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Abstract

:

This study aimed to elucidate the clinicopathological significance of spread through air space (STAS) in non-small cell lung cancer (NSCLC) through a meta-analysis. Using 47 eligible studies, we obtained the estimated rates of STAS in various histological subtypes of NSCLC and compared the clinicopathological characteristics and prognosis between NSCLC with and without STAS. The estimated STAS rate was 0.368 (95% confidence interval [CI], 0.336–0.0.401) in patients with NSCLC. Furthermore, the STAS rates for squamous cell carcinoma and adenocarcinoma were 0.338 (95% CI, 0.273–0.411) and 0.374 (95% CI, 0.340–0.409), respectively. Among the histological subtypes of adenocarcinoma, micropapillary-predominant tumors had the highest rate of STAS (0.719; 95% CI, 0.652–0.778). The STAS rates of solid- and papillary-predominant adenocarcinoma were 0.567 (95% CI, 0.478–0.652) and 0.446 (95% CI, 0.392–0.501), respectively. NSCLCs with STAS showed a higher visceral pleural, venous, and lymphatic invasion than those without STAS. In addition, anaplastic lymphoma kinase mutations and ROS1 rearrangements were significantly more frequent in NSCLCs with STAS than in those without STAS. The presence of STAS was significantly correlated with worse overall and recurrence-free survival (hazard ratio, 2.119; 95% CI, 1.811–2.480 and 2.372; 95% CI, 2.018–2.788, respectively). Taken together, the presence of STAS is useful in predicting the clinicopathological significance and prognosis of patients with NSCLC.
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1. Introduction


Lung cancer is one of the most common causes of cancer-related deaths worldwide [1]. In the recent treatment of lung cancer, histological classification, including molecular and biomarker profiles, is important due to the need to decide on systemic therapies [1]. Kadota et al. introduced “spread through airspace (STAS)” in lung tumors [2]. STAS is defined as the spread of lung cancer cells into the air spaces adjacent to the main tumor [2]. STAS should be distinguished from the artificial spreading features. For example, the discontinuity of spread in airspace from the tumor edge is ruled out as an artifact [2]. In addition, in daily practice, the differentiation of spreading tumor cells from normal, benign pneumocytes or bronchial cells can be difficult [2]. They described three morphological patterns (micropapillary structures, solid nests of tumor cells, and discohesive single cells) which are frequently identified in STAS of adenocarcinoma (ADC) [2]. STAS rates according to the histological subtypes of ADC can be different. Non-small cell lung cancer (NSCLC) includes ADC, squamous cell carcinoma (SCC), and large cell carcinoma. Adenocarcinomas contain various histological subtypes, such as lepidic, acinar, papillary, micropapillary, and solid [1]. STAS was significantly correlated with lymphatic and vascular invasions [2]. In addition, STAS was frequently found in lung cancer with papillary, micropapillary, and solid patterns [2]. However, STAS was less frequent in lung cancer with a lepidic pattern than in those without a lepidic pattern [2]. However, although previous studies have reported the prognostic roles of STAS, detailed information on STAS rates according to histological subtypes is unclear [2,3,4,5,6]. Surgical specimens from limited resection can be limited in the evaluation of STAS due to the limitation of the adjacent parenchyma [2,4]. In addition, because STAS does not include the measurement of tumor size, there is no impact of STAS on tumor staging. Therefore, due to the possibility of understaging, further evaluation of the impact of STAS on tumor stage is needed. The clinicopathological implications of the presence of STAS can differ between patients with the same histological subtypes and tumor staging. The correlation between histological subtypes and STAS may be more important. However, detailed information based on histological subtypes is unclear. This study aimed to elucidate the clinicopathological significance of STAS in NSCLC through a meta-analysis. First, the estimated rates of STAS were investigated and evaluated in various histological subtypes and clinicopathological subgroups. In addition, the prognostic implications of STAS were investigated, and a subgroup analysis was performed.




