preexisting pulmonary microcirculatory abnormal-

ities [239]. 

Ahmed et al. [240] noted that the COVID-19 pandemic has altered real-world practice 

patterns in DR management. Due to a change in these patterns, intravitreal injections for 

the treatment and management of DR were reduced significantly. Similar findings were 

seen in a study conducted by Chatziralli et al. [241], which concluded that there was a 

significant postponement in patient care that further led to worsening of visual acuity 

outcomes in patients with DR. Thus, these studies clearly show the health hazard for DR 

patients during COVID-19 period. Das et al. [242] found a rise in patients with prolifera-

tive DR (56%) and sight-threatening DR (79%) as well as vitreoretinal operations (31%), 

and intravitreal injections (19%). During the lockdown, the number of blind patients grew. 

This highlights the need for proper DR treatment during COVID-19. Dwairi et al. [243] 

found that delaying or interrupting a key operation for DR patients could harm their vis-

ual prognosis. The authors also advised residential monitoring, “treat and extend” strat-

egy, portable OCT testing, and more long-acting anti-VEGF (vascular endothelial growth 

factor) medicines. 

COVID-19 individuals had an intraocular infection, according to Nayak et al. [244]. 

This infection was mostly fungal; the authors concluded that routine eye exams were re-

quired during COVID-19. Due to the relevance of DR during pandemics, mobile applica-

tions were developed. Khurana et al. [245] compared the use of a mobile application called 

Checkup Vision Assessment System to routine VA reference tests in the clinic. The authors 

demonstrated the need for such a smartphone device, especially during the global pan-

demic. Saxena et al. [246] highlighted the presence of vitamin D supplementation by eval-

uating serum vitamin D levels during the COVID-19 period. When Vitamin D levels are 

below 10 ng/mL, the study found a relationship between diabetes and COVID-19. Several 

research has come out with new treatments to overcome resource and geographic con-

straints. Walsh et al. [247] stated that investment in national strategic alliances and tech-

nology can assist in promoting health and ophthalmic care. Teleophthalmology will thus 

be vital in the development of eye care. SFI is a technique developed by Kumari et al. [248] 

that allows patients to take photos of their retinas, addressing the barriers to availability 

and affordability in an era of the pandemic. 

Thus, we conclude that DR and COVID-19 run side by side and cannot be ignored. 

Therefore, we need the CVD estimation of patients who are DR affected during COVID-

19. Further, it should be noted that efforts toward treatment and manifestations on DR 

patients were very active during the COVID-19 period. This demonstrates the importance 

of DR during the COVID-19 pandemic, which is still active. Our group has been very 

closely monitoring the comorbidities during the long COVID-19 period [249]. This further 

asserts our assumption that DR cannot be ignored, and we must study the relationship 

between DR-CVD during the COVID-19 period. In the next section, we present the link 

between DR and CVD during COVID-19 times. From the above discussions, we finally 

conclude that during the COVID-19 period, diabetes and DR were both severely affected. 

This has a direct bearing on the heart and CVD. 
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6.2. Relationship of DR and CVD during the COVID-19 Period 

Diabetes has a strong relationship with COVID-19. Very recently, our group pub-

lished an international journal showing the relationship between Diabetes and COVID-

19, which inspired us to work on Diabetes-DR-CVD and COVID-19 [9]. This is the first 

journal paper that links the “bidirectional nature of diabetes” with COVID-19, called the 

process of “diabetes ketoacidosis (DKA)”. We show here how COVID-19 increases the 

HbA1c and how the viral entry of COVID-19 increases in the presence of diabetes [250]. 

This can be seen in Figure 14 below, showing DKA. 

 

Figure 14. The diabetes–coronavirus disease relationship with Heart and Brain. 

