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Abstract: Super-resolution ultrasound imaging, based on the localization and tracking of single in-
travascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can
be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if
a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla,
and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist
prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min
before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick
probe. The super-resolution images were manually segmented, separating cortex, outer medulla,
and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule
tracks using the arterial blood flow direction. The mean microbubble velocities from each scan
were compared. This showed a significant prazosin-induced velocity decrease only in the cortical
arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla
descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclu-
sively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble
velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.

Keywords: contrast-enhanced ultrasound; ultrasound localization microscopy; kidneys; microvascular
flow; Sprague Dawley rats; prazosin

1. Introduction

Super-resolution ultrasound (SRUS) imaging allows mapping of the vasculature below
the diffraction limit of conventional ultrasound, making in vivo microvascular ultrasound
imaging possible [1]. An approach often used for SRUS is localizing and tracking individual
intravascular microbubbles (MBs) over multiple successive image frames: a technique also
called ultrasound localization microscopy [1–3]. The MBs have a small size (SonoVue
mean size is around 2.5 µm), a viscosity similar to blood, and their rheology has been
found comparable to that of erythrocytes [4–8]. Therefore, MB velocity can be used as
a surrogate for blood velocity. Many strategies have been undertaken to link individual
MBs across frames to generate reliable velocity estimations. Initially, MBs were tracked by
connecting an individual MB to the nearest MB in the next frame or cross-correlating each
MB’s intensity in small search windows between successive frames [2,3]. Since then, more
advanced approaches have been proposed [9–14].
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The unique arrangement of the renal vasculature is central in the filtration of plasma
and the secretion/reabsorption processes that determine the final urine composition, all
required for normal renal function. Additionally, renal blood flow alterations have been
linked with, e.g., diabetic nephropathy and renal ischemia-reperfusion injury [15–19].
However, measuring the intrarenal blood flow is difficult due to the lack of in-depth
microvascular imaging methods. From 2D SRUS data, estimations of the in-plane MB
velocities in an entire image cross-section can be made. Accordingly, SRUS can evaluate
renal cortical and medullary blood velocities simultaneously.

SRUS data have been used to study structural vascular alterations in different diseases,
including chronic kidney disease, cancer, and vasa vasorum in atherosclerosis [20–24].
MB velocities have been extracted from healthy animal and human organs, including the
kidneys [25,26]. However, studies showing that MB velocities can be used to quantify
alterations in the vascular flow are sparse. In the cerebral vasculature of old mice, MB
velocities were shown to decrease compared with younger animals [27]. In the eye of a
rabbit, the MB velocities in retinal and retrobulbar vessels were shown to decrease with
increasing ocular pressure [28], and recently, increased MB velocities were shown in renal
cortical radial arteries of hypertensive rats compared with normotensive ones [29].

The MB velocity vectors are registered in velocity maps that show the MB tracks from
all types of vessels in the image cross-section. In the mouse cerebral vasculature, the MB
velocities were estimated across all vessel types in different functional brain areas [27]
and, in the hypertensive rats, only velocities in the cortical radial arteries and veins were
estimated, while the medullary microvasculature was not imaged [29]. Like the brain,
the different anatomical areas of the kidneys have unique functions with a corresponding
unique vascular anatomy and blood flow. This study aimed at investigating the quantitative
possibilities of SRUS-derived MB velocities from the renal cortex and medulla of rats using
a setup with a clinical ultrasound scanner and a hierarchical Kalman tracker for MB velocity
estimation [10]. Prazosin is an α1-adrenoceptor antagonist that can substantially decrease
renal blood flow via systemic vasodilation. We investigated if a decrease in MB velocity
in the separated arterial and venous beds of the renal cortex, outer medulla, and inner
medulla was detectable after intravenous prazosin administration.

2. Materials and Methods
2.1. Ethical Considerations

All procedures presented in this paper followed protocols approved by the National
Animal Experiments Inspectorate under the Ministry of Food, Agriculture and Fisheries
of Denmark (license number 2020-15-0201-00547 issued on 4 June 2020), project number
P20-457 (28 August 2020). The experiments were ethically in accordance with the EU
Directive 2010/63/EU for animal experiments. The rats were held in a 12/12-h light/dark
cycle and could freely access standard chow and water. Trained animal caretakers were
responsible for the rats’ well-being until the experiments.

