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Abstract: Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto
standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or
after facultative recommendation. In recent years, artificial intelligence, and especially deep learning
techniques such as convolutional neural networks, have been applied to polyp detection and localiza-
tion in order to develop real-time CADe systems. However, the performance of machine learning
models is very sensitive to changes in the nature of the testing instances, especially when trying to
reproduce results for totally different datasets to those used for model development, i.e., inter-dataset
testing. Here, we report the results of testing of our previously published polyp detection model
using ten public colonoscopy image datasets and analyze them in the context of the results of other
20 state-of-the-art publications using the same datasets. The F1-score of our recently published
model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed,
on average, by 13.65% when tested on ten public datasets. In the published research, the average
intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an
average F1-score of 0.83.

Keywords: colorectal cancer; deep learning; convolutional neural network (CNN); polyp detection;
polyp localization

1. Introduction

In the last few years, significant research has been published on the application of deep
learning (DL) for colorectal polyp detection and characterization in colonoscopy images,
as demonstrated by the growing number of reviews on the topic [1–4]. Polyp detection is
way more advanced than characterization, and several randomized control trials (RCT)
have already been conducted [5–10], some of which are associated with the development
of commercial systems [3].

This difference is also reflected in the availability of public colonoscopy image datasets.
In the case of polyp detection, one of the most relevant events in this field was the cele-
bration of the MICCAI 2015 conference [11], since it hosted a sub-challenge on automatic
polyp detection for which the first and most well-known public colonoscopy datasets
were published. These are the CVC-ClinicDB [12], ETIS-Larib [13], and ASU-Mayo Clinic
Colonoscopy Video [14] datasets. Since then, several new datasets have been released,
significantly increasing the number publicly available data. In addition, in the particular
case of the CVC-ClinicDB dataset, its creators have extended it with three more public
datasets: CVC-ColonDB [15,16], CVC-PolypHD [15,16], and CVC-ClinicVideoDB [17,18].
The growth in the volume of public data has seen a remarkable increase in recent years
with the release of PICCOLO [19], Kvasir-SEG [20], LDPolypVideo [21], SUN [22], and
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KUMC [23], each including several thousands of polyp images, with the latter three ex-
ceeding the total volume of images published so far. All these datasets include annotations
of the polyp locations as either bounding boxes or binary masks and, therefore, are suit-
able for polyp localization. In contrast, there are only three public datasets suitable for
polyp characterization. The first dataset was published by Mesejo et al. [24] in 2016 and,
since then, only the PICCOLO [19] and KUMC [23] datasets have included the necessary
annotations for this task.

In our previous review [1], we collected the most relevant studies applying DL for
polyp detection and characterization in colonoscopy and analyzed them from a technical
point of view, focusing on the low-level details for the implementation of the DL models.
Together with the review, we created a GitHub repository (https://github.com/sing-
group/deep-learning-colonoscopy (accessed on 22 February 2022)) containing the most
relevant information, especially the performance metrics reported by each study and the
test datasets used. Since then, we have been continuously updating the repository to add
new works and datasets as they were published. As a result of carrying out the work
presented here, we improved the repository by adding information about the train datasets
used in each analysis and by detailing the type of evaluation carried out in polyp detection.
It is important to note that we do not consider preprints for inclusion in the repository
due to the high activity in the field and the fact that we are not able to track and curate
all of them in an appropriate and sustainable way. Nevertheless, there are some recent
preprints, such as the work of Ali et al., 2021, presenting the PolypGen [25] dataset, that
will be included as soon they are published in a peer-reviewed journal.

Despite this, comparing the models developed in different works is not straightfor-
ward, since they use different ways of assessing their performance. Most of them use
private datasets for model development and testing, hindering the reproducibility. Other
works use only public datasets for both model development and testing. Finally, there
are hybrid works where the performance of a model developed with a private dataset is
evaluated on a public dataset.

In a recent work, we published a real-time polyp detection model based on a YOLOv3 [26]
pretrained with PASCAL VOC datasets [27] that we fine-tuned using a private dataset
(28,576 annotated images from 941 different polyps). This model achieved an F1-score of
0.88 (recall = 0.87, precision = 0.89) in a bounding-box-based evaluation using still images
(a test partition of our private dataset).

Nevertheless, the performance of ML models is very sensitive to changes in the
nature of the testing instances when compared to those instances used for developing
them, especially when trying to reproduce results on completely different datasets to those
used for model development (inter-dataset testing). Aiming at gaining insights for taking
further steps for improving our model following a data-centric approach, in this work, we
systematically evaluate the performance of our published model, without retrain, on ten
public datasets. This is, to the best of our knowledge, the first time that such extensive
evaluation has been carried out. In addition, we also include a comparison of published
research on polyp localization, including the best performances reported by each study on
public datasets. In this regard, there is interest in comparing intra-dataset performances
(i.e., a performance evaluation on a test split of the dataset used for model development,
either private or public) versus inter-dataset performances (i.e., a performance evaluation
on a dataset different than the one used for model development).

