
Citation: Flach, R.N.; Fransen, N.L.;

Sonnen, A.F.P.; Nguyen, T.Q.;

Breimer, G.E.; Veta, M.; Stathonikos,

N.; van Dooijeweert, C.; van Diest, P.J.

Implementation of Artificial

Intelligence in Diagnostic Practice as

a Next Step after Going Digital: The

UMC Utrecht Perspective. Diagnostics

2022, 12, 1042. https://doi.org/

10.3390/diagnostics12051042

Academic Editor: Catarina Eloy

Received: 28 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Implementation of Artificial Intelligence in Diagnostic
Practice as a Next Step after Going Digital: The UMC
Utrecht Perspective
Rachel N. Flach 1 , Nina L. Fransen 1 , Andreas F. P. Sonnen 1, Tri Q. Nguyen 1 , Gerben E. Breimer 1 ,
Mitko Veta 1,2, Nikolas Stathonikos 1, Carmen van Dooijeweert 1 and Paul J. van Diest 1,*

1 Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
r.n.flach-2@umcutrecht.nl (R.N.F.); n.l.fransen@umcutrecht.nl (N.L.F.); a.f.p.sonnen-3@umcutrecht.nl (A.F.P.S.);
t.q.nguyen@umcutrecht.nl (T.Q.N.); g.e.breimer-2@umcutrecht.nl (G.E.B.); mitko.veta@gmail.com (M.V.);
nstatho2@umcutrecht.nl (N.S.); c.vandooijeweert-3@umcutrecht.nl (C.v.D.)

2 Department of Biomedical Engineering, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

* Correspondence: p.j.vandiest@umcutrecht.nl

Abstract: Building on a growing number of pathology labs having a full digital infrastructure
for pathology diagnostics, there is a growing interest in implementing artificial intelligence (AI)
algorithms for diagnostic purposes. This article provides an overview of the current status of the
digital pathology infrastructure at the University Medical Center Utrecht and our roadmap for
implementing AI algorithms in the next few years.
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1. Background

In 2007, we started with the first implementation of a digital pathology system, initially
by building up a digital archive for quick revision of cases for and in support of multidisci-
plinary team meetings, research, and teaching [1]. For scanning roughly 137,000 histological
stains and 30,000 immunohistochemical (IHC) stains annually, at that time, we acquired
three Aperio ScanScope XT scanners that provided the desired capacity of 700 slides per
day. Images acquired at 20× were stored in proprietary pyramid multiresolution.svs file
format in a resolution of 0.50 µm/pixel. After the diagnostic process was finished in the
traditional microscopic way, slides were scanned. At the time, no quality control of the
whole slide images (WSI) was performed. Only scanning failures that were seen by chance
were manually corrected. Making use of the vendor’s application programming interface
(API) and software development kit (SDK), we were able to integrate with our pathology
reporting system and laboratory information system.

As to storage, the first iteration was a hierarchical storage management solution (Sun
Microsystems, Santa Clara, CA, USA). Initially, all images were stored on fiber channel
hard disk drives for rapid access and also copied to a scalable tape library in a buffered
way. This storage hardware remained in place until migration to an all object based storage
disk system. Because of performance problems of the first iteration of the all disk storage
system [1], we migrated to the new hospital-wide disk-based bulk storage system with a
superb performance.

The first generation of our digital pathology system started to show signs of aging
by the end of 2014. Scanning capacity was no longer sufficient because of our growing
practice, so we decided to go for a completely new setup to enable fully digital diagnostics,
which was implemented in 2015. It comprised three high throughput Hamamatsu XR
scanners and one Hamamatsu RS scanner (Hamamatsu City, Japan) for fluorescence and
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big slides, and the Sectra Picture Archiving Communication System (PACS) (Sectra AB,
Linkoping, Sweden).