2. Materials and Methods


2.1. Published Studies Search and Selection Criteria


Searching was performed using the PubMed and MEDLINE databases on 30 June 2021. These databases were searched using the following keywords: “lung” and “STAS or spread through air spaces.” The titles and abstracts of all searched articles from databases were screened for exclusion. Review articles were also screened to find additional eligible studies. Articles were included if the study was performed in human NSCLC and if there was information about the clinicopathological characteristics and prognosis of NSCLC with and without STAS. Articles were excluded if they were case reports or non-original articles or if the article was not written in English.




2.2. Data Extraction


The data was extracted from each of the eligible studies by two researchers [2,4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]. Extracted data included: the first author’s name, year of publication, study location, number of patients analyzed, and clinicopathological information for patients with and without STAS. Investigated clinicopathological information included histologic subtypes, patients’ age and sex, smoking history, tumor size, tumor location, visceral pleural, venous, and lymphatic invasion, genetic mutations of anaplastic lymphoma kinase (ALK), epithelial growth factor receptor (EGFR), ROS1, and KRAS, and survival rate.




2.3. Statistical Analyses


To perform the meta-analysis, all data were analyzed using the Comprehensive Meta-Analysis software package (Biostat, Englewood, NJ, USA). The incidence rates of STAS were investigated in NSCLCs. In addition, the presence of STAS and various clinicopathological characteristics, including genetic mutations, were investigated and performed in the meta-analysis. The correlations between the presence of STAS and overall and recurrence-free survivals were evaluated. For a quantitative aggregation of survival results, we obtained the hazard ratio (HR) using one of the following methods. In studies not quoting the HR or its confidence interval (CI), these variables were calculated from the presented data using the HR point estimate, log-rank statistic or its p-value, and the O-E statistic (difference between the number of observed and expected events) or its variance. If those data were unavailable, HR was estimated using the total number of events, number of patients at risk in each group, and the log-rank statistic or its p-value. Finally, if the only useful data were in the form of graphical representations of survival distributions, survival rates were extracted at specified times to reconstruct the HR estimate and its variance under the assumption that patients were censored at a constant rate during the time intervals [52]. The published survival curves were read independently by two researchers in order to reduce variability. The HRs were then combined into an overall HR using Peto’s method [53]. Heterogeneity between the studies was checked by the Q and I2 statistics and expressed as p-values. Additionally, sensitivity analysis was conducted to assess the heterogeneity of eligible studies and the impact of each study on the combined effect. In addition, to compare between subgroups with and without STAS, the meta-regression test was performed. Because eligible studies used various populations, the application of the random-effect model rather than the fixed-effect model was more suitable. For the assessment of publication bias, Begg’s funnel plot and Egger’s test were used. If significant publication bias was found, the fail-safe N and trim-fill tests were additionally conducted to confirm the degree of publication bias. The results were considered statistically significant at p < 0.05.





3. Results


3.1. Selection and Characteristics of the Studies


In this study, 47 studies were included among the 201 searched studies. In total, 51 studies were excluded because they were non-original articles. Moreover, 46 articles had insufficient or no information. Overall, 44 articles were studied for other diseases. Two reports were excluded due to duplication of patients. In addition, 11 reports were excluded due to non-English (n = 8) and non-human samples (n = 3). Detailed information for the included and excluded studies is presented in Figure 1 and Table 1.




3.2. Estimated Rates of STAS in NSCLC


The estimated rate of STAS was 0.368 (95% CI, 0.336–0.401) in patients with NSCLC (Table 2). STAS was found in 33.8% and 37.4% of the cases of SCC and ADC, respectively. In the subgroup analysis based on histological subtypes of ADC, the STAS rate was the highest in micropapillary-predominant ADC (0.719; 95% CI, 0.652–0.778). The STAS rates were 0.567 (95% CI, 0.478–0.652) and 0.446 (95% CI, 0.392–0.501) in the solid and papillary predominant subgroups, respectively. Additionally, the STAS rates of the lepidic, acinar, mucinous, cribriform, and colloid-predominant subgroups were 0.128 (95% CI, 0.092–0.175), 0.352 (95% CI, 0.312–0.394), 0.278 (95% CI, 0.169–0.42), 0.365 (95% CI, 0.337–0.394), and 0.167 (95% CI, 0.010–0.806), respectively.




