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Abstract: Differentiating hepatocellular carcinoma (HCC) from other primary liver malignancies
in the Liver Imaging Reporting and Data System (LI-RADS) M (LR-M) tumours noninvasively
is critical for patient treatment options, but visual evaluation based on medical images is a very
challenging task. This study aimed to evaluate whether magnetic resonance imaging (MRI) models
based on radiomics features could further improve the ability to classify LR-M tumour subtypes.
A total of 102 liver tumours were defined as LR-M by two radiologists based on LI-RADS and
were confirmed to be HCC (n = 31) and non-HCC (n = 71) by surgery. A radiomics signature was
constructed based on reproducible features using the max-relevance and min-redundancy (mRMR)
and least absolute shrinkage and selection operator (LASSO) logistic regression algorithms with
tenfold cross-validation. Logistic regression modelling was applied to establish different models
based on T2-weighted imaging (T2WI), arterial phase (AP), portal vein phase (PVP), and combined
models. These models were verified independently in the validation cohort. The area under the curve
(AUC) of the models based on T2WI, AP, PVP, T2WI + AP, T2WI + PVP, AP + PVP, and T2WI + AP +
PVP were 0.768, 0.838, 0.778, 0.880, 0.818, 0.832, and 0.884, respectively. The combined model based
on T2WI + AP + PVP showed the best performance in the training cohort and validation cohort.
The discrimination efficiency of each radiomics model was significantly better than that of junior
radiologists’ visual assessment (p < 0.05; Delong). Therefore, the MRI-based radiomics models had a
good ability to discriminate between HCC and non-HCC in LR-M tumours, providing more options
to improve the accuracy of LI-RADS classification.

Keywords: hepatocellular carcinoma; diagnosis; radiomics; magnetic resonance imaging

1. Introduction

The Liver Imaging Reporting and Data System (LI-RADS) was developed by the Amer-
ican College of Radiology to standardise the interpretation and reporting of imaging for
hepatocellular carcinoma (HCC). According to the possibility of liver lesions from definitely
benign to definitely HCC, LI-RADS provides 5 categories from LR-1 to LR-5, which play cru-
cial roles in guiding diagnosis and clinical treatment [1]. Previous studies have suggested
that the LR-5 class was associated with unfavourable pathological features of resected
HCC [2], and confirmed the potential prognostic role of LI-RADS classification, supporting
hepatectomy especially for the LR-5 subclass [3]. In the field of liver transplant, although
no significant differences were observed between LR-4 and LR-5 HCC probability when
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LI-RADS was compared with explant pathology [4], every nodule with an intermediate-to-
high HCC probability defined by LI-RADS should be given sufficient attention and entered
into the Metroticket 2.0 calculator in order to grant appropriate performance [5].

As a special category, LI-RADS M (LR-M) was defined as “probably or definitely
malignant but not specific for HCC” in LI-RADS v2017 and as the refined imaging stan-
dard in version 2018. Approximately 93% of LR-M lesions based on magnetic resonance
imaging (MRI) are pathologically diagnosed as malignancies, including HCC, intrahepatic
cholangiocarcinoma (ICCA), combined hepatocellular-cholangiocarcinoma (CHC), and
metastases, of which 36% are HCC [6]. Compared with HCC, the therapeutic regimen
and prognosis of non-HCC in LR-M are significantly different. For example, ICCA is
considered a contraindication to liver transplantation because of its high recurrence rate,
and surgical resection is more common. Additionally, controversies persist regarding CHC
treatment [7,8]. Although biopsy can clarify the specific pathological types of LR-M lesions,
the clinical application of this method is still controversial because of its potential risk of
dissemination. Therefore, differentiating HCC from other primary liver malignancies in
LR-M noninvasively is critical.

Serum markers are widely used in clinical tumour diagnosis. Compared with those
in HCC patients, the carbohydrate antigen19-9 levels were higher in ICCA patients and
patients with combined tumours, while the AFP levels were lower in ICCA patients [9].
However, serum markers reveal low specificity and are susceptible to hepatic and extra-
hepatic conditions. Presently, MRI is widely used in the diagnosis and prognosis of liver
tumours. To identify HCC and non-HCC malignancies, ‘not showing delayed central
enhancement’ is correlated with HCC, and ‘biliary dilatation or liver surface retraction’ is
correlated with ICCA [10]. An intratumoural septum and non-targetoid restriction, as well
as an enhancing capsule and blood products in the lesion, may be useful to differentiate
HCC assigned to LR-M from non-HCC malignancy on gadoxetic acid-enhanced MRI [11].
Other researchers have found that the T2-weighted imaging (T2WI) targetoid appearance,
which is similar to the diffusion-weighted imaging (DWI) targetoid appearance, can be
used as a feature of non-HCC malignancies [9]. However, the differentiation efficiency
of conventional MRI features in combined tumours and small tumours is limited [12,13].
These MRI features have not yet reached a consensus and are limited by visual evaluation.
Therefore, evaluating these differences between HCC and non-HCC patients in LR-M may
not be sufficient and objective.

