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Abstract: Background: To develop and validate a radiomics model based on 18F-FDG PET/CT images
to preoperatively predict occult axillary lymph node (ALN) metastases in patients with invasive
ductal breast cancer (IDC) with clinically node-negative (cN0); Methods: A total of 180 patients
(mean age, 55 years; range, 31–82 years) with pathologically proven IDC and a preoperative 18F-FDG
PET/CT scan from January 2013 to January 2021 were included in this retrospective study. According
to the intraoperative pathological results of ALN, we divided patients into the true-negative group
and ALN occult metastasis group. Radiomics features were extracted from PET/CT images using
Pyradiomics implemented in Python, t-tests, and LASSO were used to screen the feature, and the
random forest (RF), support vector machine (SVM), stochastic gradient descent (SGD), and k-nearest
neighbor (KNN) were used to build the prediction models. The best-performing model was further
tested by the permutation test; Results: Among the four models, RF had the best prediction results,
the AUC range of RF was 0.661–0.929 (mean AUC, 0.817), and the accuracy range was 65.3–93.9%
(mean accuracy, 81.2%). The p-values of the permutation tests for the RF model with maximum and
minimum accuracy were less than 0.01; Conclusions: The developed RF model was able to predict
occult ALN metastases in IDC patients based on preoperative 18F-FDG PET/CT radiomic features.

Keywords: radiomics; 18F-FDG PET/CT; invasive ductal breast cancer; clinically negative axillary
lymph node

1. Introduction

Breast cancer is the most common malignant tumor for women, and it is also the second
leading cause of death [1,2]. Nearly one-third of breast cancer patients will metastasize to
the lymph nodes. Whether ALN metastasis is the important predictor of overall recurrence
and the staging of breast cancer [3].

Currently, non-invasive imaging modalities and needle biopsy are mainly used to
determine the status of ALN in breast cancer patients before surgery [4]. CN0 was defined
by the absence of suspicious nodes on ultrasound imaging and PET/CT, or the absence of
tumor cells at fine-needle aspiration [5]. In fact, some cN0 patients have actually developed
ALN metastases [6,7]. The treatment regimen and 5-year survival rate of patients with ALN
metastases are different from those of patients without lymph node metastases [8]. Sentinel
lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) contribute to the
diagnosis of false-negative ALN metastases in cN0 patients, but with a certain degree of
trauma and some complications [9,10]. Taken together, it is necessary to find a non-invasive
and high-accuracy method to further identify occult ALN metastases in cN0 patients.
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18F-FDG PET/CT is one of the non-invasive imaging modalities and has a wide range
of applications in breast cancer diagnosis, staging, and prognosis [11–13]. Recently, many
researchers have focused on the PET/CT conventional indicators of primary lesion in
predicting occult ALN metastasis in cN0, among which SUVmax and TLG have been
proved to have a certain significance [14,15]. Radiomics is the high-throughput extraction
of image features in the region of interest (ROI) from medical images through computer
post-processing technology, and deep mining of biological information contained in images,
revealing tumor heterogeneity, genetic characteristics, and others through quantitative
analysis phenotypic information [16]. This field is rapidly evolving and is becoming a
powerful tool for precision medicine [17]. Recently, several studies have demonstrated the
value of radiomics in predicting lymph node metastasis in many malignancies [18], but no
further studies have been conducted in breast cancer patients with cN0.

In this study, we aimed to improve the diagnostic performance of occult ALN metas-
tases in IDC patients with cN0 through 18F-FDG PET/CT radiomics.

2. Materials and Methods
2.1. Patients

We retrospectively analyzed the clinical and PET/CT data of 180 patients with post-
operative pathological diagnosis of breast cancer at Tianjin Medical University Cancer
Institute and Hospital from January 2013 to January 2021. All patients underwent surgery
and intraoperative SLNB or ALND. The inclusion criteria were as follows: (1) Breast cancer
patients who have undergone 18F-FDG PET/CT imaging and have been confirmed as cN0
by ultrasound imaging and 18F-FDG PET/CT, or the fine-needle aspiration. (2) Postopera-
tive pathologically confirmed IDC. (3) No previous breast surgery, and no breast cancer
treatment before 18F-FDG PET/CT imaging. (4) All patients had complete clinical data and
clear 18F-FDG PET/CT images. The exclusion criteria were: (1) Primary tumor 18F-FDG
PET/CT uptake was negative (SUVmax < 2.5). (2) Postoperative pathologically confirmed
multifocal breast cancer or the presence of breast cancer in both breasts. (3) Combined with
other malignant tumors in the past. (4) The interval between 18F-FDG PET/CT imaging
and surgery was longer than 1 month. The flowchart of patient selection is shown in
Figure 1. All procedures in studies involving human participants were conducted by the
1964 Helsinki Declaration and its later amendments or comparable ethical standards.
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2.2. PET/CT Image
2.2.1. Image Acquisition