2.2. Animal Preparations

Eight male Sprague Dawley rats were scanned; seven were included in the results
(see exclusion criteria below). Physiological data on the rats are found in Supplementary
Table S1. Initial anaesthetization was performed in a chamber supplied with 5% isoflurane
(Vetflurane, 1000 mg/g, Virbac, Carros, France) in 65% nitrogen/35% oxygen, followed
by tracheotomy, tube insertion, and ventilation with a 7025 Rodent Ventilator (Ugo Basile,
Gemonio, Italy; 69 breaths/min). Subsequently, 1–2% isoflurane maintained the anesthesia.
Two catheters were inserted in the left jugular vein: one for infusion of the muscle relaxant,
Nimbex (0.85 mg/mL, GlaxoSmithKline, London, UK, 20 µL/min) and injection of prazosin
hydrochloride (0.1 mg/kg, Sigma-Aldrich, St. Louis, MO, USA), and one for infusion of
SonoVue (Bracco, Milan, Italy). A catheter in the right carotid artery was connected to a
Gould Statham P23-dB pressure transducer (Gould, CA, USA), continuously recording the
mean arterial pressure (MAP). The rats lay on a heating table (~37 ◦C) and laparotomy
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exposed the left kidney. A metal retractor on the left side of the diaphragm reduced
respiratory motion transferred to the kidney.

2.3. Ultrasound Scanning and Prazosin Injection Procedure

The rats were scanned directly on the left kidney using a commercial bk5000 ultra-
sound scanner (BK Medical, Herlev, Denmark) modified for long data acquisitions. An
X18L5s hockey-stick probe (BK Medical, Herlev, Denmark) was secured with a holder on
the lateral side of the kidney to obtain central coronal image slices that included both the
renal cortex and medulla. The image plane was found using orientation with B-mode. The
SRUS data were obtained with line-per-line imaging (center freq. 10 MHz, mechanical
index 0.1, frame rate 54 Hz) using amplitude modulation interleaved with B-mode imaging,
the latter used for motion estimation (Supplementary Figure S1). The rats were scanned
for 10 min using a 1:20 dilution of SonoVue infused at 40–55 µL/min (SP210iw syringe
pump, WPI, Friedberg, Germany). Infusion rate was adjusted according to visible MBs on
the contrast-enhancing scanner display. For continuous MB inflow, the syringe rotated 180◦

every 10 s. The MB concentration, center frequency, mechanical index, and acquisition time
were adjusted in pre-trials to optimize SRUS imaging of both renal cortex and medulla.

The rats were SRUS scanned three times (Figure 1). Prazosin was administered during
the first minutes of SRUS scan 2. Triplex Doppler was acquired before SRUS scan 1 and after
SRUS scan 3 on the renal artery or one of its branches. Rats were excluded if MAP < 70 mmHg
at baseline or if there was no MAP response to prazosin. After the experiment, the rats were
euthanized in anesthesia.
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generated MB tracks were inserted in high-resolution images to generate the SRUS 
images. By scaling and mapping the vector velocity information from the MB tracking to 
a multicolored (RGB) wheel, MB velocity maps that display the MB direction (color) and 
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Figure 1. Timing of ultrasound scans and prazosin injection. Triplex Doppler included B-mode
imaging, color Doppler, and spectral Doppler. i.v. = intravenous, SRUS = super-resolution ultrasound.

2.4. Super-Resolution Ultrasound Imaging Post-Processing and Region Labeling

The SRUS image processing pipeline is outlined in Supplementary Figure S1 and ex-
plained briefly here. In each B-mode frame, non-rigid motion was estimated in 3 × 3 mm
patches with an 80% overlap [30]. In the contrast data, the MBs were detected after ap-
plying a threshold and Gaussian filtering, and their centroid localized using the weighted
centroid algorithm. The MBs were then motion-compensated using the estimated motions
and tracked with a hierarchical Kalman tracker [10]. Lastly, the generated MB tracks were
inserted in high-resolution images to generate the SRUS images. By scaling and mapping the
vector velocity information from the MB tracking to a multicolored (RGB) wheel, MB velocity
maps that display the MB direction (color) and velocity (intensity, brighter colors are faster)
were generated.

