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Abstract: The liver is an essential organ that manufactures energy through various metabolic path-
ways; thus, exploring the intermediate metabolites in nonalcoholic fatty liver disease (NAFLD)
may help discover novel parameters in hepatic steatosis or fibrosis. The present study aimed to
investigate the traits of urine organic acid metabolites in participants with hepatic steatosis and
fibrosis in nonalcoholic Korean adults. Hepatic steatosis and fibrosis, in 68 men and 65 women, were
evaluated using quantification by proton density fat fraction with magnetic resonance (MR) imaging
and MR elastography, respectively. Urine metabolites were obtained using a high-performance
liquid chromatography–mass spectrometry analysis. The candidate metabolites were included in
the logistic regression models for hepatic steatosis and fibrosis. The association between high p-
hydroxyphenyllactate levels and hepatic steatosis was not independent of body mass index and
Homeostatic Model Assessment-insulin resistance. High ethylmalonate, β-hydroxybutyrate, and
sulfate levels were significantly related to a low probability of hepatic fibrosis, independent of covari-
ates. In conclusion, urine metabolites were not related to hepatic steatosis independent of obesity
and insulin resistance, while several metabolites were specifically associated with hepatic fibrosis.
Further study is required to verify the diagnostic value of the metabolites in a population with
wide-spectrum NAFLD.

Keywords: hepatic steatosis; hepatic fibrosis; nonalcoholic fatty liver disease; urine organic acid; metabolomics

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver
disease worldwide [1] and is generally defined as hepatic fat accumulation without sec-
ondary causes [2]. NAFLD may progress to fibrosis, cirrhosis, and hepatocellular car-
cinoma [3–6]. Liver biopsy is the most reliable approach to identifying NAFLD [2,7];
however, non-invasive modalities are widely used [8]. Magnetic resonance imaging (MRI)
distinguishes degrees of steatosis and fibrosis with good accuracy and sensitivity [9,10]. In
particular, MR elastography (MRE) is regarded as the most important imaging technique
for hepatic fibrosis [11].

Abnormal serum concentrations of transaminases, such as aspartate aminotransferase
(AST) and alanine aminotransferase (ALT), indicate liver injury [12]. These tests are clin-
ically utilized and well-validated; however, their values do not surrogate the status of
NAFLD [13,14]. Hence, several equations, such as FIB-4 and the AST to platelet ratio
index (APRI), and a series of biomarkers called the enhanced liver fibrosis (ELF) panel, are
suggested to assess fibrosis in NAFLD [2,15,16]. Considering the liver as an essential organ
that manufactures energy through various metabolic pathways [17], a liver abnormality
may change the intermediate pathway products. The imbalance of liver energy metabolism,
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adipocyte dysfunction, and genetic causes are also related to NAFLD [18]. Several stud-
ies have investigated the metabolomic markers that are derived from the metabolism in
NAFLD [19–23].

Urine organic acid tests have been used in the field of inborn errors of metabolic
disorders [24]. The commercial kits for urine organic acid tests enable the detection of
various molecules that are derived from endogenous and xenobiotic metabolism [25].
The characteristic investigation of intermediate metabolites may help to understand the
common abnormalities in metabolism in hepatic steatosis or fibrosis. The present study
aimed to investigate the traits of urine organic acid metabolites in participants with hepatic
steatosis and fibrosis in nonalcoholic Korean adults. Additionally, it also evaluated whether
the detected metabolites are independent of conventional indices associated with NAFLD.