Radiomics, as an emerging field in radiology, provides nonvisual information related
to tumour heterogeneity by extracting many quantitative features from high-throughput
medical images and quantifying the data. Previous studies have demonstrated the potential
of radiomics in differentiating and diagnosing liver tumours, evaluating the therapeutic
efficacy, and predicting the prognosis [14–16]. At the same time, when comparing different
evaluation methods, multisequence-based MR radiomics was significantly more specific
than the European Association for the Study of the Liver and LI-RADS criteria for HCC in
high-risk patients with hepatitis B virus dominance [17]. However, few studies have been
conducted on the performance of radiomics in determining the pathological type of LR-M
and differentiating HCC from LR-M.

Therefore, this study aimed to establish and verify the radiomics model by extract-
ing the features of multisequence-based MRI, which was used to discriminate between
HCC and non-HCC in LR-M, and the discriminating efficacy was compared with the
results of radiologists. Developing a recommended radiomics model for the non-invasive
differentiation of HCC from LR-M may guide clinicians in developing appropriate treat-
ment strategies.

2. Materials and Methods
2.1. Study Population

This retrospective study was approved by the Medical Ethics Committee, and the
requirement to obtain written informed consent was waived. To ensure that patients were
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eligible for this study, two radiologists evaluated liver tumours that confirmed the LR-M
MRI diagnostic criteria from picture archiving and communication systems according to
LI-RADS v2018 from January 2011 to January 2020. The inclusion criteria were as follows:
(1) patients with chronic hepatitis B virus infection via laboratory tests; (2) liver cirrhosis
confirmed by pathological examination via liver biopsy or surgery; and (3) pathological
results of the tumours obtained through puncture or surgery within one month after MR
examination. Patients with liver cirrhosis younger than 18 years, congenital or vascular-
related cirrhosis, and who received any treatment for liver tumours were excluded. For
patients with multiple lesions, the target lesions matched the surgically resected lesions,
and the pathological results were selected for analysis. Any discrepancies in the results
were resolved by consensus between the two observers. Finally, a total of 90 patients with
102 tumours were included in this study (Figure 1).

Figure 1. Flowchart showing the inclusion and exclusion of patients.
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2.2. MR Examination

The images of all 90 patients were acquired using a 1.5T MRI system with an eight-
channel phased array software coil. Among these 90 patients, 76 were subjected to Scanner
1 (HDxt2012; GE Medical Systems, Fairfield, OH, USA) with the following sequences:
(1) axial fat-suppressed (FS) T2WI with a fast spin-echo (FSE) sequence, repetition time
(TR)/echo time (TE) = 6316/90.9 msec, slice thickness = 7 mm, interslice gap = 1 mm,
field of view (FOV) = 440 × 352 mm and matrix size = 288 × 224; (2) contrast-enhanced
FS T1-weighted imaging (T1WI) with a three-dimensional liver acquisition and volume
acceleration sequence, TR/TE = 4.2/2.0 ms, slice thickness = 4.8 to 5.4 mm, interslice gap
= −1.4 to −2.7 mm, FOV = 420 × 336 mm and matrix size = 320 × 192. The images of
another 14 patients were acquired using Scanner 2 (Magnetom Avanto, Siemens, Erlangen,
Germany) with the following sequences: (1) axial FS T2WI with an FSE sequence, TR/TE
= 2000/112 msec, slice thickness = 7 mm, interslice gap = 1 mm, FOV = 360 × 360 mm,
and matrix size = 256 × 256; (2) contrast-enhanced FS T1WI examination with a volume
interpolated body examination sequence, TR/TE = 3.9/1.4 msec, slice thickness = 3 mm,
interslice gap = 0.6 mm, FOV = 380 × 280 mm and matrix size = 288 × 162. Gadodiamide
(Omniscan; GE Health caree, Co., Cork, Ireland) was injected at a rate of 2.0 mL/s in
contrast-enhanced scans for a total dose of 0.2 mL/kg body weight. Enhanced arterial
phase (AP), portal venous phase (PVP), and delayed phase data were obtained at 22–25 s,
60–65 s, and 150 s, respectively, after contrast injection.