All patient data were obtained on a PET/CT scanner (GE Discovery Elite). Patients
were instructed to fast for at least 6 h before the PET/CT imaging and to control fasting
blood glucose concentration to <11.1 mmol/L. 18F-FDG (0.10–0.15 mci/kg) was injected
through the cubital vein, after which the patient rested in a dark and quiet environment for
approximately 60 min (the mean injection–acquisition time delay was 63.7 min; injection-
collection time delay range was 50–73 min). All patients were scanned from the base of
the skull to the distal femur. The spiral CT scan was performed with a tube current of
180 mAs, a tube voltage of 120 kV, and a layer thickness of 5 mm. The PET was scanned
in eight bed positions, and each bed position needs 2 min with increments of 16.2 cm (3D
mode). The ordered-subset expectation maximization (OSEM) iterative algorithm (with
6-mm full-width-at-half-maximum Gaussian filter) was used to reconstruct the PET images
with CT values being used for attenuation correction, and the final PET voxel size was
5.3 mm × 5.3 mm × 2.5 mm.

2.2.2. PET/CT Image Feature Extraction

To extract the PET/CT imaging texture features of the lesions, we used 3D Slicer
(version: 4.11.20210226) software to manually outline the primary tumor. CT and PET
images in the DICOM format were imported into 3D Slicer and the lesions were delineated
slice by slice. PET images with standardized uptake value (SUV = 2.5) as the threshold to
outline the region of interest (ROI), as shown in Figure 2. In order to reduce inter-individual
variability, two nuclear medicine physicians segmented the images without knowing the
results, and one of the doctors segmented the image twice. Intraclass correlation coefficients
(ICCs) were used to evaluate the repeatability of radiomics features extraction within and
among observers. An ICC of >0.75 is considered to have good reliability.
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Figure 2. The 3D slicer was used to segment the primary lesions of IDC patients with cN0, and the
threshold was SUV = 2.5.

Then, we resampled the VOIs of CT and PET images to unify them to an isotropic
voxel size of 1.0 × 1.0 × 1.0 mm3. Using the Python software and the Pyradiomics mod-
ule, the radiomics features within the VOI of the resampled PET and CT images were
extracted, respectively. Features include first order, shape (2D), shape (3D), gray level
co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray level run length
matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), and gray level depen-
dence matrix (GLDM). A total of 1562 PET features and 1562 CT features were extracted,
and 3124 PET/CT features were obtained by integrating the results. The workflow for
image segmentation, feature extraction, feature selection, and machine learning models
establishment and permutation tests is shown in Figure 3.
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2.3. Definition of ALN Metastasis Negative

Through PET/CT images, we often refer to the morphology criteria and the maximum
SUV (SUVmax) of the lesions to judge the biological behavior of the tumor. SUVmax
was calculated using the following formula: SUVmax = maximum activity in a region of
interest (MBq/g)/[injected dose (MBq)/body weight (g)]. Regarding the condition of ALN:
(1) SUVmax ≥ 2; (2) Short diameter > 0.5 cm, rounded shape, eccentric cortical hypertrophy,
and absence of a fatty hilum for morphology. If neither of these points is satisfied, it is
defined as ALN metastasis negative.
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2.4. Statistical Analysis

We employed t-tests and LASSO to eliminate uncorrelated and redundant features and
improve the classification performance of the classifier. Relevant features were constructed
with four classifiers: RF, SVM, SGD and KNN in the skelearn module. Considering
the unbalanced ratio of ALN metastasis and true negatives (1:5.4) in cN0 patients, we
performed an under-sampling method to analyze the results of the two groups. The specific
method was as follows: We randomly selected 28 individuals from 152 true negatives in
cN0 to ensure that the number of true negative patients in cN0 was the same as the number
of ALN metastasis patients. Then, the four classifier models mentioned above were built.
This process was repeated 1000 times to eliminate the effect of sampling randomness [19].
We performed the independent samples t-tests for precision and AUC for all models,
and permutation tests for the highest and lowest precision of the best performing model.
Analysis of clinical characteristics with a t-test and Chi-square test. All graphics are drawn
by python (version: 3.7.9). A p-value of <0.05 was defined as statistical significance.