2. Subjects and Methods
2.1. The Study Participants

This cross-sectional study was conducted based on the data from Chaum Life Center
health checkups between November 2016 and January 2019. Initially, 145 participants
underwent both urine organic acid metabolite analyses and liver MRI with elastography.
Those with acute disease, thyroid disease, abnormal kidney function (estimated glomerular
filtration rate of <60 mL/min/1.73 m2), and a history of stroke, angina, myocardial infarc-
tion, or any cancer were excluded. Participants with significant alcohol consumption (>21
and >14 standard drinks per week in men and women, respectively) [2], seropositivity in
viral hepatitis (HBs Ag or HCV Ab), and long-term use of glucocorticoid were also excluded
to rule out other causes of liver diseases. Finally, 68 men and 65 women were enrolled
in this study. The study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Institutional Review Board of CHA Bundang Medical Center
(2018-07-026).

2.2. Measurements and Personal Medical History

Self-report questionnaires were used to collect information about participants’ medical
history and lifestyle. Height and weight were measured in the standard position [26]. Blood
pressure was measured using an automatic sphygmomanometer after resting for 10 min in
a sitting position.

Blood samples were collected in the morning after the patient had fasted overnight
for at least 8 h and drawn from the antecubital area. Serum samples were stored at 4 ◦C
and analyzed within a day of sampling. Glucose, aminotransferases, creatinine, and lipid
profiles were tested using an automatic analyzer (Hitachi 7600; Hitachi, Tokyo, Japan).
Fasting plasma insulin concentrations were determined using an electrochemiluminescence
immunoassay (Elecsys insulin, Roche, Mannheim, Germany). Insulin resistance (IR) was
approximated using the Homeostatic Model Assessment (HOMA) calculator v2.2.3 (Oxford
Center for Diabetes, Endocrinology and Metabolism, Oxford, UK; available at http://
www.dtu.ox.ac.uk (accessed on 23 April 2022)). The FIB-4 index was calculated using the
following formula, age [yr] × AST [U/L])/((PLT [109/L]) × (ALT [U/L])1/2) [27].

2.3. Measurements of Urine Organic Acid Metabolites

Urine organic acid metabolites were measured using previously described methods
and analyzed at Eone Laboratory, Inc. (Incheon, Korea) [26].

The concentration of each metabolite was normalized with urine creatinine level to
minimize variability because of differences in urine concentration. The analyte levels were
expressed using the unit of millimole per mole of creatinine.

2.4. Measurements of Hepatic Steatosis and Fibrosis

MRI was performed with a 1.5-T system (Signa HDxt, GE HealthcareMR, Milwaukee,
WI, USA). Quantitatively encoded MRI was performed obtaining the proton density fat
fraction (PDFF) maps of the liver. An MRI PDFF threshold of 6.4% diagnoses significant

http://www.dtu.ox.ac.uk
http://www.dtu.ox.ac.uk


Diagnostics 2022, 12, 1199 3 of 10

hepatic steatosis [28]. A pneumatic driver, which is a drum-like device that is designed to
apply acoustic vibrations, was placed in the abdominal wall in a supine position and used
to generate propagating mechanical waves in the liver. MRE uses propagating mechanical
shear waves, which provide information for calculating elasticity. The shear elasticity (kPa)
of the liver was measured as the mean value within the liver of the elasticity. A cutoff value
of 2.5 kPa was used to distinguish patients with normal liver parenchyma from those with
hepatic fibrosis [29,30].

2.5. Statistical Analysis

The general characteristics of the variables, including urine organic acid metabolites,
were expressed as means ± SD, median (interquartile range), or number (proportion).
Conventional indices, such as AST, ALT, gamma-glutamyl transferase (GGT), HOMA2-IR,
and FIB-4, were compared between the participants with and without hepatic steatosis
and fibrosis using the Mann—Whitney U test. The creatinine-adjusted values of the urine
metabolite concentrations were categorized into quartiles, and the fourth quartile was
considered as a high level. The high-level risks of each metabolite for hepatic steatosis
and fibrosis were calculated using the chi-square test. Metabolites with p-values of <0.1
were included in logistic regression models. The odds ratios of high-level metabolites
for hepatic steatosis and fibrosis that were adjusted for age and sex were estimated in
Model 1. Liver parameter (ALT or FIB-4 for hepatic steatosis and fibrosis, respectively) was
additionally adjusted to Model 1 in Model 2. Metabolic factors, such as body mass index
and HOMA2-IR, were additionally adjusted (Model 3).