2. Materials and Methods
2.1. Our Polyp Localization Network

In a previous work [26], we reported the results of training and evaluating a real-time
automatic polyp detection system based on YOLOv3. For this purpose, in the context of
the PolyDeep project (http://polydeep.org (accessed on 22 February 2022)), we created
a private dataset containing 28,576 polyp images from 941 different polyps, out of which
21 046 were acquired under white light (WL) and 7530 under narrow-band imaging (NBI)

https://github.com/sing-group/deep-learning-colonoscopy
https://github.com/sing-group/deep-learning-colonoscopy
http://polydeep.org


Diagnostics 2022, 12, 898 3 of 17

light. The images were manually annotated by expert endoscopists to specify the polyp
locations as bounding boxes. This image dataset is part of a larger collection of anno-
tated polyp videos and images, named PIBAdb, which is already available through the
IISGS BioBank (https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb (accessed
on 22 February 2022)).

For model development, we set aside a test partition containing 30% of the polyps
(283; 8658 images) to perform a bounding-box-based evaluation. The remaining 70% was,
in turn, split into train (70%; 460 polyps; 13,873 images) and validation (30%; 198 polyps;
6045 images) partitions. It is important to note that this image dataset only includes polyp
images with exactly one polyp.

The YOLOv3 model used as a basis was the Apache MxNet [28] implementation
that the GluonCV toolkit [29] provides pre-trained with the PASCAL VOC 2007 and 2012
challenges’ [27] train and validation datasets. This base model was fine-tuned using the
train partition of our dataset, achieving an F1-score of 0.88 (recall = 0.87, precision = 0.89)
and an average precision (AP) of 0.87 in a bounding-box-based evaluation using the test
partition. The results are on par with other state-of-the-art models, and the model was able
to process frames at a rate of 0.041 s/frame, thus being able to operate in real time.

This model was used, without retrain, to carry out the experiments described in
Section 2.4 in order to evaluate its performance on different public datasets. Although the
dataset used to develop the model does not include images with multiple polyps or images
without polyps, given the nature of YOLOv3, the model is able to predict multiple polyps
when necessary, as it will be shown.

2.2. Public Colonoscopy Image Datasets and Polyp Localization Studies Selection

Figure 1 shows the criteria for selecting public colonoscopy image datasets and polyp
localization studies. This selection started with the 44 studies and 13 public datasets
collected as of February 2022 in the GitHub repository associated with our review on DL
for polyp detection and classification in colonoscopy, mentioned above.

Since one of our objectives is to draw a comparison of published research that reports
performance metrics of public datasets, 17 studies were excluded in the first place because
they only evaluated the models on private datasets. In addition, two datasets were also
excluded for different reasons: (i) the CP-CHILD dataset [30] was also excluded since
it only provides frames labeled as “polyp” and “non-polyp” and not a suitable ground
truth including the polyp localizations; and (ii) the ASU-Mayo Clinic Colonoscopy Video
dataset [14] was excluded since we were not able to access the dataset after repeated
attempts to contact the authors without obtaining a response. Because of the exclusion of
the ASU-Mayo Clinic Colonoscopy dataset, three studies that used it were also discarded.

From the remaining 23 studies, the following three were excluded: (i) the study by
Misawa et al., 2021 [22] was excluded since they evaluate the detection performance instead
of the localization performance, despite the fact they were using an object detection network
architecture (YOLOv3); and (ii) the studies from Tashk et al., 2019 [31] and Sánchez-Peralta
et al., 2020 [19] were excluded since they performed polyp segmentation and, therefore,
provide pixel-based performance metrics, which are not comparable with the bounding-
box-based performance metrics of the polyp localization studies. This latter cause of
exclusion also motivated the discard of the CVC-EndoSceneStill dataset.

So, after applying the selection criteria seen in Figure 1, 20 studies and 10 public
datasets were selected for evaluating the performance of our polyp localization model.

https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb
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2.3. Public Colonoscopy Image Datasets Description and Preprocessing

Table 1 shows the most relevant details of the ten public colonoscopy image datasets se-
lected for the analysis. Regarding the type of ground truth provided, seven of them provide
polyps annotated with binary masks, namely CVC-ClinicDB [12], CVC-ColonDB [15,16],
CVC-PolypHD [15,16], ETIS-Larib [13], CVC-ClinicVideoDB [17,18], and PICCOLO [19].
In these cases, we converted the binary masks into bounding boxes to be able to ana-
lyze them with our model (the procedure is described below in this section). Three of
them provide polyp locations as bounding boxes, namely the KUMC [23], SUN [22], and
LDPolypVideo [21] datasets. Finally, Kvasir-SEG [20] provides both segmentation and
localization information.