The system has performed adequately for 6 years, signing out >95% of our histology
cases digitally. Occasionally, we revert back to slides for pediatric pathology, mitoses,
microorganisms recognition, birefringence assessments, and hematopathology. We do
cytology still with the microscope because of a lack of scanning capacity and storage for
Z-stack scanning, since this would result in a lack of confidence in digital diagnostics with
current image quality. We have seen several important developments in the PACS, such
as the implementation of tools to support mitoses and Ki67 counting, a bidirectional link
between our reporting system and the PACS, placeholder thumbnails for stains requested
and for lacking images. Also, patient safety increased by magnification-sensitive tracking of
our movements through the slides to preclude missing tissue parts and flagging thumbnails
of unreviewed slides.

2. Current Setup and Activities

We have recently renewed the contracts with Sectra and Visiopharm (the reseller of
Hamamatsu in The Netherlands) and have migrated to a new single pathology reporting
system with LIMS (Delphic AP, Sysmex, New Zealand). In 2022, we expect to incorporate
two regional pathology laboratories into our digital pathology infrastructure. The recent
versions of Sectra PACS and Delphic AP are ready to function as a multicenter digital
pathology workflow system, which will allow us to work as one virtual team of fully
superspecialized pathologists over three locations. In addition, we will be installing four
NanoZoomer S360 Hamamatsu high throughput scanners and one NanoZoomer S60
Hamamatsu scanner for fluorescence and whole mounts.

In 2022, dedicated cytology whole slide scanners are expected to enter the market,
which we hope to evaluate and purchase to make the jump to digital cytology, without
seriously impacting storage.

3. AI Implementation: Current Status and Road Map

At UMC Utrecht, we aspire to implement AI as much and as soon as possible, thereby
unleashing the full potential of digital pathology, with benefits for both patients and
pathologists. Various studies on AI-implementation, both prospective and retrospective,
are currently ongoing within the UMC Utrecht. Examples are the CONFIDENT trials, which
will be discussed below. Several algorithms are available that have been developed through
collaborations with the Radboud University in Nijmegen and the Technical University
of Eindhoven, The Netherlands, that are ready for further testing and validation in daily
practice [2–4]. Besides, we work with several companies bringing AI algorithms to the
market on implementation. We expect to make pathology diagnostics more objective, faster
and intellectually more satisfying, while more importantly our patients will also benefit
from the best tissue diagnostics that forms the basis for personalized treatment.

Pathology has always been a medical specialty that was in the frontline of automa-
tion (e.g., electronic reporting, speech recognition, image analysis, structured reporting).
Although lagged several decades behind radiology in going digital, this was largely due
to lack of affordable and fast scanners and infrastructure to handle big image files. There
is at this moment a big wave in pathology to catch up with going digital, and we expect
AI to be adopted fairly organically. Likely, in view of our inclination towards automation
and use of computers, pathologists will easily learn to use and interpret AI interactively,
so probably not much education will be necessary. This does not take away that using AI
should be user-friendly and integrated into PACS systems [5].

Our Sectra PACS includes an algorithm for assessing the percentage of Ki67 positive
nuclei, which is based on AI. Further, we have integrated an in-house developed AI
algorithm for recognizing mitotic figures. In an interactive way, an area of interest can
within the PACS be demarcated on the WSI after which the algorithm finds mitoses and
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mitosis-like objects and displays them in galleries. Objects can easily be moved between
these galleries to arrive at a final AI-assisted mitotic count (Figure 1).
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Figure 1. In-house developed AI algorithm for mitotic figures recognition. (A) Selecting a region
of interest. (B,C) Interactive Mitosis Detector, with gallery (B) and without gallery (C). The detec-
tor highlights those areas suspicious for mitosis with orange, those negative for mitosis as green.
(D) Close-up of mitotic figure (mitotic figure selected by the pointer on the right in the gallery),
recognized by the algorithm.

At this moment, we are evaluating Qualitopix, a new stain quality control algorithm
from Visiopharm, and Derm-AI, a Proscia algorithm for workflow stratification of der-
matopathology cases. Within the framework of our new contract with Visiopharm, we
will soon implement their breast cancer AI package, consisting of algorithms for ER, PR,
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HER2, Ki67, and lymph node metastases. We aim to run these algorithms entirely in the
background so results will be ready when the pathologist opens up the case.