All statistical analyses were conducted using the SPSS statistical package, version 26
(IBM, Armonk, Westchester, NY, USA). Results with p-values of <0.05 were considered
statistically significant.

3. Results
3.1. Characteristics of the Participants

The baseline characteristics of the participants are presented in Table 1. The mean
age was 58.6 ± 10.9 years. Among the 133 participants, 68 (53.1%) were men. According
to the cutoffs, 43.6% and 55.6% of the participants were classified into hepatic steatosis
and fibrosis, respectively (Figure 1). Table S1 shows the characteristics of the urine organic
acid metabolites.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

MRI was performed with a 1.5-T system (Signa HDxt, GE HealthcareMR, Milwaukee, 
WI, USA). Quantitatively encoded MRI was performed obtaining the proton density fat 
fraction (PDFF) maps of the liver. An MRI PDFF threshold of 6.4% diagnoses significant 
hepatic steatosis [28]. A pneumatic driver, which is a drum-like device that is designed to 
apply acoustic vibrations, was placed in the abdominal wall in a supine position and used 
to generate propagating mechanical waves in the liver. MRE uses propagating mechanical 
shear waves, which provide information for calculating elasticity. The shear elasticity 
(kPa) of the liver was measured as the mean value within the liver of the elasticity. A 
cutoff value of 2.5 kPa was used to distinguish patients with normal liver parenchyma 
from those with hepatic fibrosis [29,30]. 

2.5. Statistical Analysis 
The general characteristics of the variables, including urine organic acid metabolites, 

were expressed as means ± SD, median (interquartile range), or number (proportion). 
Conventional indices, such as AST, ALT, gamma-glutamyl transferase (GGT), HOMA2-
IR, and FIB-4, were compared between the participants with and without hepatic steatosis 
and fibrosis using the Mann—Whitney U test. The creatinine-adjusted values of the urine 
metabolite concentrations were categorized into quartiles, and the fourth quartile was 
considered as a high level. The high-level risks of each metabolite for hepatic steatosis and 
fibrosis were calculated using the chi-square test. Metabolites with p-values of <0.1 were 
included in logistic regression models. The odds ratios of high-level metabolites for he-
patic steatosis and fibrosis that were adjusted for age and sex were estimated in Model 1. 
Liver parameter (ALT or FIB-4 for hepatic steatosis and fibrosis, respectively) was addi-
tionally adjusted to Model 1 in Model 2. Metabolic factors, such as body mass index and 
HOMA2-IR, were additionally adjusted (Model 3). 

All statistical analyses were conducted using the SPSS statistical package, version 26 
(IBM, Armonk, Westchester, NY, USA). Results with p-values of <0.05 were considered 
statistically significant. 

3. Results 
3.1. Characteristics of the Participants 

The baseline characteristics of the participants are presented in Table 1. The mean 
age was 58.6 ± 10.9 years. Among the 133 participants, 68 (53.1%) were men. According to 
the cutoffs, 43.6% and 55.6% of the participants were classified into hepatic steatosis and 
fibrosis, respectively (Figure 1). Table S1 shows the characteristics of the urine organic 
acid metabolites. 

 
Figure 1. The histograms for liver fat content (A) and shear elasticity (B). Hepatic steatosis and fi-
brosis are defined according to the cutoffs of fat content and elasticity, respectively. 

  

Figure 1. The histograms for liver fat content (A) and shear elasticity (B). Hepatic steatosis and
fibrosis are defined according to the cutoffs of fat content and elasticity, respectively.