3. Results
3.1. Clinical Characteristics

The characteristics of the patients who participated in the study are shown in Table 1.
We included 180 patients with pathological results of IDC and a clinical diagnosis of cN0.
According to the results of SLNB or ALND, we confirmed that 152 patients (mean age,
56 years; range, 31–82 years) had no ALN metastasis, and 28 patients (mean age, 55 years;
range, 38–76 years) had ALN metastasis. There were no significant differences in clinical
characteristics between the two groups (p > 0.05). The analysis found that the ICCs between
the measurements of the first radiologist was 0.794 to 0.986, and between the measurements
of two radiologists were 0.761 and 0.972. Since both within-group and between-group
consistency were >0.75, data from the first radiologist were used for subsequent analysis.

Table 1. Patient characteristics.

Patient Characteristics
Breast Cancer (cN0)

pALN Metastasis (+)
(n = 28)

ALN Metastasis (−)
(n = 152)

Age (mean ± SD, years) 55.93 ± 12.40 54.99 ± 12.28 0.713
Menopausal state 0.749

Pre 11 (39.3%) 53 (34.9%)
Peri 4 (14.3%) 17 (11.2%)
Post 13 (46.4%) 82 (53.9%)

ER status 0.960
Negative 5 (17.9%) 31 (20.4%)
Positive 23 (82.1%) 121 (79.6%)

PR 0.912
Negative 6 (21.4%) 28 (18.4%)
Positive 22 (78.6%) 124 (81.6%)

Ki-67 status 0.871
Negative (<14%) 8 (28.6%) 38 (25.0%)
Positive (≥14%) 20 (71.4%) 114 (75.0%)

Molecular subtypes 0.965
Luminal A 7 (25.0%) 33 (21.7%)

Luminal B (HER2 negative) 5 (17.9%) 28 (18.4%)
Luminal B (HER2 positive) 7 (25.0%) 32 (21.1%)

HER2 positive 5 (17.9%) 34 (22.4%)
Triple-negative 4 (14.2%) 25 (16.4%)

SUVmax 6.68 ± 2.69 6.31 ± 2.77 0.513
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3.2. Feature Extraction and Model Comparison

A total of 3124 radiomic features were extracted for each patient. The features were
screened by t-test and LASSO, and 14 radiomic features that were important for predicting
ALN metastasis in breast cancer cN0 patients were obtained, including eight PET features
and six CT features. Figure 4 shows important radiomic features predicting ALN metastasis
in IDC patients with cN0, with CT_wavelet-HHH_glcm_Autocorrelation having the highest
signature coefficient.
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Figure 4. Important parameters and weights for predicting occult ALN metastasis in IDC patients
with cN0 by t-test and LASSO screening.

Then, four models were established according to the screened important features. For
every kind of model, under-sampling was performed 1000 times. The AUC range of RF
was 0.661–0.929 (mean AUC, 0.817), the accuracy range was 65.3–93.9% (mean accuracy,
81.2%); the AUC range of SGD was 0.506–0.892 (mean AUC, 0.775), the accuracy range was
50.0–87.5% (mean accuracy, 74.5%); the AUC range of KNN was 0.645–0.885 (mean AUC,
0.795), the accuracy range was 64.3–89.3% (mean accuracy, 78.5%); the AUC range of SVM
was 0.660–0.877 (mean AUC, 0.783) and the accuracy range was 60.7–89.3% (mean accuracy,
75.6%). The comparison of AUC and the accuracy of the four models are shown in Figure 5.
RF was considered the best model, with p < 0.001 compared to SGD, KNN and SVM.
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Figure 5. Distribution and comparison of accuracy and AUC of RF, SGD, KNN and SVM.
(a) distribution and comparison of accuracy of RF (quartile: 81.4%; mean: 81.2%), SGD (quartile:
75.0%; mean: 74.5%), KNN (quartile: 78.6%; mean: 78.5%) and SVM (quartile: 75.0%; mean: 75.6%).
The accuracy of RF was higher than SGD, KNN and SVM, and the effect is remarkable (p < 0.001).
(b) distribution and comparison of AUC of RF (quartile: 0.819; mean: 0.817), SGD (quartile: 0.782;
mean: 0.775), KNN (quartile: 0.796; mean: 0.795) and SVM (quartile: 0.785; mean: 0.783). The AUC of
RF was higher than SGD, KNN and SVM, and the effect is remarkable (p < 0.001). *** p-value < 0.001.
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3.3. Model Validation