The public datasets show a lot of variability in terms of number of images, number
of polyps, image resolution, capturing device, etc., as shown in Table 1. The trend in the
most recent datasets is to include non-polyp images. In addition, as can be seen in Figure 2,
which shows one random image of each dataset included, the variability in the appearance
of the images themselves and the polyps contained in them is also high (e.g., Kvasir-SEG
contains images with superimposed text and/or the presence of instruments, etc.).

As explained before, almost all datasets provide polyp locations as binary masks, and
thus are suitable for object segmentation models. Since our model works with bounding
boxes information, the binary masks were converted into this representation using the
scikit-image Python library. Figure 3 shows an example of this conversion procedure,
where it can be seen that the scikit-image functions allow obtaining the minimum bounding
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boxes that cover the original binary masks. In addition, the organization of the images
and annotations in the datasets was also adapted to the PASCAL VOC dataset format
that our evaluation pipeline uses as input. This adaptation process usually required three
steps: (i) folder reorganization, in which all original and mask images are moved into two
separate folders if necessary; (ii) format conversion, to covert the original images to the
JPG format if necessary; and (iii) conversion to PASCAL VOC dataset format, in which
the dataset is adapted to this format, including the transformation of binary masks into
bounding boxes when needed.

Table 1. Descriptions of the ten public colonoscopy image datasets for polyp localization.

Dataset
Paper

Publication
Year

Description Resolution Ground Truth
Presence of

Multiple
Polyp Images

Presence of
Non-Polyp

Images

CVC-ClinicDB
[12] 2015

612 sequential WL
images with polyps

extracted from
31 sequences

(23 patients) with
31 different polyps

384 × 288 Binary mask to
locate the polyp yes no

CVC-ColonDB
[15,16] 2012

300 sequential WL
images with polyps

extracted from
13 sequences
(13 patients)

574 × 500 Binary mask to
locate the polyp no no

CVC-PolypHD
[15,16] 2018 56 WL images 1920 × 1080 Binary mask to

locate the polyp yes no

ETIS-Larib [13] 2014

196 WL images with
polyps extracted from

34 sequences with
44 different polyps

1225 × 966 Binary mask to
locate the polyp yes no

Kvasir-SEG [20] 2020 1000 polyp images 332 × 487
1920 × 1072

Binary mask
and bounding
box to locate

the polyp

yes no

CVC-
ClinicVideoDB

[17,18]
2017

11,954 images in total
with 10,025 images

of polyps
384 × 288 Binary mask to

locate the polyp no yes

PICCOLO [19] 2020

3433 images (2131 WL
and 1302 NBI) from

76 lesions from
40 patients

854 × 480
1920 × 1080

Binary mask to
locate the polyp yes yes

KUMC dataset
[23] 2021

37,899 images in total,
including the

CVC-ColonDB,
ASU-Mayo Clinic

Colonoscopy Video, and
Colonoscopic Dataset

datasets

Various
resolutions

Bounding box
to locate

the polyp
no yes

SUN [22] 2021
49,136 images with
polyps. The polyp

samples of 100 cases
1240 × 1080

Bounding box
to locate

the polyp
no no *

LDPolypVideo
[21] 2021

160 videos
(40,187 frames: 33,876

polyp images and
6311 non-polyp images)

with 200 labeled polyps.

560 × 480
Bounding box

to locate
the polyp

yes yes

* The SUN dataset contains 109,554 non-polyp frames that were not downloaded for our experiments.
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Figure 2. Examples of polyp images from the included datasets. Upper row (left to right): CVC-
ClinicDB, CVC-ColonDB, CVC-PolypHD, ETIS-Larib, and Kvasir-SEG. Bottom row (left to right):
CVC-ClinicVideoDB, PICCOLO, KUMC, SUN, and LDPolypVideo.

The scripts to make such conversions were published in the following GitHub repos-
itory: https://github.com/sing-group/public-datasets-to-voc (accessed on 22 February
2022). The specific process of converting each of the datasets to this common format is
discussed below. In Supplementary Table S1, we summarize the most relevant information
regarding the datasets structure (number and image formats, scripts used to process them,
etc.). This table also shows the number of bounding boxes obtained for each dataset along
with the average relative bounding box size with respect to the whole image.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Examples of polyp images from the included datasets. Upper row (left to right): CVC-
ClinicDB, CVC-ColonDB, CVC-PolypHD, ETIS-Larib, and Kvasir-SEG. Bottom row (left to right): 
CVC-ClinicVideoDB, PICCOLO, KUMC, SUN, and LDPolypVideo. 