Diagnostics 2022, 12, 1199 4 of 10

Table 1. General characteristics of the study participants.

n = 133

Age (years) 58.6 ± 10.9
Sex (men) 68 (51.1%)
Medication history
Hypertension 31 (23.3%)
Diabetes 42 (31.6%)
Dyslipidemia 13 (9.8%)
Anthropometry and measurements
Body mass index (kg/m2) 23.2 (21.2–25.4)
Systolic BP (mmHg) 119 (108–129)
Diastolic BP (mmHg) 74 (66–80)
Laboratory results
AST (U/L) 24 (20–29)
ALT (U/L) 21 (16–28)
GGT (U/L) 22 (16–33)
HOMA2-IR 0.63 (0.44–1.11)
FIB-4 1.42 (1.04–1.84)
Urine creatinine (mmol/L) 12.2 (8.1–15.7)
MRI with elastography findings
Fat content (%) 5.8 (4.3–8.2)
Elasticity (kPa) 2.51 (2.31–2.74)

Data are expressed as mean ± SD, median (interquartile range), or number (proportion). BP, blood pressure;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; HOMA2-IR,
homeostatic model assessment of insulin resistance; MRI, magnetic resonance imaging.

3.2. Differences in Conventional Parameters According to Hepatic Steatosis and Fibrosis

Figure 2 displays the proportions of the participants according to hepatic steatosis
and fibrosis. Additionally, Figure 3 shows the differences in conventional parameters
according to hepatic steatosis and fibrosis. The levels of AST, ALT, GGT, and HOMA2-
IR were significantly higher in participants with hepatic steatosis than those without,
while AST and FIB-4 levels were higher in those with hepatic fibrosis than those with
normal elasticity.
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3.3. The Association of Hepatic Steatosis and Fibrosis with Urine Organic Acid Metabolites

Figure 4 and Table S2 show the ORs of high-level metabolites for hepatic steatosis and
fibrosis. High succinate, vanillylmandelate, and pyroglutamate levels were significantly
associated with lower hepatic steatosis prevalence. High formiminoglutamate and p-
hydroxyphenyllactate levels were positively associated with hepatic steatosis. High sulfate
levels were associated with lower hepatic fibrosis prevalence. Metabolites with a p-value
of <0.1 were included in the logistic regression models (Table 2). Accordingly, pyruvate,
homovanillate, and picolinate were additionally included in the models for hepatic steatosis,
whereas ethylmalonate and β-hydroxybutyrate were included in the hepatic fibrosis models.
High p-hydroxyphenyllactate levels were significantly associated with hepatic steatosis in
the ALT-adjusted model (Model 2; OR = 3.379, 1.307–8.734), but not in the model that was
further adjusted for metabolic factors (Model 3). High succinate levels had a trend to have
low hepatic steatosis probability (p = 0.058). Other metabolites were not significantly related
to hepatic steatosis independent of ALT. High sulfate levels were significantly associated
with lower hepatic fibrosis probability than the other quartiles (Model 3; OR = 0.243, 0.097–
0.610). Likewise, high ethylmalonate and β-hydroxybutyrate levels were significantly
related to low hepatic fibrosis probability in fully adjusted models.

Table 2. The logistic regression models of the metabolites for hepatic steatosis and fibrosis.

Model 1 (Age and Sex) Model 2 (Liver Parameter) Model 3 (Metabolic Factors)