2.3. Image Analysis

Image analysis was performed independently by two abdominal radiologists (Y.Y.L.
and H.P.Z., with 8 and 12 years of experience in abdominal MRI, respectively), blinded to
the patient’s clinical history and pathological diagnosis. Before this analysis, two observers
reached a specific agreement for each LR-M feature defined by LI-RADS v2018 and con-
ducted exercises with several cases not included in the study. According to LI-RADS v2018,
the LR-M criteria included targetoid or non-targetoid masses. The imaging manifestations
of targetoid masses were defined as follows: targetoid dynamic enhancement (including
rim arterial phase hyperenhancement (APHE), peripheral “washout,” and delayed central
enhancement) and targetoid appearance on DWI or hepatobiliary phase (HBP) (including
targetoid restriction and targetoid HBP appearance). Nontargetoid masses were defined as
tumours with one or more of the following characteristics: infiltrative appearance, marked
diffusion restriction, necrosis, or severe ischaemia, liver surface retraction, and adjacent
biliary obstruction. The MR scanning programme of our institution and the DWI and Gd-
EOB-DTPA protocols were unnecessary, so the targetoid mass evaluated by the observers
mainly included rim APHE, peripheral “washout,” and delayed central enhancement. Dur-
ing the image evaluation, any discrepancies in the results were resolved by the consensus
of the two observers.

Visual evaluation ability was tested by another pair of junior and senior abdominal
radiologists (X.F.Q. and X.J.H., with 4 and 15 years of experience in abdominal MRI, respec-
tively), who were responsible for marking HCC and non-HCC in selected cases without
knowing the pathological diagnosis. Because there are no specific radiological diagnostic
criteria to provide reference for the diagnosis of atypical enhanced HCC, two radiologists
can only distinguish HCC and non-HCC in LR-M based on their own clinical experience.

2.4. Histopathologic Evaluation

All selected lesions obtained histopathological information through surgical resection
or puncture, which was confirmed by pathologists with more than 5 years of experience in
pathology. For patients with multiple lesions, we used the Couinaud Liver Segmentation
method to locate the lesions to ensure that the obtained pathological information matched
the lesions.
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2.5. Image Segmentation and Radiomics Feature Extraction

Radiomics analysis was performed on the axial T2WI, AP, and PVP images. The
grey-level standardisation of all the images was executed before the data were downloaded
from the picture archiving and communication systems. In-house software (Artificial
Intelligence Kit, v3.2.2; GE Healthcare) was used for image registration, and all the voxels
were resampled to a uniform pixel size of 1 × 1 × 1 mm3. Subsequently, a free open
source software package (ITK-SNAP, Version 3.6.0) was used to segment the region of
interest (ROI) of the tumour layer-by-layer and automatically merge each layer of ROI into
a volume of interest (VOI). The extent of ROIs included the boundary of the tumours as
much as possible but did not involve the adjacent background liver tissue. The ROIs of
all the tumours were delineated independently by two radiologists (Z.F. and J.Z., with
16 and 9 years of experience in MRI, respectively), and the interobserver reproducibility
was evaluated by calculating the intraclass correlation coefficient (ICC).

The radiomics feature extraction process followed the image biomarker standardis-
ation initiative (IBSI) [18]. First, the VOIs of T2WI, AP, and PVP were imported into AK
software in batches, and then automatically extracted a total of 851 features in each phase,
including the first-order features, shape factors, the grey-level cooccurrence matrix (GLCM),
run-length matrix (RLM), grey-level size zone matrix (GLSZM), neighbourhood grey-tone
difference matrix (NGTDM), and transform features (including wavelet features). The
complete delineation of the workflow is shown in Figure 2.

Figure 2. Schematic diagram of the processing and analysis flowchart. ROIs were manually delineated
over the whole tumour layer by layer on T2WI, AP, and PVP images and automatically merged into
a VOI. Radiomics features were extracted automatically using Artificial Intelligence Kit software.
Standardisation, max-relevance, mRMR, and LASSO analyses were used to reduce the redundancy or
selection bias of the features. Finally, different models were constructed and verified. MRI, magnetic
resonance imaging; ROI, region of interest; VOI, volume of interest; GLCM, grey-level cooccurrence
matrix; RLM, run-length matrix; mRMR-40, max-relevance and min-redundancy; LASSO, least
absolute shrinkage and selection operator.

2.6. Radiomics Features Analysis

All included tumours were randomly divided into a training cohort (n = 72) and
a validation cohort (n = 30) according to a 7:3 ratio for modelling and verification. The
feature dimensionality reduction and selection were fulfilled as follows. First, the outlier
values were replaced by the median value of the particular variance vector once the
values were beyond the range of the mean and standard deviation. Standardisation was
performed to normalise the data in a specific interval. Second, the max-relevance and
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min-redundancy algorithm (mRMR) was used to remove the redundant features. Finally,
the least absolute shrinkage and selection operator (LASSO) analysis was performed to
reduce the redundancy of the features. The regularisation parameter (λ) of LASSO was
used to perform 10-fold cross validation and select features with nonzero coefficients
(Figure 3). The radiomics score (rad-score) of each tumour was calculated through a linear
combination of the valuable features multiplied by their respective coefficients.