3.3. Correlation between STAS and Clinicopathological Characteristics in NSCLC


Differences in clinicopathological characteristics between patients with and without STAS were investigated through a meta-analysis. NSCLCs with STAS were significantly more correlated with frequent visceral pleural, venous, and lymphatic invasions than those without STAS (Table 3). In NSCLCs with STAS, the estimated rates of visceral pleural, venous, and lymphatic invasions were 0.322 (95% CI, 0.275–0.373), 0.301 (95% CI, 0.251–0.356), and 0.391 (95% CI, 0.325–0.461), respectively. In addition, STAS is frequently observed in male patients. However, there were no significant differences in age, smoking history, tumor size, and tumor location between patients with and without STAS.



The correlations between genetic alterations and the presence of STAS were investigated in NSCLC. Patients with STAS were significantly more correlated with higher ALK mutations and ROS1 rearrangement than those without STAS (Table 4). The estimated rates of ALK mutation and ROS1 rearrangement in patients with STAS were 0.125 (95% CI, 0.102–0.152) and 0.040 (95% CI, 0.023–0.068), respectively. The estimated rates of ALK mutation and ROS1 rearrangement in patients without STAS were 0.027 (95% CI, 0.011–0.067) and 0.009 (95% CI, 0.004–0.020), respectively. However, there were no significant differences between EGFR mutations and KRAS mutations between patients with and without STAS.




3.4. Prognosis of NSCLC with STAS


Patients with STAS had worse overall and recurrence-free survival (HR, 2.119; 95% CI, 1.811–2.480 and HR, 2.372; 95% CI, 2.018–2.788, respectively) (Figure 2 and Figure 3; Table 5). In the ADC subgroup, patients with STAS were significantly correlated with worse overall and recurrence-free survival (HR, 2.093; 95% CI, 1.756–2.496 and HR, 2.633; 95% CI, 2.145–3.232, respectively). In the SCC subgroup, patients with STAS had worse overall and recurrence-free survival (HR, 4.208; 95% CI, 2.190–8.083 and HR, 1.610; 95% CI, 1.066–2.431, respectively).





4. Discussion


Although the concept of STAS was introduced in 2015, it is not included as a diagnostic parameter in daily practice [2]. Because the presence of STAS is correlated with the prognosis and histological subtype of the patient, a detailed evaluation is needed in the pathological examination. However, despite many studies, the diagnostic criteria in daily practice are unclear. Therefore, the meta-analysis may be appropriate to help understand the clinicopathological impacts of STAS. Through this meta-analysis, we obtained the following results: (1) the estimated rate of STAS was 0.368 (95% CI, 0.336–0.401) in NSCLC; (2) STAS was frequently found in the micropapillary and solid predominant subtype; (3) STAS was significantly correlated with visceral pleural, venous, and lymphatic invasion; and (4) patients with STAS had worse overall and recurrence-free survival than those without STAS.



STAS was first defined by Kadota et al. in 2015 [2]. They reported that STAS is the identification of tumor cells that spread in the air spaces of the lung parenchyma adjacent to the edge of the tumor [2]. To evaluate the presence of STAS, the lung parenchyma adjacent to the edge of the tumor must be included in the pathological examination. The identification of STAS can be performed on the histological examination of lung cancer. In addition, the differentiation between tumor cells and other cells within the air space is not easy. Because the evaluation of STAS can be different from that of pathologists, obvious criteria are necessary for daily practice. Kadota et al. introduced the morphological patterns of tumor cells of STAS: (1) micropapillary structures; (2) solid nests of tumor islands; and (3) scattered discohesive single cells [2]. These patterns can easily differ from the lepidic growth patterns. Kadota et al. reported that the presence of STAS was correlated with lepidic, papillary, micropapillary, and solid patterns [2]. In our results, the estimated STAS rate for the lepidic subtype was the lowest among the ADC subtypes (0.128; 95% CI, 0.092–0.175). If the tumor component is a pure lepidic subtype, the actual rate of STAS can be lower than our results. The criterion for a major histopathological subtype of ADC is >5% of the overall tumor. Because the pure histological subtype of ADC is rare, differentiation between the components of STAS and tumors can be difficult. As described above, the morphological patterns of subtypes with low STAS rates, such as lepidic, acinar, and mucinous subtypes, are different from the morphological patterns of STAS. In our results, the estimated rates of STAS ranged from 12.8% to 71.9%, according to the ADC subtypes. The micropapillary subtype showed the highest STAS rate among the ADC subtypes (0.719; 95% CI, 0.652–0.778). In evaluating STAS, artificial spreading features should be distinguished from true STAS. Contamination on sectioning tissue and paraffin block is issued in pathologic examination. Especially in lung resection specimens, the possibility of the displacement of tumor cells may frequently be present along the plane of sectioning by a knife [54,55]. Lee et al. described that three tumor slices were observed under the microscope to avoid confusion with artificially detached cells [25].