4. Developing AI-Implementation Studies

AI algorithms might be implemented in various ways, depending on the algorithm.
Some algorithms can be used solely for workflow optimization; for example, for identifying
cases that do not need additional diagnostics, or assigning difficult cases to expert patholo-
gists [6]. It might also improve tumor grading consistency [2,7,8]. Whereas currently most
AI validating studies are designed retrospectively, useful prospective trials are currently
lacking [9].

The design of prospective studies is based on the interests of the many parties involved
in AI-implementation in daily clinical practice. First, patients need an accurate diagnosis.
For example, no tumor cells may be missed, and tumors must be graded accurately and
consistently. While the former is currently achieved in daily clinical practice by using
IHC stainings in all negative cases, the latter is not. Significant inter- and intra-laboratory
variation in grading of various tumor types (colorectal, breast, prostate) has been observed
nationwide [10–14]. As grade can be decisive in treatment choice, the pathologist is pivotal
in guiding treatment of cancer patients, and consistency is warranted [15,16]. [Flach, under
review] Here, AI algorithms may help pathologists grade more accurately and consistently,
and might even serve as a second ‘reviewer’.

From a pathologist’s point of view, in a field with an ever growing workload, searching,
for example, for tumor metastases in (sentinel) lymph nodes is a time-consuming task. It
requires meticulous assessment of slides, in general with an overall low yield. Therefore,
looking diligently may not be compelling, and pathologists may be prone to use IHC
stainings in most, if not all cases, thereby putting pressure on the budget of the pathology
department. AI assistance of pathologists on this task may not only save on IHC, but it
may lower pathologists’ workload, as it has been shown that AI-assisted grading is less
time consuming than traditional grading [8].

From the department’s financial point of view, costs of the growing number of IHC
stainings sometimes even exceed the compensation for assessment of the complete resec-
tion specimen. Calculations from our hospital showed, for example, that we spent over
€13,000 to detect nine cases of lymph node metastases in 95 sentinel nodes from 68 breast
cancer patients. The majority of these (6/9) were not even deemed clinically relevant by
medical oncologists, who consider isolated tumor cells in patients without neoadjuvant
treatment irrelevant in relation to treatment strategy [17].

In cervical cancer, IHC identified only three patients with micrometastasis and five
patients with isolated tumor cells undetected with H&E staining in 630 sentinel nodes from
234 patients. To achieve this, 3791 slides were stained with IHC at an estimated additional
cost of €94,775. In 1.4% (95% CI 0.3–4.3%) of patients, routine use of IHC adjusted the
adjuvant treatment [18].

For prostate cancer, performing IHC staining as standard of care is not necessarily
advised when carcinoma is obviously present or absent [19]. However, it does help pathol-
ogists identify small foci, the extent of the tumor and can assist in tumor grading, which
is critical in prostate cancer risk stratification and decision-making for performing pelvic
lymph node dissection [20]. For this purpose, we spent €22,000 on triple p63/CK5/AMACR
IHC staining in a 3-month period in 27 cases.

This financial point of view has to be considered when assessing the viability of
business cases for digital pathology and AI implementation. A complex matter, as digital
pathology is often seen as an ‘add-on’, as it does not replace the physical slides, which
also need to be kept and stored, at least for now. AI, however, may tip this balance to
the side of benefit as it has the potential to improve cancer grading and reproducibility,
thereby improving patient treatment and potentially outcome, while lowering costs. This is
specifically promising, as the current trend in oncology seems to be that improving patient
care may only be realized at higher costs [21].
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Lastly, from a legal perspective, algorithms for clinical use must be certified (FDA-
approved or IVDR-approved). Currently, the first algorithms are reaching this stage,
enabling pathologists to implement and evaluate them in prospective trials (see also below).
Nevertheless, it was presumed too big a step to implement them without a safety net (for
example, IHC-stainings) in the first implementation phase.