As explained before, almost all datasets provide polyp locations as binary masks, and 
thus are suitable for object segmentation models. Since our model works with bounding 
boxes information, the binary masks were converted into this representation using the 
scikit-image Python library. Figure 3 shows an example of this conversion procedure, 
where it can be seen that the scikit-image functions allow obtaining the minimum bound-
ing boxes that cover the original binary masks. In addition, the organization of the images 
and annotations in the datasets was also adapted to the PASCAL VOC dataset format that 
our evaluation pipeline uses as input. This adaptation process usually required three 
steps: (i) folder reorganization, in which all original and mask images are moved into two 
separate folders if necessary; (ii) format conversion, to covert the original images to the 
JPG format if necessary; and (iii) conversion to PASCAL VOC dataset format, in which 
the dataset is adapted to this format, including the transformation of binary masks into 
bounding boxes when needed.  

The scripts to make such conversions were published in the following GitHub repos-
itory: https://github.com/sing-group/public-datasets-to-voc (accessed on 22 February 
2022). The specific process of converting each of the datasets to this common format is 
discussed below. In Supplementary Table S1, we summarize the most relevant infor-
mation regarding the datasets structure (number and image formats, scripts used to pro-
cess them, etc.). This table also shows the number of bounding boxes obtained for each 
dataset along with the average relative bounding box size with respect to the whole image. 

 
Figure 3. Conversion from binary mask annotations to bounding boxes. First column: original polyp
images. Second column: binary mask annotations. Third column: obtained bounding box annotations
over the original polyp images.

The CVC-ColonDB and CVC-ClinicDB datasets share the same folder structure and
include several mask types for each image. The original polyp images are provided
in their own folder, while the images of each mask type are placed in separate folders.
All the images are provided in a BMP format, except for the “gtpolyp” mask images in
CVC-ClinicDB, which are provided in a TIFF format. For our experiment, the “gtpolyp”
mask images were used. The original polyp images were first converted to JPG using the
convert_format.sh script. Finally, the dataset was converted into the PASCAL VOC dataset
format using the CVC-ToVOC.py script.

https://github.com/sing-group/public-datasets-to-voc
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The CVC-ClinicVideoDB dataset is structured as two folders, containing development
(train and validation) and test partitions, and provides original polyp and mask images
in a PNG format. Because the test partition does not include annotations, its images were
discarded, and therefore only the images from the development partition were used. In
this partition, original polyp and mask images are stored in separate folders by polyp. The
original polyp and mask images were first separated into two different folders using the
separate_folder_ClinicVideo.sh script, and then the original polyp images were converted
into a JPG format using the convert_format.sh script. Finally, the dataset was converted
into the PASCAL VOC dataset format using the ClinicVideoToVOC.py script.

The CVC-PolypHD dataset provides a single folder containing both the original polyp
and mask images in BMP and TIFF formats, respectively. The original polyp and mask im-
ages were first separated into two different folders using the separate_folder_PolypHD.sh
script, and then the original polyp images were converted into a JPG format using the
convert_format.sh script. Finally, the dataset was converted into the PASCAL VOC dataset
format using the PolypHDToVOC.py script.

The ETIS-Larib dataset is structured as two folders containing the original polyp and
binary mask images in a TIFF format. The original polyp images were first converted into a
JPG format using the convert_format.sh script, and then the dataset was converted into the
PASCAL VOC dataset format using the ETIS-LaribToVOC.py script.

The Kvasir-SEG dataset is structured as two folders containing the original polyp
and binary mask images in a JPG format and a JSON file that contains the bounding box
locations of each image. The conversion of this dataset to the PASCAL VOC dataset format
was carried out using the KvasirToVOC.py script.

The PICCOLO dataset is structured as three folders, containing the train, validation,
and test partitions, and provides original polyp and mask images in PNG and TIFF formats,
respectively. In this case, the original polyp and binary mask images were moved into
two single separate folders using the merge_PICCOLO.sh script in order to get rid of the
partitions and be able to use the whole dataset as a test set. Then, the original polyp images
were converted into a JPG format using the convert_format.sh script, and the dataset was
converted into the PASCAL VOC dataset format using the PICCOLOToVOC.py script.