STAS has been correlated with aggressive clinical features and a worse prognosis. However, due to the different diagnostic criteria and populations, conclusive information is unclear. Therefore, a meta-analysis is useful for obtaining conclusive information. In this study, STAS was significantly correlated with visceral pleural, venous, and lymphatic invasion. However, there was no significant correlation between STAS and age, smoking history, tumor size, and tumor location. Although previous studies have reported a correlation between STAS and clinicopathological characteristics, the detailed information between studies is different. Kadota et al. reported that STAS was significantly correlated with lymphovascular invasion and histological subtypes [2]. A previous study showed a correlation between STAS and the tumor site and the stage of lymph nodes [7]. In addition, they reported that STAS was significantly higher in micropapillary growth patterns than in other histological patterns [7]. However, there were no statistically significant differences between the presence of STAS and histological subtypes. STAS is more frequently found in the right lower lobe than in the left lower lobe [7]. In this study, no significant differences were observed in STAS rates between upper/middle and lower lobes (p = 0.078 in the meta-regression test).



Kadota et al. reported that STAS was not correlated with visceral pleural invasion [2], unlike in our results. In addition, they divided the patients into limited and lobectomy resection groups. In their study, no significant differences in the visceral pleural invasion were observed according to the presence of STAS. In addition, they suggested that STAS is a risk factor for locoregional recurrence. In patients with limited resection, the evaluation of the presence of STAS is difficult due to the insufficient inclusion of the adjacent parenchyma. In addition, the impact of the fixation method of inflation on the presence of STAS is unclear. Kadota et al. reported different prognostic impacts between the limited and lobectomy groups [2]. STAS was significantly correlated with worse recurrence-free survival in the limited resection group but not in the lobectomy resection group. However, in studies by Bains and Ren, a prognostic impact was found in both the limited and lobectomy resection groups [4,34]. We suggest that upon detecting STAS, close observation or adjuvant therapy is recommended. Cumulative studies for the necessity of further treatments will be needed in patients with STAS. Interestingly, the prognostic roles of STAS were different from those of ADC. The prognostic implications of STAS between stages I and III were not different. There was a significant difference in prognosis between patients with and without STAS in stage I but not in stage III (data not shown). Based on our results, the evaluation of STAS according to the histological subtype can be useful to predict the prognosis of the patient.



We compared the clinicopathological parameters between the STAS and non-STAS subgroups, unlike the previous meta-analysis. In addition, in this study, we showed the results using the estimated rate, but not the odds ratio between the STAS and non-STAS subgroups. Yin et al. reported a correlation between computer tomography and histological STAS in lung ADC [56]. In addition, Eguchi et al. reported the therapeutic effect of surgical treatment in T1 ADC with STAS [57]. Wang et al. demonstrated the prognostic implications of STAS in NSCLC [57]. In the meta-analysis by Liu et al., 12 eligible studies were included [58]. They studied reports from 2015 to 2018. Chen et al. studied using 14 eligible studies [59]. In Wang’s meta-analysis, the number of eligible studies included was eight [58]. Among the eight studies, the reports for ADC and SCC were six and two, respectively [58]. A total of 47 eligible articles were included. In addition, because 33 articles published after 2019 were included, the interest and importance of STAS are gradually increasing. Therefore, our results can be updated and reliable. In addition, we investigated STAS rates in various subtypes of NSCLC and compared clinicopathological characteristics between the STAS and non-STAS subgroups. However, in Wang’s report, information can be obtained based on tumor subtype, unlike our results [58]. In addition, unlike previous meta-analyses, the estimated STAS rates were investigated according to various subgroups.