Another imperative ethical point to raise, is that it is currently unimaginable that
AI-algorithms will diagnose cases unsupervised or communicate results without human
input. Therefore, previous studies evaluating and comparing independent AI-algorithms
to pathologists may seem nice, but situations simulated in these studies are highly unlikely
to be implemented in current daily clinical practice. Therefore, we strongly feel that the
aim is augmented intelligence, rather than AI independently, since pathologists and AI
together have been shown to outperform either one alone [5,8,22]. For example, it has
been shown that scoring of HER2 IHC staining intensity (which is relevant for treatment
decision in breast cancer patients) is done more accurately by a pathologist using an AI
assisted digital microscope tool compared to a non-AI assisted pathologist [23]. This is
also illustrated by an international survey amongst 718 pathologists in dermatopathology,
that showed that only 6% of the pathologists feared that the human pathologist would be
replaced by AI in the foreseeable future. The vast majority agreed that AI will improve
dermatopathology, while most of these pathologists did not have any experience with AI
in their daily practice [24].

Overall, the hope is that AI will improve the quality of diagnosis, reduce the workload
of pathologist’s performing these diagnostics, and reduce costs of the entire diagnostic
process. However, as pointed out by Van der Laak et al., the hope is still to be distinguished
from the hype in prospective trials [9].

5. Challenges in Trial Designs

A major challenge in prospective implementation trials is implementing a reference
standard in the workflow. Here, it is essential to distinguish assessing biomarkers or other
factors, for which currently no reference standard is implemented (like histologic grading
or scoring percentages of cells), from tumor detection, for which a reference standard is in
place, such as using IHC stainings in all negative cases [17,19].

6. Confident Trials

At the UMC Utrecht, we are currently running two prospective trials on clinical
implementation of AI-assisted tumor detection in digital pathology (CONFIDENT). The
first is the CONFIDENT B-trial which evaluates the detection of sentinel lymph node
metastases in breast cancer. The second is the CONFIDENT-P trial, which evaluates tumor
detection in prostate cancer. These studies aim to safely introduce an AI-assisted workflow,
and should be easy to use for other algorithms in pathology practice as well. Within
these prospective CONFIDENT trials, we investigate the value of AI-assistance in tumor
detection in pathology specimens in the current pathology workflow.

7. Interactive vs. Background Processing

There are basically two forms of deployment for AI algorithms in clinical practice: on-
demand and background batch analysis. The former approach is interactive, fulfilling the
need of the pathologist when encountering a situation during diagnostics (Figure 2). The
advantage of this approach is that analysis can be limited to relevant areas in relevant slides
selected by the pathologist. The disadvantage is that, depending on the model, runtime
might be long, especially if the selected area is too large. Also, the biased nature of interac-
tively selecting certain areas in specific slides (e.g., for mitoses counting) can be considered
a disadvantage. Therefore, running algorithms in the background that process full WSI may
be the default approach for deploying AI models in practice (Figure 3). It is imperative that
results are ready by the time the pathologist opens up the case. However, implementing
such automatic processes is not trivial from a technical and functional perspective.
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In order to trigger an AI system to start analysis on a WSI, it will have to either have
some well-defined criteria to analyze a case, which means that well defined metadata of a
case or advanced text mining of grossing description will be used to start the analysis. In
absence of such information, the alternative is to perform the analysis on all possible WSI
that might fit a broader selection criteria to ensure that the pathologist has access to the
results. That would require an extensive hardware infrastructure to ensure that there is no
latency between the time the case is ready and the time that the results are ready.

8. Hardware Issues

Running AI algorithms requires significant computing, especially when processing
entire WSI, which are easily 10 Gigapixels. Installing and maintaining a local GPU server
cluster for AI purposes at a pathology department is costly and, most of the time, an overkill
since the GPU capacity will need to accommodate peak loads. This means that using an
existing hospital GPU cluster or a cloud solution would be necessary. However, external
cloud solutions can be a security and privacy concern. Analyzing WSI entails transferring
data outside of the hospital firewall which would either have to be anonymized prior
to export or the connection to cloud solution would have to be over a VPN. In addition,
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the security issues related to anonymizing and exporting images outside the firewall and
importing AI algorithm output are not trivial, but can probably be solved.