In order to verify the effect of the optimal RF model established with the small sample
size, we performed a permutation test on the groups with the highest and lowest accuracy of
the RF model, and the results are shown in Figure 6. The permutation test for the minimum
precision had a Sobs value of 0.280 and the p-value < 0.01; the maximum precision of the
Sobs value was 0.833 and the p-value < 0.001.
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Figure 6. Permutation tests for RF with the highest and lowest accuracy. (a) permutation tests for RF
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highest accuracy (93.9%, p < 0.001, Sobs = 0.833).

4. Discussion

The status of ALN in breast cancer patients affects the choice of treatment and prog-
nosis. In addition, 15–20% of patients with the clinical diagnosis of cN0 still have ALN
metastases [6,7,20], but there is currently no particularly effective method to further judge
the status of ALN in patients with cN0 breast cancer before surgery. SLNB and ALND are
currently the surgical methods for accurate staging of the axilla in cN0 patients, but they
are accompanied by many adverse reactions, including arm lymphedema, paresthesia, and
shoulder dysfunction or numbness [21,22]. In this study, we constructed four models from
the screened important parameters to predict the ALN status of breast cancer cN0 patients,
respectively. Among them, the prediction effect of the RF model is better than SGD, KNN
and SVM.

The preoperative diagnosis of occult ALN metastases in cN0 breast cancer patients
is constantly being studied. Merrill et al. found that routine evaluation with complete
blood count, liver function tests, alkaline phosphatase tests and chest X-ray was low yield
in cN0 invasive breast cancer patients, and there was an inability to distinguish occult
ALN metastases [23]. 18F-FDG PET/CT is one of the important examination methods
for the diagnosis of breast cancer cN0. Its advantages are not only systemic examination
but also provide information on the anatomy and function. Yoo et al. demonstrated that
TLG of primary tumors can be useful in predicting ALN metastasis in IDC patients with
cN0, and when the cutoff value of TLG is 5.74, the maximum AUC value is 0.794 (95% CI
0.716–0.859) [15]. Yamagishi et al. performed two 18F-FDG PET/CT images of breast cancer
patients at 60 min (SUVmax1) and 120 min (SUVmax2) and calculated ∆SUVmax% by
formula ∆SUVmax% = [(SUVmax2 − SUVmax1)/SUVmax1] × 100. They found that the
combination of SUVmax2 and ∆SUVmax% may be useful for predicting non-sentinel node
metastases in the ALN of cN0 patients [14]. In this study, we enriched the features obtained
from 18F-FDG PET/CT with radiomics, including not only conventional parameters such
as SUVmax, original shape, but also gray-scale patterns, spectral properties, and inter-pixel
relationships of clinical images. All important features after dimensionality reduction
were applied to the four different models, and the best prediction model was derived
by combining AUC and accuracy. On the basis of previous related studies, we obtained
as much information as possible from PET/CT and established more complex models,
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which further improved the predictive effect of PET/CT on IDC patients with cN0 to a
certain extent.

Radiomics is a technology that uses high-throughput feature extraction technology
to extract and quantify deep information in image data, and finally use it for decision-
making [24–26]. It can extract shape features, first-order features and high-order features
of images, some of which have the potential to evaluate patient diagnosis and progno-
sis [27]. Therefore, some scholars applied radiomics in the study of malignant tumor
patients with cN0. Wang et al. developed the diagnostic PET/CT-based radiomics nomo-
gram, including CEA, MTV, and the radiomics signature to predict the OLM in cN0 solid
lung adenocarcinoma, and demonstrated adequate discrimination in the training set (C-
index, 0.769) and the validation set (C-index, 0.768) [18]. Wu et al. developed a radiomics
nomogram for non-invasive preoperative prediction, which combines radiomics features
with CT-reported LN status, with good predictive accuracy for lymph node metastasis
in bladder cancer patients, especially for cN0 patients, the study showed good calibra-
tion and discrimination in the training set [AUC, 0.9262; 95% confidence interval (CI),
0.8657–0.9868] and the validation set (AUC, 0.8986; 95% CI, 0.7613–0.9901) [28]. It is neces-
sary to determine the actual ALN status of IDC preoperatively, but there is currently no
application of radiomics in this field. In this study, the top three features of normalized data
weights were CT_wavelet-HHH_glcm_Autocorrelation, CT_original_shape_MeshVolume,
and PET_wavelet-LLL_glcm_JointEnergy, where the PET_wavelet-LLL_glcm_JointEnergy
feature was consistent with Song’s study of predicting ALN metastasis using radiomics [29].
This indicates that PET_wavelet-LLL_glcm_JointEnergy plays an important role in pre-
dicting both occult ALN metastasis with cN0 and ALN metastasis in IDC patients. To
account for the reliability of the model established with a small amount of data after under-
sampling, we performed a permutation test on the highest and lowest accuracy of the RF
model, further confirming that the model is a reliable method for noninvasively predicting
ALN metastasis in IDC patients with cN0.