The KUMC dataset is structured as three folders, containing the train, validation, and
test partitions, respectively, which are already in the PASCAL VOC dataset format. In
this case, we grouped the images into a single folder (i.e., merge train, validation, and
test partitions) in order to be able to use the entire dataset as a test set. It is important to
note that this dataset includes some annotations that do not have an image associated and,
therefore, we excluded those annotations to create a usable version of this dataset. Also,
this dataset includes labels for “adenomatous” and “hyperplastic” polyps, which were also
merged into a single “polyp” annotation to be able to use them with our model (trained to
locate images of class “polyp”). The whole conversion process of this dataset was carried
out using the KUMCToVOC.sh script.

The SUN dataset provides one folder for each polyp, containing one or more images
of the polyp in a JPG format and a text file with the bounding box location and the class
(polyp vs. non-polyp) of each image. In this case, we grouped the images into a single
folder in order to be able to use the entire dataset as a test set, using the merge_SUN.sh
script. Finally, the dataset was converted into the PASCAL VOC dataset format using the
SUNToVOC.sh script.

Finally, the LDPolypVideo dataset is structured as two folders, containing the devel-
opment (train and validation) and test partitions, and provides original polyp images in a
JPG format and a text file with the bounding box location of each image. In this case, we
grouped the images into a single folder in order to be able to use the entire dataset as a test
set, using the merge_and_rename_LDPolypVideo.sh script, which also renames the original
image names to avoid duplicates when all images are put in the same folder. Finally, the dataset
was converted into the PASCAL VOC dataset format using the LDPolypVideoToVOC.py script.
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2.4. Experiments

The experiments consisted in evaluating the performance of our model (presented in
Section 2.1) in the ten public colonoscopy image datasets selected, without retrain. The
model was developed using a set of Compi pipelines [32,33] available at this GitHub
repository: https://github.com/sing-group/polydeep-object-detection (accessed on
22 February 2022). In order to carry out the experiments presented in this work, the test
pipeline (test.xml) was used to load the trained model and analyze the performance on
the ten public datasets after converting them to the PASCAL VOC format (as described in
Section 2.3). This allowed us to obtain the performance results presented in Section 3.

2.5. Performance of Studies on Public Colonoscopy Image Datasets

Table 2 includes all published studies reporting bounding-box-based performance
metrics (i.e., comparing predicted bounding boxes against the true bounding boxes of
the ground truth) in at least one of the selected public colonoscopy image datasets, as
resulted from the selection process explained in Section 2.2. These data were used then to
analyze the performance of various models on the public datasets included in this study
and compare our detection model with them. It is important to note that some studies
evaluate the performance of several models and, in this case, we selected only the metrics
of the best performing ones to perform our analyses and compare them.

The table includes one row for each study experiment with the following information:
training set, testing set, recall, precision, F1-score, and F2-score. It is important to note that:
(i) we only included the performance metrics for the selected public datasets, although
some works reported performances with other datasets (e.g., Shin Y. et al., 2018 [34] reports
the performance for the ASU-Mayo Clinic Colonoscopy Video, but it is not included, as
we could not access the dataset); (ii) we included the performance metrics for private
dataset partitions (Wang et al., 2018 [35], Wittenberg et al., 2019 [36], and Young Lee J. et al.,
2020 [37]) since they able to compare those studies against us.

Each row of Table 2 (i.e., experiment performance) can be categorized as: (i) intra-
dataset performance, when the evaluation was carried out on a test split of the dataset used
for model development; or (ii) inter-dataset performance, when the performance evaluation
was carried out on a dataset different than the one used for model development. From the
20 studies, there are 10 that only show their performance results for evaluating one public
dataset, 8 that use at least two public datasets, 2 that use three datasets, and 1 that uses four
public datasets.

Table 2. Performance results of studies evaluating DL models for polyp localization in at least one of
the selected public colonoscopy image datasets.

Paper Train Test
Results

Recall Precision F1-Score F2-Score

Brandao et al., 2018 [38]
CVC-ClinicDB +

ASU-Mayo
ETIS-Larib 0.90 0.73 0.81 0.86

CVC-ColonDB 0.90 0.80 0.85 0.88

Zheng Y. et al., 2018 [39] CVC-ClinicDB +
CVC-ColonDB ETIS-Larib 0.74 0.77 0.76 0.75

Shin Y. et al., 2018 [34] CVC-ClinicDB
ETIS-Larib 0.80 0.87 0.83 0.82

CVC-Clinic VideoDB 0.84 0.90 0.87 0.85

Wang et al., 2018 [35] Private
CVC-ClinicDB 0.88 0.93 0.91 0.89

Private * 0.94 0.96 0.95 0.95
Qadir et al., 2019 [40] CVC-ClinicDB CVC-ClinicVideoDB 0.84 0.90 0.87 0.85
Tian Y. et al., 2019 [41] Private ETIS-Larib 0.64 0.74 0.69 0.66
Ahmad et al., 2019 [42] Private ETIS-Larib 0.92 0.75 0.83 0.88

Sornapudi et al., 2019 [43] CVC-ClinicDB
ETIS-Larib 0.80 0.73 0.76 0.79

CVC-ColonDB 0.92 0.90 0.91 0.91
CVC-PolypHD 0.78 0.83 0.81 0.79

https://github.com/sing-group/polydeep-object-detection
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Table 2. Cont.