Figure 3. Feature selection using LASSO logistic regression of T2WI (A,B), AP (C,D), PVP (E,F),
T2WI + AP (G,H), T2WI + PVP (I,J), AP + PVP (K,L), and T2WI + AP + PVP (M,N) imaging. The
LASSO binary logistic regression model was used to select features and the regularisation parameter
(λ) of the LASSO was used to perform 10-fold cross-validation (A,C,E,G,I,K,M). The coefficients
were plotted against the log (λ) sequence, and the vertical line was drawn at the value selected
using 10-fold cross-validation in the ln(lamda) sequence, nonzero coefficients were selected finally
(B,D,F,H,J,L,N). LASSO, least absolute shrinkage and selection operator.

2.7. Model Construction and Validation

Stepwise logistic regression analysis was used to construct a radiomics model to
identify HCC and non-HCC and included T2WI, AP, PVP, and the corresponding combined
models. The model was further validated in the validation cohort. Simultaneously, receiver
operating characteristic (ROC) curves were generated to evaluate the performance of two
radiologists (junior and senior radiologists) and various targetoid masses (rim APHE,
peripheral “washout,” and delayed central enhancement) in distinguishing HCC and non-
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HCC. The discriminative performance of the radiologists, targetoid masses, and different
models was compared using the DeLong test.

2.8. Statistical Analysis

The ICC was first used to test the consistency of the radiomics features extracted
between operators. Cohen’s k statistic was used to assess the consistency of the imaging
features and LI-RADS category between two observers. The Kolmogorov–Smirnov test
was used to test the normal distribution of continuous variables. A two-sample t-test
was performed for normally distributed data, and the Mann–Whitney U test was used
for nonnormally distributed data. The identification performance of the radiomics model
was quantified by the area under the ROC curve (AUC) and the Delong test. All statistical
analyses were performed using R software (version 3.6.0; http://www.Rproject.org). A
two-tailed p < 0.05 indicated a statistically significant difference.

3. Results
3.1. Tumour Characteristics

A total of 90 patients (average age, 54.0 ± 11.5 years) with 102 tumours were enrolled
in this study and included 71 tumours in the non-HCC group (including 53 ICCAs, 1 CHC,
14 metastases, and 3 carcinosarcomas) and 31 tumours in the HCC group (including 8 well
differentiated HCCs, 19 moderately differentiated HCCs, and 4 poorly differentiated HCCs).
All tumours were randomly split into training (n = 72) and test cohorts (n = 30) at a ratio of
7:3, and the positive rates of HCC were 30.6% (22/72) and 30% (9/30) in the training and
validation cohorts, respectively. No statistically significant differences were found in the
clinical characteristics or laboratory indicators between the groups (p > 0.05) (Table 1).

Table 1. Baseline Clinical Characteristics of LR-M tumours.

Characteristics

Training Cohort
(n = 72)

Validation Cohort
(n = 30)

p
HCC

(n = 22)
Non-HCC

(n = 50)
HCC

(n = 9)
Non-HCC

(n = 21)

Age 0.269
≤50 years 10 (13.8%) 20 (27.8%) 5 (16.7%) 4 (13.3%)
>50 years 12 (16.7%) 30 (41.7%) 4 (13.3%) 17 (56.7%)

Sex 0.204
Male 17 (23.6%) 31 (43.1%) 6 (20.0%) 10 (33.3%)

Female 5 (6.9%) 19 (26.4%) 3 (10.0%) 11 (36.7%)
Location 0.523

Left 12 (16.7%) 17 (23.6%) 6(20.0%) 6 (20.0%)
Right 8 (11.1%) 27 (37.5%) 3 (10.0%) 9 (30.0%)

Junction 2 (2.8%) 6 (8.3%) 0 (0.0%) 6 (20.0%)
Tumour size (cm) 0.550

≤5 cm 14 (19.5%) 27 (37.5%) 6 (20.0%) 13 (43.3%)
>5 cm 8 (11.1%) 23 (31.9%) 3 (10.0%) 8 (26.7%)

Tumour Number 0.867
One 22 (30.6%) 37 (51.4%) 9 (30.0%) 16 (53.3%)

Multiple 0 (0%) 13 (18.0%) 0 (0.0%) 5 (16.7%)
Pathological diagnosis 1.000

HCC 22 (30.6%) - 9 (30.0%) -
ICCA - 38 (52.7%) - 15 (50.0%)
CHC - 1 (1.4%) - 0 (0%)

metastases - 8 (11.1%) - 6 (20.0%)
carcinosarcomas - 3 (4.2%) - 0 (0%)