In MATLAB (R2020b, MathWorks, Natick, MA, USA), the MB velocity maps were
manually labeled by S.B.A. with the three separate areas: cortex, outer medulla, and inner
medulla (see example in the Results section). The cortex was delineated with an inner
boundary (toward the medulla) superficial to the larger arcuate vessels that run between
cortex and medulla. The outer medullas superficial boundary was set ~0.5–1 mm from the
arcuate or segmental vessels, meaning that the outer stripe of outer medulla was not fully
included. The loss of vascular bundles defined the transition from outer to inner medulla.
In each area, smaller regions of interest were drawn in which a mean flow angle for the
arterial flow was defined. A span of vessels going 125◦ (cortex) or 90◦ (medulla) from the
mean angle was included as artery/arteriole tracks. As the afferent arterioles radiate at
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different angles from the cortical radial arteries, the vessel span was wider in the cortex.
Vein/venule tracks were defined as tracks going in the opposite direction from the mean
artery flow angle [31].

2.5. Microbubble Velocity Estimations

MB velocities were estimated in six different vascular beds: cortical arteries/arterioles,
cortical veins/venules, outer medulla descending vasa recta, outer medulla ascending
vasa recta, inner medulla descending vasa recta, and inner medulla ascending vasa recta.
Generally, SRUS data must be acquired over a certain period depending on ultrasound
equipment, acquisition technique, and vascular bed to obtain enough MB detections to
generate a complete (or near-complete) image of the vasculature [32–35]. The MB velocities
are typically calculated from the entire scan period to obtain the most reliable estimates;
hence, the mean velocities from the three consecutive SRUS scans were compared. However,
during a minute-long period, dynamic alterations in the blood flow can occur [36–38]. To
better visualize dynamic alterations during scanning, the estimated MB velocities were
displayed in graphs as moving averages (30-s window). The MB velocities from the
following shorter periods of SRUS scan 2 were also compared to investigate the possibilities
of quantifying the immediate response to prazosin: baseline velocity (first 30 s), the velocity
at the max effect of prazosin on MAP (30 s with lowest MAP), and recovery velocity (last
30 s). Time for prazosin administration during SRUS scan 2 varied between animals from 51
to 184 s after scan start. Therefore, MAP and MB velocities from SRUS scan 2 were aligned
according to the prazosin injection time, with moving average MB velocities starting from
50 s before injection and ending 410 s after injection for all rats. The mean MB velocity for
SRUS scan 2 was estimated after prazosin injection resulting in 410 s of data. For SRUS
scans 1 and 3, the first 410 s of the acquisition were used to match SRUS scan 2. An overview
of the different periods is shown in Figure 2.
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blocks. The 460-s periods shown in the graphs with moving average microbubble velocities are the
solid-line blocks. MAP = mean arterial pressure.
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2.6. Statistical Analyses

Two variables (e.g., MB velocity in arteries/arterioles vs. veins/venules) were com-
pared with a paired t-test. Three consecutive measurements (e.g., MB velocities from the
three SRUS scans) were compared with repeated measures one-way ANOVA with a Green-
house Geisser correction. Post-hoc between-group comparisons were made with Tukey’s
multiple comparisons test. The scatter plots and graphs all show the means from the raw
data. Statistical tests for the MB velocities were calculated on transformed data as they had
a non-normal distribution (log- and square-root-transformed velocities in the cortex and
medulla, respectively). Statistical tests, graphs, and plots were made in GraphPad Prism
(version 9.2.0 for Mac, GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Segmentation and Analysis of the Normal Renal Vasculature