Paper Train Test
Results

Recall Precision F1-Score F2-Score

Wittenberg et al., 2019 [36] Private
ETIS-Larib 0.83 0.74 0.79 0.81

CVC-ClinicDB 0.86 0.80 0.82 0.85
Private 0.93 0.86 0.89 0.92

Jia X. et al., 2020 [44]
CVC-ColonDB CVC-ClinicDB 0.92 0.85 0.88 0.91
CVC-ClinicDB ETIS-Larib 0.82 0.64 0.72 0.77

Ma Y. et al., 2020 [45] CVC-ClinicDB CVC-ClinicVideoDB 0.92 0.88 0.90 0.91
Young Lee J. et al.,

2020 [37] Private
CVC-ClinicDB 0.90 0.98 0.94 0.96

Private 0.97 0.97 0.97 0.97

Podlasek J. et al., 2020 [46] Private

ETIS-Larib 0.67 0.79 0.73 0.69
CVC-ClinicDB 0.91 0.97 0.94 0.92
CVC-ColonDB 0.74 0.92 0.82 0.77
Hyper-Kvasir 0.88 0.98 0.93 0.90

Qadir et al., 2021 [47] CVC-ClinicDB
ETIS-Larib 0.87 0.86 0.86 0.86

CVC-ColonDB 0.91 0.88 0.90 0.90

Xu J. et al., 2021 [48] CVC-ClinicDB
ETIS-Larib 0.72 0.83 0.77 0.74

CVC-ClinicVideoDB 0.66 0.89 0.76 0.70

Pacal et al., 2021 [49] CVC-ClinicDB
ETIS-Larib 0.83 0.92 0.87 0.84

CVC-ColonDB 0.97 0.96 0.96 0.97
Liu et al., 2021 [50] CVC-ClinicDB ETIS-Larib 0.88 0.78 0.82 0.85

Li K. et al., 2021 [23] KUMC KUMC-Test ** 0.86 0.91 0.89 0.87

Ma Y. et al., 2021 [21] CVC-ClinicDB
CVC-ClinicVideoDB 0.64 0.85 0.73 0.67

LDPolypVideo 0.47 0.65 0.55 0.50

Pacal et al., 2022 [51]

SUN + PICCOLO +
CVC-ClinicDB ETIS-Larib 0.91 0.91 0.91 0.91

SUN SUN *** 0.86 0.96 0.91 0.88
PICCOLO PICCOLO 0.80 0.93 0.86 0.82

* Wang et al., 2018 evaluated the test performance using a different private dataset from the one used for
model training. However, we consider this as an intra-dataset experiment since the private dataset for model
development was collected in the Endoscopy Center of Sichuan Provincial People’s Hospital between Jan-
uary 2007 and December 2015 and the private test dataset was collected in the same center using the same
devices between January and December 2016, and we understand that the distribution should be very similar.
** Li K. et al., 2021 used a partition of the KUMC dataset as testing set in their experiments (KUMC-Test in the table).
*** Pacal et al., 2022 used a partition of the SUN dataset that includes “non-polyp” images and, therefore, it is not
comparable to our performance with the SUN dataset, which includes all polyp images.

Among the public datasets, as Figure 4 shows, the ETIS-Larib dataset was the most
widely used for testing the detection models (14 out of 20 studies), probably due to the
fact that it was one of the test datasets for the automatic polyp detection subchallenge
at MICCAI 2015 [11]. The highest F1-score in this dataset was achieved by Pacal et al.,
2022 [51] (0.91). The next datasets used by the greatest number of studies (5 out of 20)
were CVC-ColonDB, for which the highest F1 (0.96) was achieved by Pacal et al., 2021 [49],
CVC-ClinicDB, for which both Young Lee J. et al., 2020 [37] and Podlasek J. et al., 2020 [46]
achieved an F1 of 0.94, and CVC-ClinicVideoDB, for which Ma Y. et al., 2020 [45] achieved
the top F1-score of 0.90.
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Figure 4. Usage of datasets for model evaluation among studies in Table 2. Each study using several
datasets contributes one point for each testing dataset used.