9. Certification Issues

Historically, healthcare may not be in the frontline of implementing technology tools
that have already transformed other areas of commerce and daily life [25]. One factor,
among others, that hampers the implementation of new technology tools in health care is
the regulation that accompanies medical products. With the promising developments in
AI software technology that will assist pathologists in making a more accurate diagnosis,
pathologists will in the future increasingly depend on software technology to make their
diagnosis. Implementing such AI software tools in clinical practice will improve diagnosis
accuracy and therapy response prediction. Therefore, the development and implementation
of these tools must not be hampered by unnecessary regulation.

However, these software tools will process sensitive personal medical data, and
therefore regulation on the use of this data is necessary to prevent unconsented and
secondary use of personal data. In May 2021, the new European regulation on software
as a medical device (Medical Device Regulation, MDR) came into effect. This regulation
changed the definition of software as a medical device and the risk classification of software.
AI software tools that will help pathologists make a more accurate diagnosis now fall in a
higher risk score and must be assessed by an officially appointed organization [26]. The
MDR aims to improve the regulation and safety of the software used for diagnosing and
treating patients. The GDPR (General Data Protection Regulation) from the European
Union reduces the obligations regarding administrative formalities before accessing health
data. They aim to make data actors more accountable rather than restricting their ability
to develop new tools in the first place [27]. The FDA also proposes that the regulation
of software development and design for health care needs a different approach than
the traditional regulation of hardware-based medical devices [25]. They have therefore
proposed a software pre-certification program where they assess organizations that perform
high-quality software design, testing, and monitoring. The FDA program aims to develop
effective medical device software, drive faster innovation, and enable timely patient access
while keeping pragmatic and least burdensome regulatory oversight to verify the continued
safety and performance of software tools in the real world [25]. To date, several companies
have obtained CE-IVD, IVDR, or FDA approval of their algorithms. For locally developed
algorithms, thorough local validation will probably be required in many countries.

10. Deployment of Models in Clinical Practice

The development and training of AI models that can reach decent performance has
become increasingly easier in practice thanks to frameworks released by major companies
like Google and Facebook (PyTorch and Tensorflow) [28,29] as well as libraries like FastAI,
which offer tools to rapidly train new models in a matter of days [30]. However, despite
the rapid development tools and resources available, the deployment of such models have
proven much more challenging in practice. Apart from the regulatory framework needed
to validate a model for clinical practice, the effort required to develop a model into a
full-fledged product is a multiple of the effort to train the model. In order to effectively
deploy a model in production, there has to be:

• The necessary infrastructure to retrain the model if and when performance drops.
• Records of data versions used with every version of the model released.
• Monitoring infrastructure.
• Serving infrastructure—infrastructure needed to deploy the model.

The AI field is rapidly developing, which means that the technology developed
around it is also developing with the same rate. Top-performing models dating from
2 years ago, will be outdated today and will have suffered from model drift. Computer
vision models trained on a first generation platform (for example Tensorflow v1), would be
almost impossible to port to the latest version without redeveloping/rewriting. That rapid
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development, which has served as a boom for AI proliferation, has brought along long
standing issues found in the rapid software development community namely technical
debt [31].

Another issue in deploying AI-models in practice, is trust of the application of AI
models. Recently, a lot of discussion and efforts have gone into the topic of explainable AI
for medical image analysis. Explainability methods are seen as a tool that can enable or
increase the transparency of AI models thus addressing some of the ethical and regulatory
concerns of their use [32]. Ghassemi et al. have recently expressed scepticism about
state-of-the-art explainability methods and argued that more effort should be put toward
proper validation of AI methodology [33]. We generally agree with this sentiment and
see explainability methods as just another tool in the toolbox of AI development and
validation methods.