ALT 0.178
≤50 U/L 17 (23.6%) 38 (52.8%) 5 (16.7%) 14 (46.7%)
>50 U/L 5 (6.9%) 12 (16.7%) 4 (13.3%) 7(23.3%)

AST 0.115
≤40 U/L 17 (23.6%) 31 (43.1%) 4 (13.3%) 11 (36.7%)
>40 U/L 5 (6.9%) 19 (26.4%) 5 (16.7%) 10 (33.3%)
γ-GT 0.209

≤60 U/L 12 (16.7%) 14 (19.5%) 4 (13.3%) 3 (10.0%)
>60 U/L 10 (13.8%) 36 (50.0%) 5 (16.7%) 18 (60.0%)

ALP 0.138

http://www.Rproject.org
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Table 1. Cont.

Characteristics

Training Cohort
(n = 72)

Validation Cohort
(n = 30)

p
HCC

(n = 22)
Non-HCC

(n = 50)
HCC

(n = 9)
Non-HCC

(n = 21)

≤125 U/L 17 (23.6%) 21 (29.2%) 6 (20.0%) 5 (16.7%)
>125 U/L 5 (6.9%) 29 (40.3%) 3 (10.0%) 16 (53.3%)

TBiL 0.095
≤20.4 µmol/L 18 (25.0%) 39 (54.2%) 7 (23.3%) 12 (40.0%)
>20.4 µmol/L 4 (5.5%) 11 (15.3%) 2 (6.7%) 9 (30.0%)

DBiL 0.246
≤11 µmol/L 19 (26.4%) 41 (56.9%) 7 (23.3%) 15 (50.0%)
>11 µmol/L 3 (4.2%) 9 (12.5%) 2 (6.7%) 6 (20.0%)

IBiL 0.181
≤10.2 µmol/L 18 (25.0%) 39 (54.2%) 7 (23.3%) 13 (43.3%)
>10.2 µmol/L 4 (5.5%) 11 (15.3%) 2 (6.7%) 8 (26.7%)

TP 0.504
≤85 g/L 22 (30.5%) 49 (68.1%) 9 (30.0%) 20 (66.7%)
>85 g/L 0 (0.0%) 1 (1.4%) 0 (0.0%) 1 (3.3%)
Albumin 0.504
≤55 g/L 22 (30.5%) 48 (66.7%) 8 (26.7%) 21 (70.0%)
>55 g/L 0 (0.0%) 2 (2.8%) 1 (3.3%) 0 (0.0%)

AFP 0.411
≤13.2 µg/L 12 (16.7%) 40 (55.7%) 5 (16.7%) 19 (63.3%)
>13.2 µg/L 10 (13.8%) 10 (13.8%) 4 (13.3%) 2 (6.7%)

CEA 0.117
≤5.5 ng/mL 19 (26.4%) 33 (45.8%) 8 (26.7%) 18 (60.0%)
>5.5 ng/mL 3 (4.2%) 17 (23.6%) 1 (3.3%) 3 (10.0%)

CA19-9 0.613
≤37 U/mL 16 (22.2%) 31 (43.1%) 8 (26.7%) 10 (33.3%)
>37 U/mL 6 (8.3%) 19 (26.4%) 1 (3.3%) 11 (36.7%)

HCC: hepatocellular carcinoma; ICCA: intrahepatic cholangiocarcinoma; CHC: combined hepatocellular-
cholangiocarcinoma; ALT: alanine aminotransferase; AST: aspartate aminotransferase; γ-GT: γ-glutamyl trans-
ferase; ALP: alkaline phosphatase; TBiL: total bilirubin; DBiL: direct bilirubin; IBiL: indirect bilirubin; TP: total
protein; AFP: alpha-fetoprotein; CEA: carcinoembryonic antigen; CA19-9: carbohydrate antigen199.

3.2. Feature Selection and Radiomics Signature Construction

A total of 851 features were extracted from T2WI, AP, and PVP, and the features with
coefficients >0.8 were selected by the ICC test. Finally, 761, 777, and 785 features from
T2WI, AP, and PVP were entered into the subsequent analysis. After data standardisation
and dimensionality reduction by max-relevance, mRMR, LASSO, and logistic regression
analysis, 3 features in T2WI, 7 features in AP, 4 features in PVP, 5 features in T2 + AP,
4 features in T2 + PVP, 3 features in AP + PVP, and 7 features in T2 + AP + PVP were used
to establish the radiomics model (Table 2).

Table 2. Valuable Features of Each Radiomics Model.