3. Results and Discussion

Table 3 shows the performance results of our model when evaluated on the ten
selected public colonoscopy image datasets. As shown in Figure 5, the F1-score of our
model decayed in all public datasets with respect to the performance in our private test
partition (F1 = 0.88, recall = 0.87, precision = 0.89). The average F1 decay was 13.65%,
reaching its maximum with the whole LDPolypVideo dataset (F1 = 0.52), for which we also
had the lowest recall (0.49).

Table 3. Performance results of our model when evaluated on the ten selected public colonoscopy
image datasets.

Dataset Number of
Images for Test

Results

Recall Precision F1-Score F2-Score AP

CVC-ClinicDB 612 0.82 0.87 0.85 0.83 0.82
CVC-ColonDB 300 0.84 0.81 0.83 0.83 0.85
CVC-PolypHD 56 0.75 0.86 0.80 0.77 0.79

ETIS-Larib 196 0.72 0.71 0.72 0.72 0.69
Kvasir-SEG 1000 0.78 0.84 0.81 0.82 0.79
PICCOLO 3433 0.60 0.76 0.67 0.62 0.63

CVC-ClinicVideoDB 11,954 0.80 0.75 0.77 0.79 0.77
KUMC dataset 37,899 0.81 0.83 0.82 0.81 0.83

KUMC dataset–Test 4872 0.76 0.81 0.78 0.77 0.79
SUN 49,136 0.78 0.83 0.81 0.79 0.81

LDPolypVideo 40,186 0.49 0.56 0.52 0.50 0.44

The three datasets in which our model decayed the most were LDPolypVideo (−40.75%),
PICCOLO (−24.27%), and ETIS-Larib (−18.54%). These datasets share two characteristics
that the private dataset used to develop and test our model does not have: (i) the presence
of non-polyp images (LDPolypVideo and PICCOLO), which may decrease our precision as
we are showing more test images without polyps and our model has more chances to emit
false positives; and (ii) the presence of images with multiple-polyp images (LDPolypVideo,
PICCOLO, and ETIS-Larib), which may decrease our recall even though our model is able
to locate multiple polyps (e.g., PICCOLO contains almost 10% of images annotated with
multiple polyps, and our recall in this dataset (0.60) was significantly lower than in others).
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The low performance in the LDPolypVideo dataset is not surprising, as authors state
in their publication that the dataset contains images selected to include a high degree of
diversity in polyp morphology, multiple polyps, motion blur, and specular reflections, in
order to create a challenging dataset [21]. In fact, they fine-tuned several state-of-the-art ob-
ject detection models (including YOLOv3, the same as us) using the CVC-ClinicDB dataset
and evaluated their performance using the CVC-ClinicVideoDB dataset and their new
LDPolypVideo dataset, obtaining a significantly lower performance in the LDPolypVideo
dataset evaluation with all models. Their best F1-score (0.55) in the LDPolypVideo dataset
was obtained using RetinaNet, while their YOLOv3 model obtained an F1-score of 0.41
(compared to our F1-score of 0.52).

Intrigued by the low F1-score in the whole PICCOLO dataset, we analyzed the perfor-
mance of our model in the three original partitions of the dataset separately, obtaining an
F1-score 0.71 in the train partition (recall = 0.63, precision = 0.80, 2203 images), an F1-score
0.53 in the validation partition (recall = 0.49, precision = 0.61, 897 images), and an F1-score
0.74 in the test partition (recall = 0.69, precision = 0.80, 333 images). As can be seen, the
performance in the validation partition was significantly worse than in the other two parti-
tions, which we believe to be the main cause of the performance decrease when testing with
the whole dataset. Figure 6 shows several incorrect predictions of our model against the
ground truth in the train, validation, and tests splits of the PICCOLO dataset. We noted that
the validation split contains many big bounding boxes as ground truth, and we computed
the average relative size of the bounding boxes with respect to the whole image in the three
partitions, obtaining 0.20 in train, 0.33 in validation, and 0.16 in test. Thus, bounding boxes
in the validation set are clearly bigger than in the other two partitions. We also observed
the majority of polyps in the validation partition look like the three images shown in the
middle column of Figure 6, while polyps in our dataset look like the three images taken
from the PICCOLO training set in the first column. We understand that polyp images
in the validation set, where our model decayed the most, follow a different distribution
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than the ones in our private training set. Nevertheless, some of these errors (seen in the
bottom-left or upper-right images in Figure 6) are caused because the intersection between
the predicted and the actual bounding boxes is below the threshold, but in practical terms,
an endoscopist would be able to localize the polyp in real-time when using the model.
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Figure 6. Incorrect prediction examples of our detection model over the different splits of the
PICCOLO dataset. From left to right, there are three examples taken from the train, validation, and
test splits. Predicted boxes are depicted in green, whereas ground truth boxes are in white.