OR p OR p OR p

Hepatic steatosis
Pyruvate 2.318 (0.934–5.756) 0.070 2.061 (0.781–5.437) 0.144 1.265 (0.415–3.856) 0.679
Succinate 0.371 (0.137–1.007) 0.052 0.410 (0.149–1.133) 0.086 0.327 (0.103–1.039) 0.058
Formiminoglutamate 2.174 (0.862–5.480) 0.100 1.250 (0.450–3.476) 0.669 0.797 (0.245–2.592) 0.706
Vanillylmandelate 1.003 (0.345–2.917) 0.995 0.589 (0.180–1.931) 0.382 0.800 (0.223–2.864) 0.732
Homovanillate 0.838 (0.296–2.376) 0.740 1.120 (0.373–3.359) 0.840 0.970 (0.274–3.431) 0.962
Picolinate 2.081 (0.875–4.949) 0.097 1.865 (0.755–4.604) 0.177 1.347 (0.480–3.781) 0.571
p-Hydroxyphenyllactate 3.078 (1.246–7.604) 0.015 3.379 (1.307–8.734) 0.012 2.665 (0.934–7.604) 0.067
Pyroglutamate 0.617 (0.225–1.693) 0.349 0.499 (0.168–1.483) 0.211 0.750 (0.226–2.482) 0.637
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Table 2. Cont.

Model 1 (Age and Sex) Model 2 (Liver Parameter) Model 3 (Metabolic Factors)

OR p OR p OR p

Hepatic fibrosis
Ethylmalonate 0.444 (0.195–1.009) 0.053 0.385 (0.160–0.924) 0.033 0.390 (0.162–0.939) 0.036
β-Hydroxybutyrate 0.504 (0.225–1.130) 0.096 0.391 (0.163–0.937) 0.035 0.393 (0.162–0.956) 0.039
Sulfate 0.246 (0.105–0.580) 0.001 0.233 (0.094–0.580) 0.002 0.243 (0.097–0.610) 0.003

Model 1 was adjusted for age and sex, Model 2 was additionally adjusted for liver parameters (alanine aminotrans-
ferase for hepatic steatosis and FIB-4 for hepatic fibrosis, respectively), and Model 3 was additionally adjusted for
BMI and HOMA2-IR.
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4. Discussion

The present study evaluated the characteristics of urine organic acid metabolites in
NAFLD according to hepatic steatosis and fibrosis in Korean adults. Hepatic steatosis
was associated with high p-hydroxyphenyllactate levels; however, the association was
not independent of metabolic factors. Hepatic fibrosis was inversely associated with high
ethylmalonate, β-hydroxybutyrate, and sulfate levels.

Expectedly, our study revealed a significant association between hepatic steatosis and
liver enzymes and IR, which may indicate that hepatic steatosis and elevated liver enzymes
are strongly linked with systemic obesity and metabolic syndrome. Contrastingly, hepatic
fibrosis was associated with calculated FIB-4, but not with serum ALT and GGT levels.
The discordance between hepatic fibrosis and serum liver enzyme levels led to the need
for a better hepatic fibrosis index. Therefore, various equations, such as FIB-4, APRI, and
NAFLD fibrosis score, were developed and utilized [2,15,16,31,32]. Some biologic markers
other than the conventional liver enzymes were introduced into the ELF panel to detect
advanced fibrosis [33,34]. Metabolomics has been investigated in NAFLD and nonalcoholic
steatohepatitis, which provides new perspectives in diagnosing and identifying novel
biomarkers [19–23].

NAFLD has been known to accompany significant changes in the hepatocyte, such
as enhanced gluconeogenesis, lactate production, and tricarboxylic acid (TCA) cycle, and
decreased ketone body production, mitochondrial respiration, and adenosine triphos-
phate synthesis [35]. Our study revealed that β-hydroxybutyrate and ethylmalonate were
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inversely associated with hepatic fibrosis. β-Hydroxybutyrate is the most abundant ke-
tone in the human body [36], and ethylmalonate is generally formed from butyrate [37].
Ethylmalonic aciduria is known to be associated with elevated butyryl-CoA levels from
isoleucine catabolism [38,39]. Considering that both β-hydroxybutyrate and ethylmalonate
are derived from fatty acid breakdown [40], fatty acid metabolism abnormality may be an
indicator of hepatic fibrosis.