Unlike previous meta-analyses, our study evaluated the differences in genetic alterations between NSCLC with and without STAS. From our results, detailed information on the clinicopathological characteristics of patients with and without STAS can be useful for the interpretation of patients with STAS. NSCLC with STAS had frequent ALK mutations and ROS1 rearrangement compared to NSCLC without STAS. In lung ADC, EGFR mutations are found more frequently in the micropapillary pattern [60,61]. However, there was no significant correlation between STAS and EGFR mutations or KRAS mutations. Understanding these genetic alterations in STAS may be important for the interpretation of molecular analyses of lung ADC.



There were some limitations to the current meta-analysis. First, the detailed criteria for STAS in NSCLC are unclear. STAS is within air spaces in the lung parenchyma beyond the edge of the main tumor, based on the definition of Kadota’s report [2]. However, the definitive distance was not defined for the edge of the tumor in most eligible studies. Han and Shiono’s reports described the distance as 0.5 mm and 0.25 mm, respectively [13,36]. However, subgroup analysis based on diagnostic criteria could not be performed due to insufficient information. Second, information based on mixed histological patterns could not be obtained from the eligible studies. Third, a detailed evaluation between STAS and distant metastasis could not be performed due to insufficient information. Fourth, a detailed investigation of the morphological patterns of STAS based on the histological subtypes of NSCLC could not be performed. Fourth, evaluating STAS grades may be needed because the extent and amount of STAS can affect a patient’s prognosis. However, it is difficult to assess due to insufficient information from eligible studies. Further evaluation for grading STAS will be needed. Fifth, another limitation concerned the lack of prospective studies for investigating STAS in the included eligible studies. Sixth, the single cell type of STAS was-not prognostic [62]. STAS is composed of three morphologic categories. However, it could not be compared the prognostic differences between morphological categories of STAS.




5. Conclusions


In conclusion, our results showed that STAS is frequently detected as a histological feature, as 36.8% of NSCLC cases. In addition, among adenocarcinomas, STAS is frequently found in the micropapillary and solid predominant subtypes. STAS was significantly correlated with aggressive tumor behavior and a worse prognosis. The recognition of STAS in daily practice is useful to predict the prognosis of the patient.
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Figure 1. Flow chart of study search and selection methods. 
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Figure 2. Forest plots for the overall survival. 
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Figure 3. Forest plots for the recurrence-free survival. 
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Table 1. Main characteristics of eligible studies.
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Author, Year

	
Location

	
Subtype

	
TNM Stage

	
Subgroup

	
No of Patients

	
STAS




	
Present

	
Absent






	
Alvarez Moreno 2021 [7]

	
USA

	
NSCLC

	
I-III

	

	
240

	
67

	
173




	
Bains 2019 [4]

	
USA

	
ADC

	
I

	
Lobectomy

	
557

	
191

	
366




	

	

	
ADC

	
I

	
Sublobar resection

	
352

	
126

	
226




	
Chae 2021 [8]

	
Korea

	
ADC

	
I

	

	
115

	
20

	
95




	
Chen 2020 [9]

	
China

	
ADC

	
I

	

	
3346

	
1082

	
2264




	
Chen 2020 [10]

	
China

	
ADC

	
I

	
Training cohort

	
233

	
69

	
164




	

	

	
ADC

	
I

	
Validation cohort

	
112

	
50

	
62




	
Dai 2017 [11]

	
China

	
NSCLC

	
I

	

	
383

	
116

	
267




	
Ding 2019 [12]

	
China

	
ADC

	
I-III

	

	
208

	
107

	
101




	
Han 2021 [13]

	
Korea

	
NSCLC

	
I-IV

	
NSCLC

	
1869

	
765

	
1104




	

	

	
ADC

	
I-IV

	
ADC

	
1544

	
684

	
860




	
Hara 2019 [14]

	
Japan

	
ADC

	
I

	

	
108

	
32

	
76




	
Hu 2018 [15]

	
Taiwan

	
ADC

	
I-III

	