Figure 3 illustrates how the MB velocity map segmentation allowed separation of
the arterial and venous MB tracks in the three areas. By separating the descending from
ascending vasa recta, the vascular organization of the medulla stood out, e.g., with a clear
visualization of the descending vasa recta bundles of the outer medulla’s inner stripe
(Figure 3b). In the inner medulla, the bundle organization of the descending vasa recta
is lost [39], which is also evident from Figure 3b. The MB velocities in the cortical arter-
ies/arterioles and the descending vasa recta were higher than in the cortical veins/venules
and ascending vasa recta, respectively (Figure 3c, asterisks indicate results of paired t-test on
the log-transformed MB velocities in cortical arteries/arterioles vs. cortical veins/venules
(left graph, p = 0.0006) and square root-transformed MB velocities of the outer medulla
descending vs. ascending vasa recta (right graph, p < 0.0001)). The ascending vasa recta are
more numerous and larger in diameter than the descending vasa recta, which matches the
slower velocity [40]. However, the mean number of descending vasa recta MB tracks was
higher than ascending ones (SRUS scan 1: 1581 ± 366 vs. 1338 ± 398, p = 0.024). It could
be because many MBs disrupt before reaching the ascending vasa recta, as hypothesized
by Foiret et al. [25]. The baseline MB velocity in the cortical arteries/arterioles tended to
decrease with decreasing MAP (Figure 3d, Pearson’s correlation of log-transformed MB
velocities from the cortical arteries/arterioles and MAP: R2 = 0.62, p = 0.035.). However,
some rats had a MAP below the lower limit of renal autoregulation, which usually ensures
stable renal blood flow during acute changes in MAP.
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Figure 3. Segmentation of rat kidneys with separation of arteries/arterioles and veins/venules in the
cortex, outer medulla, and inner medulla. (a-1,a-2) show an example of the regions used to separate
arteries/arterioles and veins/venules in the three areas (color wheel velocity range: 0–20 mm/s). In
(a-2), red is the cortex, dark blue is the outer medulla, and turquoise is the inner medulla. The yellow
arrows indicate the mean angle of the arterial flow direction. (b) shows the separated tracks from the
inserts in (a-1) (velocity range: 0–5 mm/s in the medulla, 0-20 mm/s in the cortex). (c) shows MB
velocities (mean and standard deviation) from arterial vs. venous tracks (SRUS scan 1). (d) shows the
relationship between baseline MB velocity in the arteries/arterioles of cortex and outer medulla and
the MAP. AVR = ascending vasa recta, CO = cortex, DVR = descending vasa recta, IM = inner medulla,
MB = microbubble, OM = outer medulla. *** = p ≤ 0.001, **** = p ≤ 0.0001. Scale bars = 2 mm.

3.2. Effects of Prazosin on MAP and Intrarenal Microbubble Velocities

The systemic delivery of prazosin was illustrated by a decrease in the MAP. The MAP
was 84 ± 8 (mean ± standard deviation) mmHg during the first 30 s of SRUS scan 2
(Figure 4(a-1,a-2)), similar to MAP during SRUS scan 1 (86 ± 8 mmHg). The maximum
drop in MAP occurred 52–82 s after prazosin injection (54 ± 4 mmHg). At the end of
SRUS scan 2, MAP had increased to 65 ± 8 mmHg and remained low in SRUS scan
3 (65 ± 6 mmHg). The 30-s periods (grey columns in Figure 4(a-1)) were compared,
showing a statistically significant decrease and increase in MAP (F(1.878, 11.27) = 65.00,
p < 0.0001); Tukey’s multiple comparisons test is shown in Figure 4(a-2) (baseline vs. max
drop p < 0.0001, max drop vs. recovery p = 0.007, baseline vs. recovery p = 0.002). The
renal artery’s normal spectral Doppler pulsed-wave pattern with a high end-diastolic
velocity (Figure 4(b-1)) changed to a pattern with low end-diastolic velocity after prazosin
(Figure 4(b-2)), reflecting the decreased vascular tone. Triplex Doppler images from all rats
are found in Supplementary Figure S2.
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Figure 4. Effect of prazosin on mean arterial pressure and renal artery triplex Doppler. (a-1,a-2) show
the effect of prazosin on mean arterial pressure during SRUS scan 2 (mean and standard deviation
shown). (b-1) shows an example of the color Doppler and spectral Doppler wave pattern from the
normal renal artery or one of its branches at baseline before SRUS scan 1. (b-2) shows a decreased
color Doppler signal and altered spectral Doppler wave pattern from the same artery after completion
of SRUS scan 3. ** = p ≤ 0.01, **** = p ≤ 0.0001.