Only 3 out of the 20 studies had the same exact setup that we had: training the
model with a private dataset, testing it with a test partition of the private dataset (intra-
dataset performance), and finally testing it using one or more public datasets (inter-dataset
performance estimation). As shown in Figure 7, the F1-score also decayed in those studies
when analyzing the public datasets with respect to the private test set. In the case of the
CVC-ClinicDB dataset, used by the four studies, the average decay was about 5%. In the
ETIS-Larib dataset, the Wittenberg et al., 2019 [36] study decayed by 11.24%, compared to
our 18.54% decrease.

With the aim of further exploring the intra-to-inter performance decay in other studies,
we analyzed the evaluations on public datasets collected in Section 2.5. Such evaluations are
heterogeneous regarding the datasets used for training and testing, the models used, and
other similar factors. Thus, we compared the intra-dataset performances (i.e., a performance
evaluation on a test split of the dataset used for model development, either private or
public) against the inter-dataset performances (i.e., a performance evaluation on a dataset
different than the one used for model development). As Figure 8A shows, the intra-dataset
performances were usually higher than the inter-dataset performances. Figure 8B shows
the inter-dataset distribution disaggregated by the public dataset on which the evaluation
was carried out. It is important to note that three public datasets (PICCOLO, KUMC, and
SUN) are under the intra-dataset performance box, as they are only used in intra-dataset
setups. These results are in line with the results obtained in our experiment that show a
decay in the F1-score when the evaluation was carried out on a different test dataset.
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Interestingly, the two datasets in which the decay of our model was lower (CVC-
ClinicDB and CVC-ColonDB) are also two of the three datasets in which the published
studies obtained performances closer to the intra-dataset ones; also, two of the three
datasets in which the performance was worse in the published studies (ETIS-Larib and
LDPolypVideo) were two of the most challenging for our model. In the light of these
observations, we correlated our performance in the seven datasets shown in Figure 8B
with the median inter-dataset performances of the published studies. Figure 9 allows us to
observe that such correlation exists (p-value < 0.001), showing that our exhaustive testing
reveals the inherent degree of difficulty of the public datasets; a single model (ours) showed
the same behavior as the aggregation of the published research, taking into account that
studies are heterogeneous (different models and different training datasets) and that we
picked the highest F1-scores of those performing several analyses.
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4. Conclusions

In this work, we performed the biggest systematic evaluation of a polyp localization
model trained using a private dataset and tested it on ten public colonoscopy image datasets,
including the most recent PICCOLO, SUN, and KUMC datasets. The biggest evaluation
to date was carried out by Podlasek J. et al., 2020 [46], who tested their model with four
datasets. As a result of performing such an evaluation, we have published a set of scripts
for converting the public datasets into the PASCAL VOC format for polyp localization,
providing a valuable resource for other researchers aiming to perform similar analyses.

Our experiments and the analysis of the published research allowed us to observe
that there is a performance decay when performing an inter-dataset evaluation. The
F1-score of our model was 0.88 when evaluated on a private test partition and decayed, on
average, 13.65% when tested on the ten public datasets selected. In the published research,
the average F1-score was 0.91 when the evaluation was performed on a test split of the
dataset used for mode development, compared to the 0.83 average F1 obtained when such
models were tested with external datasets, keeping in mind that these F1-scores are the
best ones among the reported performances. This confirms our initial hypothesis that
models developed using one dataset are sensitive to changes in the nature of the testing
instances. Also, we observed that this decay is associated with the test dataset; while
studies on datasets such as CVC-ClinicDB and CVC-ColonDB obtain F1-scores closer to
their development performances, other datasets such as ETIS-Larib and LDPolypVideo, are
more challenging.

In light of these findings, our future work to keep improving our model will be data-
centric. In the first place, we will use an updated version of our dataset (now available
through the IISGS BioBank: https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb
(accessed on 22 February 2022)) that includes more annotated images for polyp localization.
In this updated version, we have also included annotated non-polyp images, which some
studies also used during training to improve the performance of the model [22]. Finally,
we will also evaluate the possibility of augmenting our training data with public datasets,
as some studies have attempted [51], giving priority to those datasets where our model
decays the most, such as ETIS-Larib, PICCOLO, or LDPolypVideo. Doing this would also
allow us to train our model using images annotated with multiple polyps.

https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb
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