	
500

	
134

	
366




	
Ikeda 2021 [16]

	
Japan

	
NSCLC

	
I-III

	

	
636

	
282

	
354




	
Jia 2020 [17]

	
China

	
ADC

	
I-IV

	
ADC

	
303

	
183

	
120




	

	

	
SCC

	
I-IV

	
SCC

	
121

	
39

	
82




	
Jung 2020 [18]

	
Korea

	
ADC

	
I

	

	
506

	
204

	
302




	
Kadota 2015 [2]

	
Japan

	
ADC

	
I

	

	
411

	
155

	
256




	
Kadota 2017 [19]

	
Japan

	
SCC

	
I-IV

	

	
216

	
87

	
129




	
Kadota 2019 [20]

	
Japan

	
ADC

	
I-IV

	

	
735

	
247

	
488




	
Kim 2018 [21]

	
Korea

	
ADC

	
I-III

	

	
276

	
92

	
184




	
Kim 2019 [22]

	
Korea

	
ADC

	
I-III

	

	
301

	
154

	
147




	
Kimura 2020 [23]

	
Japan

	
ADC

	
ND

	

	
164

	
29

	
135




	
Koezuka 2019 [24]

	
Japan

	
ADC

	
I-III

	

	
64

	
18

	
46




	
Lee 2018 [25]

	
Korea

	
ADC

	
I-III

	

	
316

	
160

	
156




	
Lee 2020 [26]

	
Korea

	
ADC

	
I-III

	

	
119

	
86

	
33




	
Liu 2018 [27]

	
China

	
ADC

	
I-III

	

	
208

	
107

	
101




	
Liu 2019 [28]

	
China

	
ADC

	
I-III

	
Study cohort

	
289

	
143

	
146




	

	

	

	
I-III

	
Validation cohort

	
91

	
50

	
41




	
Lu 2017 [29]

	
USA

	
SCC

	
I-III

	

	
445

	
132

	
313




	
Masai 2017 [30]

	
Japan

	
NSCLC

	
ND

	

	
508

	
76

	
432




	
Nakajima 2021 [31]

	
Japan

	
ADC

	
I-III

	

	
1057

	
384

	
673




	
Qi 2021 [32]

	
China

	
ADC

	
ND

	

	
190

	
47

	
143




	
Qiu 2019 [33]

	
China

	
ADC

	
I-III

	

	
192

	
107

	
85




	
Ren 2019 [34]

	
China

	
ADC

	
I

	
Lobectomy

	
634

	
182

	
452




	

	

	

	
I

	
Sublobar resection

	
118

	
43

	
75




	
Shiono 2016 [35]

	
Japan

	
ADC

	
I

	

	
318

	
47

	
271




	
Shiono 2019 [36]

	
Japan

	
NSCLC

	
I

	

	
848

	
139

	
709




	
Shiono 2020 [37]

	
Japan

	
ADC

	
I

	

	
217

	
34

	
183




	
Song 2019 [38]

	
China

	
ADC

	
I

	

	
277

	
86

	
191




	
Terada 2019 [39]

	
Japan

	
ADC

	
III

	

	
76

	
46

	
30




	
Toyokawa 2018 [40]

	
Japan

	
ADC

	
I

	

	
82

	
31

	
51




	
Toyokawa 2018 [41]

	
Japan

	
ADC

	
II-III

	
Lymph node metastasis

	
63

	
46

	
17




	
Vaghjiani 2020 [42]

	
USA

	
ADC

	
I-III

	

	
809

	
350

	
459




	
Villalba 2021 [43]

	
USA

	
ADC

	
I

	

	
100

	
43

	
57




	
Xie 2021 [44]

	
China

	
NSCLC

	
I-IV

	

	
803

	
433

	
370




	
Yang 2018 [45]

	
China

	
ADC

	
I

	

	
242

	
81

	
161




	
Yi 2021 [46]

	
Korea

	
ADC

	
I-II

	

	
109

	
41

	
68




	
Yokoyama 2018 [47]

	
Japan

	
NSCLC

	
I-III

	

	
35

	
21

	
14




	
Zhang 2020 [48]

	
China

	
ADC

	
I-III

	