Patients with COVID-19 who had no previous history of diabetes developed signifi-

cant consequences such as DKA. DKA arises due to the overproduction of opposing reg-

ulators, which favors ketones [251]. Low insulin levels also cause it. DKA is more common 

in type 1 DM patients [40]. It can also happen in people with type 2 diabetes [252]. The 
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three paths of new-onset DM or progression of pre-existing DM after COVID-19 infection 

are shown in Figure 14 (pathways IV, V, and VI). As shown in Figure 14, the diabetes–

CVD link leads to CVD and stroke [173]. This is the most important figure in the DR-CVD 

investigation. This shows the importance of CVD work during COVID-19 times and the 

link between uncontrolled diabetes, CVD, and COVID-19. COVID-19 and CVD have an-

other significant component [41]. Thus, it is very important to link COVID-19 with DR 

and CVD. COVID-19 has serious impacts, especially on patients with underlying condi-

tions like CVD, diabetes mellitus, and hypertension. In individuals with the underlying 

disease, cardiac events worsen [253]. Many hospitalized patients reported heart damage 

in the range of 12–26%. The infection’s cytokines may alter the patients’ intramural coro-

nary arteries. Cardiovascular disorders affect ARDS in COVID-19 afflicted patients [254]. 

SARS-CoV-2 can cause complex severe ruptured plaque [255]. The enhanced insta-

bility of coronary and carotid plaques may also enhance the risk of cerebral ischemic 

strokes and myocardial infarctions in SARS-CoV-2 positive asymptomatic individuals 

[9,256]. The above discussion is a clear pathway between COVID-19 and CVD. Further 

note that the process of DR accelerates the worsening of CVD in the COVID-19 frame-

work. 

6.3. The Overall Architecture of the DR-CVD System in the COVID-19 Framework 

COVID-19 screening has two important components: primary and secondary. Figure 

15 depicts the workflow for COVID-19 diagnosis and screening, as well as the use of AI 

in CVD screening. Screening: in the COVID-19 framework, a robot and AI screen the pa-

tient. The robot asks questions about basic symptoms and then determines whether or not 

screening tests like RT-PCR are necessary (shown as T1, diamond box). Cross-questioning 

begins when the patient enters the clinic or hospital. The AI-based machine intelligence 

system and telemedicine (TM) are used to perform the initial analysis (shown in the yel-

low ellipse, where the nurse and robot signs are depicted). The patient should be isolated 

depending on the outcomes of the T1 junction RT-PCR test (diamond box). The test can 

confirm if the patient has COVID-19 (Q1, marked yellow). The test is negative if the pa-

tient has no COVID-19 (marked green, U1). If positive, the patient can undergo Diabetic 

Retinopathy Imaging (D1), and based on the results obtained, it is vital to go for a CVD 

risk assessment. 

The outcome of the risk assessment box (SA): During monitoring, an AI-based system 

assesses the patient’s risk (shown using M1). During monitoring, the doctor talks to the 

patient about his lung and atherosclerotic arterial health. The AI uses X-ray/CT imaging 

to assess lung status. Carotid ultrasonography evaluates atherosclerotic arterial status for 

CVD risk. (I) deteriorating lung condition and the need for ICU; (II) worsening CVD con-

dition and requirement for CVD medications; (III) untouched. 
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Figure 15. COVID-19 risk assessment for DR and CVD. 

The risk evaluation box has three outcomes (SA). (I) Ground Glass Opacities (GGO) 

in the patient (from the output of the monitor). When there are no atherosclerotic lesions 

in the carotid arteries, the person is considered severely symptomatic and is assessed in 

the ICU with ventilation. The lungs are slowly filling up with fluid, therefore this is a must 

(see Figure 15). In the ICU, the patient is constantly observed (shown by monitoring func-

tion M2). To treat CVD (II) if the patient’s lungs are stable (extremely low GGO) and the 

carotid arteries are plaque-burdened (C). In outcome (III), the individual has neither lung 

nor arterial damage, making him uninfected (U2). Since the individual was quarantined 

(Q1) and the risk assessment (A) was done using AI-based imaging, the doctor must assess 

the patient based on clinical judgment (C) (marked as J). Finally, after the individual is 

uninfected (U2), the extensive COVID process begins (secondary screening, marked SS). 

If positive, the quarantine feedback loop starts again (Q1). They are COVID-19-free if neg-

ative (U3, marked green). 