11. The Business Case

For patients, implementation of AI algorithms might result in an improved diagnostic
process. However, Ho et al. already stated that digital pathology is not likely to be
implemented, unless a viable business case is presented, as digital pathology diagnostics
workflow comes with significant costs [34]. Next to high acquisition costs, also additional
histopathology, IT personnel and costs for integrating with other medical devices and
system raise costs, which laboratories cannot easily afford without external help, especially
when considering future developments outlined below [34]. Ho et al. found that improving
speed and quality of pathology diagnostics, which is necessary for digital pathology,
comes with significant savings elsewhere in the healthcare system. The same holds for AI
implementation. However, Ho et al. made their financial projections for digital pathology
implementation in an integrated health care organization, serving as both a health care
provider and the payor [34]. In organizations where this is not the case, it is challenging
to turn budget silos into communicating vessels, so it will mostly be the pathology labs
themselves that need to build a business case for AI implementation. Bluntly, time savings
will likely make pathologists go home earlier, but those will rarely be on such a scale
that fewer pathologist FTEs will suffice. Therefore, tangible, straightforward cost savings
associated with some key AI algorithms will have to pave the budgetary way for larger-
scale AI implementation. For instance, the Visiopharm company claims that their HER2
IHC algorithm reduces the 2+ category, comprising about 20% of breast cancer cases
and for which expensive reflex FISH testing is indicated, by some 75%, which would
amount to saving €3600 per 100 random breast cancer cases. Second, a prostate cancer
algorithm facilitating finding cancer spots may obviate the need for the expensive triple
p63/CK5/AMACR IHC staining, besides saving much time with regard to measurements
and grading. Third, an AI algorithm that finds micro metastases and isolated tumor cells
in sentinel nodes may obviate the need for cytokeratin IHC on step sections, saving up to
€100 per sentinel node.

12. AI 2.0

With our experiences in implementing a fully digital pathology workflow, including
the first AI algorithms used in daily practice, where do we see AI in pathology going in
the future? Considering the current rise of genetic and proteomic methods in pathology
diagnostics and the development of spatially-resolved molecular imaging modalities, i.e.,
spatial transcriptomics and spatial proteomics, it becomes evident that advanced machine
learning algorithms will play a key role in making sense of the ever growing amount of data.
Especially in the context of precision medicine in a personalized care setting, leveraging
on the full potential of all data available is of the utmost importance to select the proper
treatment for each patient and prevent unwanted treatments, thus saving overtreatment
for the patient, and costs for society. Again, as detailed in the example of the introduction
of digital pathology and AI in the UMC Utrecht, careful and stepwise introduction of
algorithms will be needed in the future for both quality control and financial reasons.
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The following years we will see a rise in research that will try to stratify patient and
treatment options based on models that include classical histology, IHC, DNA- and RNA
sequencing in bulk, and spatially-resolved molecular imaging methods. Models that will
be generated will rely on tabular data (sequencing) and potentially multiscale image data,
making an integration and assessment of classifiers without machine learning algorithms
unlikely [35,36].

However, as with digital pathology itself, the basis will initially be a well-organized
data infrastructure/repository for tabular and image data on which the algorithms can
work. In a modest step towards digital pathology 2.0/AI 2.0 at the UMC Utrecht, we are
working towards integrating (spatially)-resolved proteomics into our diagnostics routines.
We use matrix assisted laser desorption/ionization-based mass spectrometry imaging
(MALDI-MSI) in various research projects using patient tissues. MALDI-MSI can provide a
molecular profile of thousands of molecules at each image pixel without the loss of tissue
architecture. This opens the way, for example, to assess molecular tumor heterogeneity
or to look at amyloid composition together with classical histology on the same image,
by carefully selecting peaks from the measured mass spectra [37]. Integrating these data
into our digital pathology environment/PACS system seems natural, as pathologists are
already used to annotating different regions for diagnostics. Eventually, AI algorithms will
annotate regions of interest and, from these regions, pick peaks on the mass spectrum to
assess molecular composition. As this example shows, there are many hows, buts, and
ifs associated with such projects, ranging from file/data framework issues to acceptance
by pathologists [36]. However, as our “road-trip” from fully glass-based pathology to
“fully-digital” pathology at the UMC Utrecht shows, early investment into the future
eventually pays off, and we believe that multiscale integration of molecular and image
data—pathomics—is the future of pathology.
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