	
762

	
83

	
679




	
Zhong 2021 [49]

	
China

	
ADC

	
I

	

	
620

	
167

	
453




	
Zhuo 2020 [50]

	
China

	
ADC

	
ND

	

	
212

	
107

	
105




	
Zombori 2020 [51]

	
Hungary

	
ADC

	
I

	

	
292

	
123

	
169








ND, no description; STAS, spread through air space; NSCLC, non-small cell lung cancer; ADC, adenocarcinoma; SCC, squamous cell carcinoma.
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Table 2. Meta-analysis for the rate of spread through air space in non-small cell lung carcinoma.
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	Number

of Subset
	Fixed Effect

[95% CI]
	Heterogeneity Test

[p-Value]
	Random Effect

[95% CI]
	Egger’s

Test





	Overall
	53
	0.367 [0.361, 0.374]
	<0.001
	0.368 [0.336, 0.401]
	0.905



	Squamous cell carcinoma
	3
	0.331 [0.299, 0.365]
	0.025
	0.338 [0.273, 0.411]
	0.735



	Adenocarcinoma
	43
	0.366 [0.358, 0.373]
	<0.001
	0.374 [0.340, 0.409]
	0.599



	Lepidic predominant
	28
	0.167 [0.151, 0.183]
	<0.001
	0.128 [0.092, 0.175]
	0.126



	Acinar predominant
	28
	0.361 [0.347, 0.374]
	<0.001
	0.352 [0.312, 0.394]
	0.699



	Papillary predominant
	28
	0.434 [0.414, 0.454]
	<0.001
	0.446 [0.392, 0.501]
	0.559



	Micropapillary predominant
	25
	0.647 [0.614, 0.679]
	<0.001
	0.719 [0.652, 0.778]
	0.004



	Solid predominant
	28
	0.465 [0.440, 0.491]
	<0.001
	0.567 [0.478, 0.652]
	0.073



	Mucinous predominant
	7
	0.282 [0.190, 0.397]
	0.222
	0.278 [0.169, 0.421]
	0.654



	Cribriform predominant
	3
	0.365 [0.337, 0.394]
	0.605
	0.365 [0.337, 0.394]
	0.642



	Colloid predominant
	1
	0.167 [0.010, 0.806]
	1.000
	0.167 [0.010, 0.806]
	-







CI, Confidence interval.
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Table 3. Comparisons of clinicopathological parameters between lung cancers with STAS and non-STAS.
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	Number

of Subset
	Fixed Effect

[95% CI]
	Heterogeneity Test

[p-Value]
	Random Effect

[95% CI]
	Egger’s

Test

[p-Value]
	Meta-Regression Test

[p-Value]





	Age (mean)
	
	
	
	
	
	



	STAS
	25
	66.2 [66.0, 66.4]
	<0.001
	63.8 [61.6, 65.9]
	0.088
	0.653



	Non-STAS
	25
	68.1 [68.0, 68.2]
	<0.001
	63.0 [60.4, 65.4]
	0.032
	



	Gender (Male)
	
	
	
	
	
	



	STAS
	44
	0.533 [0.521, 0.545]
	<0.001
	0.546 [0.514, 0.578]
	0.298
	0.008



	Non-STAS
	44
	0.489 [0.480, 0.497]
	<0.001
	0.484 [0.451, 0.516]
	0.748
	



	Current/ex-Smoking
	
	
	
	
	
	



	STAS
	39
	0.465 [0.452, 0.478]
	<0.001
	0.475 [0.418, 0.532]
	0.951
	0.236



	Non-STAS
	39
	0.422 [0.412, 0.431]
	<0.001
	0.426 [0.369, 0.486]
	0.862
	



	Tumor size (cm)
	
	
	
	
	
	



	STAS
	20
	1.91 [1.90, 1.92]
	<0.001
	2.45 [2.21, 2.69]
	0.175
	0.092



	Non-STAS
	20
	1.65 [1.64, 1.65]
	<0.001
	2.99 [2.52, 3.46]
	0.112
	



	Location (upper/middle lobe)
	
	
	
	
	
	