6.4. Role of AI in CVD Risk Assessment for COVID-19 Screening 

Using a machine learning technique, imaging data can be used to predict CVD risk 

at the vascular scale [208,257–259]. The goal is to obtain OCT scans to see if the person has 

Diabetic Retinopathy (DR). Further, if positive, the patient is at risk for CVD and should 

be monitored for lung and arterial function. Plaque image-based characteristics can be 

obtained from patient carotid scans and risk estimated using machine learning. The AI 

component simply requires the green trained model labeled Imaging-based AI with a ro-

bot AI logo on it. The machine learning algorithm tells the patient’s clinician (M1) if the 

relative risk is low, medium, or high. The patient’s CVD risk is assessed using this color-

coded system (marked as SA). This can include evaluating the CT lungs for ground-glass 

opacity [260] or pulmonary embolism [261]. Thus, the proposal depicts AI-based CVD 

monitoring for pandemic diagnosis. 
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7. Critical Discussion 

This review provides insight into the link between DR and CVD. The impact of DR 

on vision is well understood. Further, after a thorough analysis of various studies, it is 

evident that DR patients are at increased risk for CVD conditions. Therefore, along with 

DR screening, it is optimal to adopt a low-cost system to prevent the worsening of the 

CVD conditions of a patient. With the help of AtheroEdge™ 2.0 and 3.0, effective moni-

toring can be done for these patients and long-term complications can be prevented with 

the help of AI-based interventions in the model. Deep learning and Machine learning 

helps in calculating CVD risk with greater sensitivity and specificity. The model can be 

trained in such a way that it does not need any human intervention and results can be 

measured quickly. This proves to be a breakthrough in the current healthcare systems. 

With the help of this information, clinicians can counsel patients with vision-threatening 

DR and further guide them about associated CVD risk. 

7.1. Benchmarking 

After a perusal of various studies, several articles discussed the link between DR and 

CVD (Table 5). However, there was no such article found which was addressing all the 

components in our review. Alonso et al. [37] showed that DR in T2D patients with normal 

renal function and without CVD risk was associated with a higher plaque burden (≥2 ca-

rotid plaques) in carotid arteries. The authors conducted a cross-sectional study on 312 

patients (51% men), with 153 patients with DR. The authors demonstrated the percentage 

of carotid plaques in DR was higher than without DR (68% vs. 52%, p = 0.0045). The au-

thors used multivariate logistic regression that DR was independently associated with 

cIMT (p = 0.0176). In another study, Simó et al. [38] made an interesting remark relating to 

DR and CVD suggesting that, while staging diabetes, DR and CVD should never be con-

sidered as separate entities. The authors further suggested DR to be equivalent to hyper-

tension and dyslipidemia in terms of deteriorating CVD. The authors suggested that if 

diabetes is not considered when evaluating CVD, the results could be biased. Finally, they 

concluded that all DR patients must undergo CVD screening for better risk stratification. 

Ting et al. [26] discussed in their chapter that retinal venules which are wider and have 

narrower arterioles were associated with an increased risk of CVD. The authors discussed 

the role of narrower retinal arteriolar caliber were significantly associated with low eGFR 

in CKD patients. 

The authors used deep learning on fundus images and correlated them with 5-year 

CVD risk. Further, Gupta et al. [39] presented in their review the role of examining and 

working on the heart and predicting the macrovascular changes based on microvascular 

features and functions derived from retinal imaging. The authors showed a link between 

retinal imaging and the diagnosis of CVD. Since the usage of retinal scanning helps in the 

diagnosis of DR, age-related macular degeneration, and glaucoma, the authors linked this 

with heart conditions. Son et al. [22] showed the relationship between DR and subclinical 

atherosclerosis by using 142 subjects with T2D who are free from CVD. 

The methodology consisted of (a) cIMT measurement using carotid ultrasound and 

(b) CVD risk using UK Prospective Diabetic Study (UKPDS) calculator. The authors ob-

served that patients with subclinical atherosclerosis had a higher rate of hypertension and 

DR. Further, CVD risk was higher in subjects with subclinical atherosclerosis. The study 

concluded that DR is an independent risk biomarker for subclinical atherosclerosis in T2D. 

Hence, to our understanding, no other article has provided such valuable insights about 

different approaches towards the diseases that are necessary to study DR and CVD as well 

as provide necessary interventions in their treatment strategies. 