The short diameter of 5 mm and SUVmax 2.0 was used as the judgment indicators
of ALN status in this study. Shien et al. and Ogino et al. were in agreement that the best
sensitivity and specificity results were achieved when the short diameter cutoff value was
5 mm [30,31]. Carkaci et al. compared the diagnostic performance of SUV values of 2.0,
2.5, and 3.0 and concluded that the SUVmax cutoff 2.0 provided the highest diagnostic
accuracy [32]. For the extraction of the primary lesion ROI, we manually segmented the
image using SUV 2.5 as the threshold [33,34]. Although the ROI cannot contain the lesion
with an SUV value lower than 2.5, it can ensure a good segmentation effect while ensuring
reproducibility. This method has been widely used in the segmentation of breast cancer
primary lesions.

Previous studies reported that the clinical outcomes of breast cancer were correlated
with several clinicopathological parameters. Among them, SUV is the most commonly
used semi-quantitative analysis index in 18F-FDG PET/CT imaging, and is related to tumor
cell proliferation and malignancy, and ki-67 is also related to tumor cell proliferation.
Furthermore, a variety of studies have shown a significant correlation between ki-67 and
SUV [35,36]. However, in this study, neither SUVmax nor ki-67 was able to effectively
differentiate the two groups. Presumably, the occurrence of occult lymph nodes metastasis
in breast cancer patients with cN0 is not closely related to the malignancy of tumor cells.
Additionally, the molecular subtype classification for breast cancer was also a commonly
accepted index influencing the clinical outcome of breast cancer, whereas, as shown in the
result, the discrimination of the two groups was not remarkably related to the molecular
subtype of breast cancer. The lymph node status of breast cancer patients is one of the
important reasons that affects the selection of treatment modality, and also affects the
formulation of neoadjuvant therapy [37]. As the first stop of lymph node metastasis, it
is important to determine the true status of axillary lymph nodes in cN0 patients before
surgery, but there is currently no effective method. Our study can not only provide a
reference to predict the real axillary lymph node status before surgery for breast cancer
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with cN0, but also provide an innovative clue for the research of occult lymph node
metastasis in breast cancer.

There were still some limitations in our study. First, this prediction method is currently
only validated in a single center and requires a standardized method of data from different
devices to generalize the validation method and to obtain external validation. In addition,
the number of enrolled patients was relatively small. Second, we regarded the pathological
results of SLNB and ALND as the actual state of ALN. Considering that SLNB has a lower
probability of complications than ALND, and SLNB-negative patients have no significant
difference from ALND in terms of disease-free survival (DFS), overall survival (OS), and
moreover regional node recurrence event, SLNB-negative patients do not undergo complete
ALND anymore. However, there is a false-negative rate of 4.6–16.7% with an average of
8.4% for SLNB, which could have some impact on the results of this study [38,39]. Finally,
neoadjuvant chemotherapy (NAC) affects the ALN status of IDC patients with cN0 [40], but
those who experienced NAC before surgery were excluded from this study. It is necessary
for these patients to be further studied to verify the generalizability of the prediction
method of this study.

5. Conclusions

In this study, we proposed a quantitative prediction model for PET/CT images based
on radiomics, which extracted multimodal and multidimensional features by t-tests and
LASSO, and combined the results of multiple classifiers for comparison. Among all
models, the RF model had the best prediction of ALN status for IDC breast cancer with
cN0, with the AUC range of RF being 0.661–0.929 (mean AUC, 0.817) and the accuracy
range being 65.3–93.9% (mean accuracy, 81.2%). This RF-based predictive model may
partially help clinicians to determine the ALN status of IDC with cN0 preoperatively by
non-invasive imaging.
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