Model

Valuable Features

Original Wavelet

Firstorder Shape GLCM Firstorder GLCM NGTDM GLSZM

M1
LLL_Skewness HHL_Imc1

LLH_10Percentile

M2
Minimum Idmn LHL_Mean LLH_DependenceVariance HLL_LargeAreaLo

wGrayLevelEmphasis
HHL_Kurtosis LHL_Idn

M3 Minimum LLH_Skewness LHL_Idmn HLH_Strength

M4
Minimum Idmn LHL_Mean HHL_MCC
Skewness

M5
Minimum LLH_Skewness

LLH_10Percentile
LLL_Skewness

M6
Minimum LHL_Mean

HHL_Kurtosis

M7
Minimum Flatness LHL_Mean LHL_Idn

Skewness LLH_RobustMean-
AbsoluteDeviation LHL_Idmn

M1: model based on T2WI; M2: model based on AP; M3: model based on PVP; M4: model based on T2WI + AP;
M5: model based on T2WI + PVP; M6: model based on AP + PVP; M7: model based on T2WI + AP + PVP; GLCM:
grey-level cooccurrence matrix; NGTDM: neighbourhood grey-tone difference matrix; GLSZM: grey-level size
zone matrix.
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3.3. Performance of Radiomics Models and Verification

Seven models were established: T2WI, AP, PVP, T2WI + AP, T2WI + PVP, AP + PVP,
and T2WI + AP + PVP. The ROC curves of each radiomics model in the training cohort and
validation cohort are shown in Figure 4A,B. Among these models, the combined model
based on T2WI + AP + PVP showed the best performance. No difference was detected
between the training cohort and validation cohort (p > 0.05; Delong test) (Table 3). Each
tumour’s rad-score in the training cohort and validation cohort is shown in Figure 5.

Figure 4. Comparison of the receiver operating characteristic curves of each radiomics model in the
training (A) and validation (B) cohorts.

Table 3. Discrimination Performance of the Different Models for LR-M Tumours.

Model
Training Cohort (n = 72) Validation Cohort (n = 30)

Delong
AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sensitivity Specificity

M1 0.768
(0.647–0.889) 0.56 0.864 0.759

(0.474–0.944) 0.905 0.667 0.663

M2 0.838
(0.739–0.938) 0.9 0.636 0.836

(0.674–0.998) 0.81 0.778 0.7

M3 0.778
(0.657–0.900) 0.7 0.864 0.762

(0.590–0.934) 0.619 0.889 0.88

M4 0.880
(0.802–0.958) 0.84 0.773 0.836

(0.676–0.996) 0.857 0.667 0.631

M5 0.818
(0.707–0.929) 0.74 0.818 0.783

(0.611–0.955) 0.714 0.889 0.738

M6 0.832
(0.735–0.929) 0.74 0.818 0.815

(0.624–1.000) 1 0.556 0.877

M7 0.884
(0.804–0.963) 0.82 0.864 0.873

(0.728–1.000) 0.952 0.667 0.9

AUC: the area under the curve; CI: confidence interval; M1: model based on T2WI; M2: model based on AP; M3:
model based on PVP; M4: model based on T2WI + AP; M5: model based on T2WI + PVP; M6: model based on AP
+ PVP; M7: model based on T2WI + AP + PVP.

3.4. Classification Performance Verification of Visual Evaluation and Imaging Features

The consistency of the two observers marking rim APHE, peripheral washout, delay
central enhancement, and LI-RADS category was substantial, and the Cohen’s kappa
coefficients were 0.76, 0.71, 0.74, and 0.81, respectively.

The ROC curves of the junior radiologist, senior radiologist, and each targetoid mass
are shown in Figure 6A,B. Delong analysis indicated that the ability of senior physicians to
judge HCC and non-HCC in LR-M tumours was significantly higher than that of junior
physicians (p = 0.007; Delong test). The single and multiple targetoid masses showed
moderate discrimination, and no significant differences were found between them (p > 0.05
Delong test) (Table 4). The ability of junior radiologists and targetoid masses to distinguish
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HCC and non-HCC was significantly lower than that of various radiomics models (p < 0.05
Delong test), and only the ability of senior radiologists was equivalent to that of radiomics
models (p > 0.05 Delong test).

Figure 5. Radiomics score (rad-score) for each tumour in the training cohort (A) and validation cohort
(B). The red bars show the rad-scores of the tumours with significant non-HCC, and the blue bars
show the rad-scores of those with significant HCC. HCC, hepatocellular carcinoma.

Figure 6. Comparison of the receiver operating characteristic curves of junior and senior radiologists
(A) and each targetoid mass (B).
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Table 4. Discrimination Performance of the Radiologists and Targetoid Masses for HCC and non-HCC
in LR-M Tumours.