To further support the estimated MB velocities, ultrasonic perivascular flow probe
measurements of renal blood flow after prazosin injection from a separate unpublished
trial are found in Supplementary Figure S3. They showed that prazosin at a lower dose
(0.0125 mg/kg vs. 0.1 mg/kg) significantly decreased the renal blood flow.

The moving average MB velocities from the six vascular beds during SRUS scan 1–3
are displayed in Figure 5.

In the cortical arteries/arterioles, outer medulla descending vasa recta, and outer
medulla ascending vasa recta, a prazosin-induced MB velocity drop was visible from the
moving average velocity graphs from SRUS scan 2 when compared with SRUS scan 1.
In the cortical arteries/arterioles, the decrease seemed to continue in SRUS scan 3, while
in the outer medulla ascending vasa recta and outer medulla ascending vasa recta, the
velocity increased to baseline levels in SRUS scan 3. A velocity decrease in the cortical
veins/venules also seemed to occur after prazosin, but similar random fluctuations were
seen during SRUS scan 1. In the inner medulla descending vasa recta and inner medulla
ascending vasa recta, no apparent effect of prazosin was visible.
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In Figure 6, the MB velocities from the cortical arteries/arterioles, outer medulla
descending vasa recta, and outer medulla ascending vasa recta are displayed along with the
MAP during each scan to illustrate the temporal relationship between the two parameters.

In the cortical arteries/arterioles, prazosin lowered the MB velocities significantly
(p = 0.013). Post-hoc comparison showed that the MB velocity decreased significantly from
SRUS scan 1 to scan 2 (p = 0.032). Prazosin also significantly lowered the MB velocities in
the outer medulla descending vasa recta (p = 0.026). The post-hoc comparison showed that
the MB velocity decreased significantly from SRUS scan 1 to SRUS scan 2 (p = 0.037) and
increased in SRUS scan 3 to a level significantly higher than SRUS scan 2 (p = 0.013). The
decrease and increase in MB velocity in the outer medulla ascending vasa recta were not
statistically significant (p = 0.064). The remaining vascular beds showed no statistically
significant MB velocity alterations between scans and were not analyzed further.

The three 30-s periods within SRUS scan 2 were also analyzed for the cortical arter-
ies/arterioles, outer medulla descending vasa recta, and outer medulla ascending vasa
recta. The results were slightly different: in the cortical arteries/arterioles, the ANOVA was
non-significant, but the post-hoc comparison still showed a decrease in MB velocity from
the baseline period to the period with max MAP drop (p = 0.031). In the outer medulla
descending vasa recta, all tests were non-significant. In the outer medulla ascending
vasa recta, prazosin lowered the MB velocity significantly (p = 0.012), with the post-hoc
test showing velocity decrease from baseline period to the period with max MAP drop
(p = 0.040). The mean MB velocities and results from all ANOVA and post-hoc tests are
shown in Supplementary Table S2.

The cortical arteries/arterioles have a fast flow and complex geometry. In this area
there were seconds with no generated MB tracks (271 ± 46 of the 410 s of SRUS scan
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1 had velocity estimations). For the outer medulla descending vasa recta with a more
homogenous slow flow and a simpler vascular geometry, 405 ± 4 s had velocity estima-
tions. Supplementary Figure S4a illustrates the difference in number of track positions/s
during SRUS scan 1 in the different vascular beds. There was a steady number of counted
MBs/s throughout scanning (Supplementary Figure S4b) and no correlation between MB
count/s and number of seconds with velocity estimations in the cortical arteries/arterioles
(Pearson’s correlation, R2 = 0.088, p = 0.519).
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SRUS scan 1 for an easier immediate visual comparison in SRUS scans 2 and 3. The scatter plots on
the right show the mean MB velocities from the raw data of the three scans. The asterisks indicate the
result of Tukey’s post-hoc test. * = p ≤ 0.05, ns = non-significant (p > 0.05).