The ratio of urinary sulfate to creatinine indicates the total body reserve of sulfur-
containing compounds, including glutathione, which is used in phase II pathways [41,42].
Phase II drug-metabolizing enzymes play an important role in the biotransformation of
endogenous compounds and xenobiotics to more easily excretable forms, as well as in
the metabolic inactivation of pharmacologically active compounds [43]. Phase II enzyme
dysfunctions may potentiate oxidative stress and liver injury [44].

Among the candidate metabolites for the association with hepatic steatosis, p-
hydroxyphenyllactate was significant before the metabolic factor adjustment. This metabo-
lite is derived from tyrosine catabolism by the gut microbiota [45] and was associated with
obesity markers [46]. A study on the gut microbiome has shown that a link between the
gut microbiome and p-hydroxyphenyllactate shares a gene effect with hepatic steatosis and
fibrosis [47]. Moreover, urine p-hydroxyphenyllactate indicated hepatic encephalopathy in
patients with hepatic cirrhosis [48]. These findings are consistent with our results. Another
metabolite, succinate, had a trend of inverse association with hepatic steatosis. Succinate,
a TCA cycle intermediate, has an antilipolytic effect in adipocytes [49]. Mitochondrial
dicarboxylate carrier (mDIC), which is dominantly expressed in the white adipose tissue, is
responsible for controlling the release of free fatty acids from adipocytes to the liver through
the export of succinate from the mitochondria. Eventually, adipose mDIC-mediated succi-
nate transport out of the mitochondrial matrix impacts adipocyte lipolysis and liver lipid
accumulation [49].

Our study revealed no relationship between hepatic steatosis and fibrosis. Similarly,
previous studies have shown that hepatic fibrosis was not associated with steatosis or
steatohepatitis [50,51]. Additionally, our study revealed that metabolites associated with
hepatic fibrosis and steatosis do not overlap each other. Moreover, most of the candidate
metabolites, such as formiminoglutamate, vanillylmandelate, and picolinate, were not
independent indices of hepatic steatosis, but markers linked to metabolic syndrome [26].
Considering that the associated metabolites with hepatic fibrosis were not influenced by
metabolic parameters of obesity and IR as well as FIB-4, the deficiency of these metabolites
in urine may be significant for early changes in hepatic fibrosis of NAFLD.

Our study has several limitations. First, the causal relationship between NAFLD
and the intermediate metabolites was not confirmed because the study employed a cross-
sectional design. The experimental design may be required to be aware of the changes
in metabolites due to NAFLD changes or vice versa. Second, the definition of hepatic
steatosis and fibrosis was not based on histologic findings. Additionally, the cutoff values
of liver fat content and elasticity measured using MRI with elastography are different
according to various studies [28,29,52–55]. Considering that our study participants were
enrolled from health checkups and are relatively healthy, the cutoff value for elasticity
was adopted at a low level [29,30]. The grades of hepatic steatosis and fibrosis need to be
further categorized in a population, including more severe cases. Nonetheless, MRI with
elastography is the best imaging tool for NAFLD at present [56,57]. Third, only the urine
sample was analyzed for the intermediate metabolites. Additionally, diet type was not
restricted, and food diary was not surveyed. However, the participants were exposed to a
typical Korean diet and forbidden from special dietary materials, such as alcohol, coffee,
fruits, and supplements, for a day. Further survey on diet habits may help interpret the
association between NAFLD and urine metabolites. Overnight fasting was also mandatory
for the participants. Further analyses may be required for more kinds of metabolites and
from various specimens, including blood and liver biopsy.
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5. Conclusions

Urine metabolites were not related to hepatic steatosis independent of obesity and IR,
whereas several metabolites were specifically associated with hepatic fibrosis in Korean
adults without significant alcohol consumption. Abnormalities in fatty acid metabolism
and phase II detoxification may be important findings for early fibrotic changes in NAFLD.
Further study is required to verify the diagnostic value of the metabolites in a population
with a wide NAFLD spectrum.

Supplementary Materials: The following supporting information can be downloaded at: https:
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for hepatic steatosis and fibrosis.
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