Variable AUC 95% CI Sensitivity Specificity

Junior radiologist 0.64 0.539–0.733 0.548 0.732
Senior radiologist 0.799 0.708–0.871 0.71 0.887

Rim APHE 0.723 0.625–0.807 0.516 0.93
Peripheral washout 0.685 0.585–0.773 0.581 0.789

Delay central enhancement 0.72 0.623–0.805 0.806 0.634
Two targetoid masses 0.621 0.519–0.715 0.903 0.338
All targetoid masses 0.754 0.658–0.833 1 0.507

AUC: the area under the curve; CI: confidence interval; APHE: arterial phase hyperenhancement.

4. Discussion

In the present study, we developed and validated radiomics models based on MRI
to distinguish HCC from LR-M tumours. Our study showed that the radiomics model
based on T2WI, AP, and PVP images achieved good results in the training and validation
cohorts. All seven models achieved encouraging discrimination performance; among
them, the combined model based on T2WI + AP + PVP showed the best discrimination
performance. Simultaneously, the identification performance of the radiomics model was
better than that of junior radiologists’ visual assessment and pure LR-M tumour imaging
feature evaluation.

In contrast to other reporting systems, LR-M, as a special type of LI-RADS, is defined
as a malignant tumour other than HCC. However, in actual clinical work, many HCC
cases are included in LR-M [19,20], challenging clinicians to formulate treatment strategies.
Considering that HCC and non-HCC are significantly different in treatment and prognosis,
distinguishing them effectively in LR-M tumours is clinically significant. Relying on the
knowledge and experience of radiologists to interpret MRI images is the traditional way
to solve this puzzle. In our study, the junior radiologist and senior radiologist showed
different abilities in distinguishing the subtypes of LR-M tumours (p = 0.007; Delong test).
A senior radiologist could better distinguish HCC in LR-M tumours (AUC = 0.799) but still
divided 9 of 31 HCCs into a non-HCC group, while a junior radiologist divided 14 HCCs
into a non-HCC group. This result is disappointing and will likely lead to a more perplexing
follow-up diagnosis and treatment.

Among LR-M tumours, HCC and ICCA account for 36% and 30%, respectively [6,21,22].
CHC, metastases, and sarcomas only account for a small proportion of LR-M tumours. How-
ever, these tumours have become a risk factor affecting the visual evaluation diagnosis [23].
Our study also confirmed that distinguishing HCC and non-HCC in LR-M tumours by
relying solely on the targetoid mass with visual inspection is challenging. When the tumour
had only a single targetoid mass, its ability to discriminate between HCC and non-HCC was
general (AUC: 0.685–0.723). Even if the tumour had three targetoid masses concurrently, its
AUC to distinguish HCC and non-HCC was also only 0.754. The imaging features of LR-M
tumour subtypes overlap, making visual evaluation limited. Additionally, the lack of DWI
and HBP images may explain the unsatisfactory results of the present study. Perhaps the
dual evaluation strategy of junior and senior radiologists can improve this dilemma, and
further research is required.

Radiomics, as an emerging discipline that has emerged in the context of big data, has
the characteristics of stable calculation, high reproducibility, and freedom from human
subjective initiative interference [14,24]. Regarding liver tumour research, radiomics has
provided encouraging results in identifying benign and malignant liver tumours [25], pre-
dicting the recurrence of HCC after surgical resection [26] and prognosis after transcatheter
arterial chemoembolisation [27], and predicting HCC histological grade [28] and microvas-
cular invasion (MVI) [29,30]. Currently, most radiomics studies on LI-RADS have focused
on classification and diagnosis [17,31], and their application in LR-M tumours, particularly
the identification of LR-M subtypes, has not yet been reported. Theoretically, although
HCC and non-HCC in LR-M have similar imaging manifestations, differences exist in their
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cell origin, spatial arrangement and distribution of tissue cells, vascular heterogeneity,
and other tumour characteristics. These differences cannot be distinguished by visual
inspection, but radiomics is a promising approach. In our study, both models based on
AP, PVP, and T2WI, or the corresponding combined models, showed good discrimination
ability (AUC: 0.768–0.884), which was confirmed in the validation cohort. The discrimi-
nation ability of each radiomics model was proved to be significantly better than that of
junior radiologists, and was equivalent to senior radiologists, indicating that radiomics can
not only provide a better identification method for junior radiologists in the differential
diagnosis of HCC and non-HCC in LR-M tumours, but also serve as an important reference
method for senior radiologists. Additionally, among the three models of AP, PVP, and T2WI,
the AP model was better than the other two models, while a previous study demonstrated
that the PVP model showed better performance [27]. This difference may be due to the
different research subjects. Their model was mainly established for HCC. However, in the
present study, most of the tumours were ICCA, which was only enhanced in the marginal
tumour in AP, a finding that was significantly different from the obvious enhancement of
typical HCC.