4. Discussion

In this study, manual segmentation of SRUS images was used to isolate the unique
renal vascular beds of the cortex and medulla and extract MB velocities from arter-
ies/arterioles or veins/venules separately. It was possible to detect and differentiate
acute prazosin-mediated alterations in MB velocities in the separated vascular beds and
display their dynamic responses using the moving average MB velocities during SRUS
acquisition. An acute response to prazosin was detectable in the MB velocities from the
renal outer medulla’s microvasculature, which is usually difficult to examine in vivo due to
its deep location. These results support that SRUS can be used to investigate the intrarenal
distribution of blood velocities in different conditions. Simultaneous quantification of
the outer and inner medullary blood flow opens possibilities to investigate how regional
blood flow alterations influence the corticomedullary gradients of NaCl and urea in the
medulla [41,42]. Another clinically intriguing application is monitoring flow changes in
the ischemia-vulnerable outer medulla [19,43].

The MB velocities decreased significantly in response to prazosin in the cortical ar-
teries/arterioles, outer medulla descending vasa recta, and outer medulla ascending vasa
recta (the latter only when analyzing the 30-s periods of SRUS scan 2). This differentiated
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response in MB velocity can be explained by the distribution of the α1-adrenoceptor, located
on the vascular smooth muscle cells of the arteries and arterioles. Prazosin inhibits the
α1-adrenoceptor causing vasodilation. When administered intravenously, prazosin reduces
the total peripheral resistance and the vasodilation causes the renal blood flow and the
cortical artery/arteriole MB velocity to decrease [44,45]. The descending vasa recta do not
have vascular smooth muscle cells but are surrounded by pericytes. One study has shown
a higher pericyte density in the outer medulla compared with inner medulla [46]. Likewise,
adrenergic nerve fibers have been shown to travel along the outer medulla descending
vasa recta and diminish in the inner medulla [47]. These differences could account for the
difference in our findings: only in the outer medulla was a response to prazosin measured.
Norepinephrine has been shown to cause outer medulla vasoconstriction in vitro and re-
duce medullary blood flow in vivo, supporting the presence of α1-adrenoceptors in this
area [37,46,48]. However, the mentioned studies do not directly demonstrate the existence
of the α1-adrenoceptor in the outer medulla descending vasa recta pericytes, and the MB
velocity decrease could also be caused by dilation of the upstream efferent arterioles [49].
The outer medulla ascending vasa recta have mostly been found not associated with peri-
cytes [50,51], but a decrease in MB velocity was found when analyzing 30-s periods of SRUS
scan 2. It could be an effect of the velocity drop on the arterial side of the outer medulla
circulation. Lastly, we did not find a response to prazosin in the cortical veins/venules.
The α1-adrenoceptors are present in veins, but the venous basal tone is low, and prazosin
may not have dilated the veins enough.

Only a few other SRUS studies have quantified MB velocity alterations in relation
to pathological changes in blood flow, e.g., slower MB velocities in the brains of older
compared with younger mice, or slower MB velocities in the retinal and retrobulbar vessels
in the rabbit eye at high ocular pressures [27,28]. In the latter, arteries and veins were
separated bi-directionally with flow towards (arteries) or away (veins) from the probe. Due
to the renal vascular complexity, that approach was not feasible in our study. Similarly
to our approach, a recently published study showed increased MB velocities in the renal
cortical radial arteries of hypertensive rats by separating arteries and veins based on the
MB flow direction towards or away from the renal surface [29]. Another recent SRUS
study used the pulsatility of arteries to separate them from veins in cross-sectional images
of the murine cerebral vasculature [52]. They used a high temporal resolution (1000-Hz
frame rate) to capture the velocity fluctuations within a single cardiac cycle of mice with a
550-beats/min heart rate. For rats with ∼350 heart beats/min, a frame rate much higher
than used in our study (54 Hz) would be required. The arterial MB tracks in the renal
cortex can come from different vessel types with different velocities. In our study, some
tracks were from smaller branches of the arcuate arteries, most were from cortical radial
arteries, some were probably from afferent or efferent arterioles, and some MBs might even
have been tracked in the capillary network (the latter two not substantiated). Depending
on the type of vessel in which the MBs were tracked, estimated velocities ranged from
the minimum to the maximum of our tracking algorithm’s velocity span (0–15 mm/s).
Investigating them as a whole may blur the outcome of an intervention or a disease, as the
vessels may respond differently. Additionally, while most of the cortical arterioles project
towards the renal surface, some have a direction toward the medulla, and the same goes
for the veins [53]. Accordingly, separating vessels based on direction may mix arterioles
with the venules and vice versa. Moreover, capillaries run in all directions and may occur
in both regions. Therefore, the separation of vessels based on pulsatility is a compelling
alternative for the renal cortex [52].