	STAS
	11
	0.646 [0.621, 0.671]
	0.079
	0.648 [0.612, 0.682]
	0.722
	0.078



	Non-STAS
	11
	0.702 [0.684, 0.719]
	0.003
	0.691 [0.658, 0.721]
	0.021
	



	Visceral pleural invasion
	
	
	
	
	
	



	STAS
	30
	0.355 [0.341, 0.370]
	<0.001
	0.322 [0.275, 0.373]
	0.187
	<0.001



	Non-STAS
	30
	0.202 [0.193, 0.212]
	<0.001
	0.177 [0.128, 0.239]
	0.478
	



	Venous invasion
	
	
	
	
	
	



	STAS
	23
	0.352 [0.335, 0.370]
	<0.001
	0.301 [0.251, 0.356]
	0.093
	<0.001



	Non-STAS
	23
	0.151 [0.140, 0.163]
	<0.001
	0.120 [0.080, 0.175]
	0.319
	



	Lymphatic invasion
	
	
	
	
	
	



	STAS
	20
	0.495 [0.476, 0.514]
	<0.001
	0.391 [0.325, 0.461]
	0.005
	<0.001



	Non-STAS
	20
	0.192 [0.180, 0.205]
	<0.001
	0.130 [0.092, 0.181]
	0.103
	







CI, Confidence interval; STAS, spread through air space.
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Table 4. Comparisons of genetic mutation between lung cancers with STAS and non-STAS.
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	Number

of Subset
	Fixed Effect

[95% CI]
	Heterogeneity Test

[p-Value]
	Random Effect

[95% CI]
	Egger’s

Test

[p-Value]
	Meta-Regression Test

[p-Value]





	ALK mutation
	
	
	
	
	
	



	STAS
	7
	0.125 [0.102, 0.152]
	0.504
	0.125 [0.102, 0.152]
	0.894
	<0.001



	Non-STAS
	7
	0.042 [0.030, 0.059]
	<0.001
	0.027 [0.011, 0.067]
	0.120
	



	EGFR mutation
	
	
	
	
	
	



	STAS
	13
	0.464 [0.439, 0.489]
	<0.001
	0.438 [0.373, 0.506]
	0.421
	0.058



	Non-STAS
	13
	0.519 [0.500, 0.538]
	<0.001
	0.523 [0.473, 0.573]
	0.864
	



	ROS1 rearrangement
	
	
	
	
	
	



	STAS
	3
	0.040 [0.023, 0.067]
	0.359
	0.040 [0.023, 0.068]
	0.050
	0.003



	Non-STAS
	3
	0.008 [0.004, 0.018]
	0.315
	0.009 [0.004, 0.020]
	0.966
	



	KRAS mutation
	
	
	
	
	
	



	STAS
	3
	0.059 [0.039, 0.089]
	0.168
	0.053 [0.029, 0.096]
	0.161
	0.284



	Non-STAS
	3
	0.033 [0.020, 0.053]
	0.301
	0.033 [0.019, 0.056]
	0.375
	







CI, Confidence interval; STAS, spread through air space.
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Table 5. Comparisons of prognosis between lung cancers with STAS and non-STAS.
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	Number

of Subset
	Fixed Effect

[95% CI]
	Heterogeneity Test

[p-Value]
	Random Effect

[95% CI]
	Egger’s

Test

[p-Value]





	Overall survival
	25
	1.684 [1.584, 1.791]
	<0.001
	2.119 [1.811, 2.480]
	0.001



	Adenocarcinoma
	21
	1.656 [1.552, 1.766]
	<0.001
	2.093 [1.756, 2.496]
	0.005



	Squamous cell carcinoma
	1
	4.208 [2.190, 8.083]
	1.000
	4.208 [2.190, 8.083]
	-



	Recurrence-free survival
	31
	1.888 [1.763, 2.023]
	<0.001
	2.372 [2.018, 2.788]
	<0.001



	Adenocarcinoma
	25
	2.028 [1.869, 2.200]
	<0.001
	2.633 [2.145, 3.232]
	<0.001



	Squamous cell carcinoma
	1
	1.610 [1.066, 2.431]
	1.000
	1.610 [1.066, 2.431]
	-







CI, Confidence interval; STAS, spread through air space.
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