Our previous study, Integration of cardiovascular risk assessment with COVID-19 

using artificial intelligence [262], the so-called “RCM study”, also used a surrogate marker 

for CVD risk assessment; however, the differences between RCM study and the current 

study, the so-called DR study, should be noted. While the block of surrogate biomarkers 
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remains the same in both scenarios, the fundamental difference is the key applications 

covered in the RCM study vs. the current study, i.e., the COVID-19 cohort vs. the Diabetic 

Retinopathy cohort. The patient selection criteria are based on the COVID-19 symptoms 

vs. diabetes symptoms. The second fundamental difference lies in the biological drive for 

the diseases, about acute respiratory distress syndrome (ARDS) and cytokine storm in the 

COVID-19 paradigm vs. atherosclerosis formation in the arterial vessels, leading to dam-

age of coronary arteries. Another secondary difference between the two approaches is the 

usage of the imaging modality for image data acquisition, such as MRI/CT in RCM study 

vs. intravascular ultrasound (IVUS) for coronary artery imaging in DR study. While the 

imaging is conducted differently, the measurement criteria also subsequently change by 

computing 3D straining imaging for the left ventricle (LV) chamber in RCM study vs. 

quantification of the plaque burden in either IVUS study or carotid arterial plaque meas-

urements or plaque burden in carotid arteries. Please note that the surrogate biomarkers 

for both studies utilize the B-model carotid ultrasound for plaque burden measurements, 

which are surrogate biomarkers for CVD/Stroke imaging. Finally, since the application is 

different, the workflow changes entirely between the two applications. In the RCM study, 

we followed CVD/Stroke risk assessment during COVID-19 times using CT imaging for 

monitoring the lung followed by carotid scanning for plaque build-up measurements, the 

surrogate marker for CVD/Stroke risk, while in the DR study, the workflow consisted of 

the following steps: (i) DR imaging, (ii) Lung CT imaging, and carotid arterial imaging. 

Thus, the COVID-19 severity report and CVD risk assessment reports were generated, 

followed by the manifestations. 

Table 5. Comparing the proposed review against previous reviews on joint DR and CVD. 

Citations Year DR a CVD b RI c CI d AI e RS f COV-19 g 

Son et al. [22] 2010        

Alonso et al. [37] 2015        

Ting et al. [26] 2019        

Simó et al. [38] 2019        

Gupta et al. [39] 2021        

Proposed Review 2022        

DR a: Diabetic Retinopathy: CVD b: Cardiovascular Diseases, RI c: Retinal Imaging, CI d: Carotid 

Imaging AI e: Artificial Intelligence, RS f: Risk Stratification, COV-19 g: COVID-19. 

7.2. Recommendations 

It is clear from our review that DR patients must opt for CVD risk assessment tech-

niques, especially the patients suffering from high risk, vision-threatening DR. Carotid 

imaging could be a boon for patients undergoing retinal imaging that have DR. Ultra-

sound-based imaging modalities are the most convenient modalities for carotid imaging. 

For retinal imaging, optical coherence tomography and angiography proved to be revo-

lutionary in ophthalmology [263]. However, the use of fundus imaging is widely fol-

lowed, with further possibilities explored using smartphone-based retinal imaging mo-

dalities. Further, for risk assessment, artificial intelligence-based algorithms are the most 

highly recommended. It is, therefore, recommended that all these factors be followed to 

identify and treat the disease at its earliest. 

7.3. A Special Note on DR and Monitoring of CVD Risk 

With our current understanding of DR and the existing interventions associated with 

it, we believe that the link between DR and CVD is not well established in the general 

population. This is the reason for the worsening statistics of both diseases. It is thus im-

portant to educate DR patients about their risk of CVD and provide the necessary moni-
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toring options. It is necessary to provide this pipeline as an intervention in healthcare sys-

tems. With the help of robust imaging and monitoring techniques, several lives can be 

saved, and disease can be treated. 

7.4. The Effects of COVID-19 on DR Patients 

This section shows how DR got affected during the COVID-19 period. The im-

portance of DR during pandemic times has risen several folds. SARS-CoV-2 was seen as 

an important barrier to DR management and this has led to the suspension of primary 

healthcare services such as limited access to diabetes-related medical consultations and 

retinal screenings [237]. Advocacy with the government is seen to be critical to facilitating 

continuous sustainable services as many DR screening services and referral initiatives 

have been adversely impacted by the COVID-19 pandemic [238]. Please note that, in the 

presence of diabetes, due to the aggravation of underlying pulmonary microcirculatory 

impairments, it has been observed that the underlying microvascular disease is associated 

with a higher risk of adverse DR outcomes in the COVID-19 period [239]. 