The MB velocity is typically estimated as a mean of all tracks generated during
data acquisition [2,3,21,25,28], but this will not necessarily reveal dynamic vascular flow
alterations. Therefore, we visualized the MB velocities as moving averages during scanning
and compared MB velocities from shorter 30-s intervals within the same scan. However,
the data from the 30-s periods should be interpreted cautiously, as they are based on fewer
velocity estimates. The estimated velocities at a given time point are highly dependent
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on the conditions for MB tracking, such as complexity of the vascular geometry and
distribution of the MBs, variations in flow velocity and pulsatility, signal-to-noise ratio,
out-of-plane motion, or errors in MB localization [32,33,54,55]. Such variations depending
the on vascular complexity were illustrated with the difference in number of track positions
between the intricate cortical arteries/arterioles versus the simpler outer medulla vessels
(Supplementary Figure S4a). A way to optimize the regional velocity estimations would
be to adjust the MB infusion concentration according to the area of interest; the highly
perfused cortex could be imaged with an even lower MB concentration for better tracking.

There are some limitations to this study. Firstly, we measured only the velocity of MBs
in the flowing blood, not the blood volume flow, which would require precise estimations of
vessel diameters. Vessel diameters are highly dynamic [56,57], and the diameters estimated
from the accumulated MB tracks do not necessarily represent a vessel diameter at a given
time. As the velocity estimations from shorter periods are based on fewer tracks that most
likely do not fill the vessel lumen, valid diameters cannot be extracted. The evaluation of
tissue perfusion based on velocities alone should be done carefully, as higher velocities do
not necessarily mean better blood flow, it also depends on the cross-sectional vessel area
and number of perfused microvessels. Another limitation is the lack of a gold standard
reference for verifying the MB velocities. The velocities derived from 2D SRUS are likely to
be underestimated due to the out-of-plane vessels [14,33,58]. With a low frame rate, one
could also speculate that only the slowest moving MBs in the periphery of a vessel with
a parabolic flow are tracked. A frame rate in the kHz range would improve tracking by
increasing the number of detected MBs/s and allow estimation of more realistic velocities,
as exemplified in a rat brain with velocities ranging from mm/s to cm/s [2]. For dynamic
evaluations of the vasculature, ultrafast Doppler or fast synthetic aperture vector flow
imaging could be an alternative to SRUS [59,60]. However, these techniques still have
lower spatial resolution than SRUS and Doppler will not allow, e.g., separation of the
descending and ascending vasa recta in an entire cross-section of the kidney. Finally,
because we used a clinical ultrasound scanner with a low frame rate, a high prazosin
dose was used to ensure a measurable response in the intrarenal vessels, especially the
medullary microcirculation with a slow flow. For detection of subtler velocity alterations,
optimization of SRUS acquisition or post-processing parameters such as increased frame
rate or improved tracking algorithms that can cope with overlapping MBs are necessary [61],
especially since transcutaneous scanning needed for longitudinal studies will introduce
additional challenges for MB tracking [62].

5. Conclusions

In conclusion, super-resolution ultrasound imaging using microbubble localization
and tracking makes it possible to evaluate microbubble velocities in separated arterial and
venous vascular beds of rats’ renal cortex, outer medulla, and inner medulla. In particular,
the medullary microcirculation has previously been inaccessible for in vivo measurements.
Therefore, super-resolution ultrasound imaging has a promising potential as a tool to
investigate the intrarenal distribution of the renal blood flow velocities under different
physiological and pathological conditions.

6. Patents

Patent on the tissue motion correction algorithm by J.A.J. and I.T. used in this study
has been purchased by BK Medical ApS, Herlev, Denmark.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12051111/s1, Table S1: Animal data.; Table S2: Mi-
crobubble velocities; Figure S1: Super-resolution ultrasound imaging post-processing overview.
Figure S2: Triplex Doppler images; Figure S3: Prazosin effect on renal blood flow; Figure S3: Track
positions and microbubble count.
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