The first-order features describe the distribution of voxel intensities in ROI through
the commonly used fundamental matrix but do not involve spatial information. In
our study, the first-order feature minimum is the original image-based feature retained
by all the other six models except model1 after dimensionality reduction. The origi-
nal_firstorder_Minimum represents the minimum grayscale intensity of the original image
in the ROI region, and the subtle differences between them cannot be recognised by vi-
sual evaluation, but the radiomics method can. The radiomics models assembled based
on the original_firstorder_Minimum extracted from MR images have been proven to be
effective in predicting the efficacy of chemoradiotherapy for advanced cervical cancer and
the pathological features of rectal cancer [32,33]. In addition, Skewness (Model 4, Model 7)
and Idmn (Model 2, Model 4) in the original features were also the key features of partic-
ipating in model construction. Skewness, as a first-order feature, reflects the asymmetry
of image grayscale value relative to the mean value, which can describe the shape of the
histogram and the “procrastination” direction of the tail. In the application field of liver
tumours, a radiomics model including original_firstorder_Skewness and other features
showed good predictive efficiency in predicting the MVI of HCC (AUC:0.858) [34]. Idmn
is a second-order texture feature based on GLCM, which describes the inverse difference
moment normalised of image grayscale and reflects the homogeneity of image texture;
the larger its value is, the smaller the change between different regions of image texture.
Huang et al. [35] showed that MRI-derived GLCM_Idmn was among the key features in
the predictive models for recurrence-free survival of breast cancer, but the application of
this feature in liver tumours needs more studies to confirm. The shape feature Flatness was
also found to be an important feature in the construction of Model 7 in our study, which
was currently only applied in a few CT-based radiomics models [36]; we hope to verify it
in subsequent research based on MR images.

The wavelet transform uses the wavelet function to decompose the original image to
obtain wavelet-based features. The features after the wavelet transform often carry more
tumour information, which can more accurately reflect the heterogeneity of tumours [37].
In this study, the features obtained after dimensionality reduction were mostly wavelet
features. After wavelet transform, the first-order features (Mean, 10Percentile, and Kur-
tosis) were important constituent features in our model, which were consistent with the
features extracted by the previous model for discriminating benign and malignant prostate
lesions [38]. The wavelet transformed first-order feature skewness and GLCM feature Idmn
were still retained in several models after feature screening, which proved again that the dis-
tribution of image grayscale of HCC and non-HCC in LR-M was asymmetric relative to the
average value, and the variation and uniformity of image texture in tumour region were in-
consistent. The GLCM feature Idn, as another metric feature reflecting the uniformity of the
image, standardises the difference by dividing the sum of adjacent intensity values by the
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total discrete intensity values. A predictive model constructed with wavelet-transformed
GLCM_Idn as one of 14 radiomics features proved to be reliable in predicting which pa-
tients would develop extrahepatic spread or vascular invasion following initial TACE
monotherapy (the AUC of the training cohort and validation cohort were 0.911 and 0.847,
respectively) [39]. In addition, in our study, the wavelet transformed first-order feature
(RobustMeanAbsoluteDeviation), GLCM features (Imc1, MCC, and DependenceVariance),
NGTDM feature (Strength) and GLSZM feature (LargeAreaLowGrayLevelEmphasis) par-
ticipated in the establishment of some models, indicating that these features probably have
great medical value in discriminating HCC and non-HCC in LR-M tumours. However, few
studies have explained the correlation between these features and tumour pathophysiology,
which is still a very challenging task at this stage.

Although this study was novel, it also had some limitations. First, this study was a
single-centre retrospective study, selection bias was inevitable, and external verification was
lacking; further validation is required in multicentre research with larger samples. Second,
DWI and HBP were not necessary in our institution’s MR scanning programme, and the
corresponding targetoid masses, such as targetoid restriction and targetoid HBP appearance,
could not be included in the study. Third, the sample size of this study was small, and the
data distribution between the HCC and non-HCC groups was unbalanced. Prospective
studies that recruit more patients will help verify and improve the practicality of the model.
Finally, HCC in LR-M was not a typical HCC enhancement method, and we could not use
the known HCC diagnostic criteria to determine HCC. Therefore, during visual evaluation,
two radiologists could only distinguish between HCC and non-HCC according to their
own clinical experience, leading to the influence of subjective consciousness on the results
of visual evaluation.

5. Conclusions

This study provides radiomics models based on AP, PVP, and T2WI for the non-
invasive evaluation of HCC and non-HCC in LR-M tumours and verifies that the radiomics
methods are superior to junior radiologists’ visual assessment. Thus, more reference
methods are provided to classify HCC and non-HCC in LR-M tumours, and a favourable
guarantee for junior radiologists is offered to preoperatively diagnose the subtypes of
LR-M tumours.
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