7.5. Strengths, Weaknesses, and Future Extensions 

By introducing this link, we provide additional support to existing healthcare sys-

tems. It is rightly said that prevention is better than cure. With the knowledge about the 

link between DR and CVD as well as the low-cost screening using AI-based algorithms, 

not only can patients be treated, but disease can also be prevented from happening. One 

limitation that we feel is that there are no pipelines developed for treating DR patients for 

CVD and it is important to put more light on this aspect. With the ongoing pandemic, it 

is important to discuss how both the targeted diseases may be affected in the presence of 

the SARS-CoV-2 virus. In the future, we would like to discuss the role of big data in re-

ducing the bias of cohort [264]. Further, we would focus on the role of different types of 

DL and ML-based classifiers like the ensemble machine learning (EML)-based algorithm 

and auto-encoders for automated DR detection [265,266] and carotid wall segmentation 

[221,262,263] and quantification [267–275]. 

8. Conclusions 

This narrative review presented the role of diabetic retinopathy and its association 

with cardiovascular risks in diabetes patients. We also showed the complications of dia-

betes that lead to coronary heart disease. This review emphasized the hypothesis that DR 

can lead to the worsening of CVD. Thus, it is of utmost importance to identify CVD com-

plications in DR patients. We also demonstrated that carotid imaging can be used as a 

low-cost, non-invasive alternative to the existing imaging modalities for CVD screening 

in DR patients. This low-cost B-mode ultrasound will also be beneficial for plaque tissue 

characterization in DR patients to provide an additional and vital understanding of the 

CVD risk. Further, we observed that AI-based solutions are powerful for risk stratification 

of CVD in DR patients. Lastly, we glance at the role of DR and CVD in the COVID-19 

framework and observe how AI plays a role in this system. 
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Abbreviations 

ACC American College of Cardiology 

AECRS AtheroEdge Composite Risk Score 

AGE Advance Glycation End Products 

AHA American Heart Association 

AHEAD Action for Health in Diabetes 

AI Artificial Intelligence 

ASCVD Atherosclerotic Cardiovascular Disease 

CAD Coronary Artery Disease 

CAPB Coronary Artery Plaque Burden 

CCA Common Carotid Artery 

CHF Congestive Heart Failure 

CI Confidence Interval 

cIMT Carotid Intima-Media Thickness 

CT Computerized Tomography 

CVA Cerebrovascular Accident 

CVD Cardiovascular disease 

CVE Cardiovascular Events 

CCVRC Conventional Cardiovascular Risk Calculator 

DL Deep Learning 

DM Diabetes Mellitus 

DME Diabetic Macular Edema 

DR Diabetic Retinopathy 

EML Ensemble Machine Learning 

FA Fluorescein Angiography 

FRS Framingham Risk Score 

GLS Global Longitudinal Strain 

HR Hazard Ratio 

ICA Internal carotid artery 

ICGA Indocyanine Green Angiography 

IMTV Intima-Media Thickness Variability 

IVUS Intravascular Ultrasound 

MA Macular Edema 

MI Myocardial Infarction 

ML Machine Learning 

MRI Magnetic Resonance Imaging 

MVD Microvascular Disease 

NICE National Institute for Health and Care Excellence 

NPDR Non-Proliferative Diabetic Retinopathy 

OCT Optical Coherence Tomography 

OpA Ophthalmic artery 

OR Odds Ratio 

PCRE Pooled cohort risk equation 

PDR Proliferative Diabetic Retinopathy 
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PET Positron Emission Tomography 

PKC Protein Kinase C 

PVD Peripheral Vascular Disease 

RRS Reynold Risk Score 

T2DM Type 2 Diabetes Mellitus 

TIR  Time in Range 

UKPDS UK Prospective Diabetes Score 

US Ultrasound 

UTC Ultrasound-based Tissue characterization 

COVID-19 Coronavirus-2019 

WHO World Health Organization 
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