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Abstract: In positron emission tomography (PET) imaging, image quality correlates with the injected
[18F]-fluorodeoxyglucose (FDG) dose and acquisition time. If image quality improves from short-
acquisition PET images via the super-resolution (SR) deep learning technique, it is possible to reduce
the injected FDG dose. Therefore, the aim of this study was to clarify whether the SR deep learning
technique could improve the image quality of the 50%-acquisition-time image to the level of that
of the 100%-acquisition-time image. One-hundred-and-eight adult patients were enrolled in this
retrospective observational study. The supervised data were divided into nine subsets for nested
cross-validation. The mean peak signal-to-noise ratio and structural similarity in the SR-PET image
were 31.3 dB and 0.931, respectively. The mean opinion scores of the 50% PET image, SR-PET image,
and 100% PET image were 3.41, 3.96, and 4.23 for the lung level, 3.31, 3.80, and 4.27 for the liver level,
and 3.08, 3.67, and 3.94 for the bowel level, respectively. Thus, the SR-PET image was more similar
to the 100% PET image and subjectively improved the image quality, as compared to the 50% PET
image. The use of the SR deep-learning technique can reduce the injected FDG dose and thus lower
radiation exposure.

Keywords: deep learning; PET; radiation exposure; super-resolution

1. Introduction

Deep neural networks have been applied in computer vision tasks, such as segmen-
tation, image classification, denoising, image generation, image synthesis, and super-
resolution (SR). Among them, SR is one of the most popular approaches used for increasing
the resolution of degraded low-resolution (LR) images. Many SR models have been pub-
lished since the SR convolutional neural network (SRCNN) was first reported by Dong
et al. in the European Conference on Computer Vision 2014 [1]. A summary of the SR
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challenge in the New Trends in Image Restoration and Enhancement workshop is reported
annually [2–6]. Moreover, many open-access state-of-the-art (SOTA) models have been
published on websites [7]. These technologies are attracting attention not only in natural
image processing but also in medical image processing, and deep neural networks have
been applied to nuclear medicine [8].

Positron-emission tomography (PET) is a functional imaging modality that uses radio-
tracers, such as [18F]-fluorodeoxyglucose (FDG), and has been used for the diagnosis of
cancer and assessment of the extent of disease in oncology, combined with anatomical data
from computed tomography (CT) or magnetic resonance imaging (MRI) [9–11]. However,
one of the limitations of PET imaging is its relatively poor spatial resolution, as compared
with CT or MRI, because of physical parameters, such as scatter, counting statistics, position
range, and patient motion. Currently, a small number of clinical PET systems using silicon
photomultipliers (SiPM) are commercially available, such as the Signa PET/MRI system
(GE Healthcare, Waukesha, WI) [12], Discovery MI PET/CT system (GE Healthcare) [13],
Vision PET/CT system (Siemens, Munich, Germany) [14], and Vereos PET/CT system
(Philips, Amsterdam, Netherlands) [15]. These clinical PET systems achieve high-energy
resolution (<10% in full-width at half-maximum (FWHM) and precise time-of-flight (TOF)
measurements (<400 ps FWHM in coincidence time resolutions). Although the PET sys-
tems equipped with SiPM are expensive, the use of these systems is expected to become
widespread in the future because they can improve the image resolution as compared with
the conventional PET system without increasing radiation exposure for the patients [12–17].

In Japan, radiation exposure management has been obligatory since April 2020, due
to the enforcement of the partial revision of the Enforcement Regulations of the Medical
Care Law, which includes the safety management of radiation for medical use based on
the established Japanese diagnostic reference levels (DRLs) 2020 [18]. Abe et al. reported
the details of Japan’s DRLs 2020 for nuclear medicine [19]. Depending on the examination
protocol, the radiation exposure in FDG-PET/CT imaging is higher than that in contrast-
enhanced CT imaging [20,21]. Thus, the absorbed radiation dose per examination should
be as low as possible, particularly for young patients who are sensitive to radiation and
potentially require repeated follow-up studies. Previously, Queiroz et al. reported that
the quality of PET images with half the injected FDG dose was clinically acceptable [22].
In addition, Sekine et al. demonstrated that the PET image quality in a TOF PET/MR
system was clinically adequate with 60% of the usually injected FDG dose in patients with
a body mass index (BMI) > 25 kg/m2 and 50% of the injected FDG dose in patients with a
BMI < 25 kg/m2 [23].

The noise-equivalent count correlates with the acquisition time and injected dose in
FDG-PET. At the point of radiation exposure, a reduced dosage of injected FDG is de-
sirable for patients. However, PET images with a decreased signal-to-noise ratio (SNR)
and structural similarity (SSIM) would affect disease diagnosis. In clinical practice, di-
agnostic examinations are performed based on defined procedure guidelines for tumor
imaging [20,24], so it is not easy to obtain images with low-dose FDG injections for ethical
reasons. Thus, it is important to simulate low-dose data from the under-sampled normally
injected FDG dose, for further injected FDG dose reductions.

We hypothesized that it would be possible to reduce the radiation exposure in PET
examinations by improving the image quality via SR deep learning techniques from low-
quality PET images obtained with short acquisition times. Thus, the aim of this study was
to clarify whether, when using a short acquisition time, PET image quality could improve
to a level similar to the conventional full-acquisition-time PET image by applying the SR
deep learning model.

2. Related Works

SR techniques have been applied in PET imaging to solve the problem of blurry recon-
structed PET images due to noise and artifacts. The traditional SR approach is based on
interpolation such as the most commonly used bilinear or bicubic methods. These interpo-
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lation methods increase the number of pixels and improve the image resolution with the
obtained polynomial function constructed from all known points. Since the publication
of SRCNN, research on SR using convolutional neural networks (CNNs) has dramatically
advanced, and various deeper network architectures have been proposed [1–7]. These
SR models succeeded in achieving SR with higher accuracy than previous interpolation
methods. Recent SOTA methods with SR deep learning techniques have shown exceptional
performance for natural images [2–7]. Following the Preferred Reporting Items for System-
atic Reviews and Meta-analyses (PRISMA) standard, Ooi et al. systematically reviewed
the SR deep learning algorithms [25]. Although unsupervised learning models such as
the generative adversarial network (GAN) have also been proposed [26], most of these
methods are based on the framework of supervised learning. These supervised learning
SR frameworks artificially create the under-sampled low-resolution images from the given
ground-truth high-resolution images and are trained to recover the original ground-truth
images from the low-resolution images. Previously, image-generation techniques using GAN,
such as PET images at normal doses being generated from reduced doses, have been consid-
ered to reduce radiation exposure in nuclear medicine [27,28]. On the other hand, the use of
SR deep learning was limited for the purpose of radiation exposure reduction in PET imaging.

3. Materials and Methods
3.1. Patients and Image Acquisition

This retrospective observational study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the institutional review board (approval No.
020-0070). The need for written informed consent was waived due to the retrospective
nature of the study. All images were acquired using the Vereos PET-CT system at our
institution between April 2019 and May 2020. A total of 108 adult patients, 108 examina-
tions, and 25,678 PET images were enrolled in this study (Table 1). The number of images
varied from patient to patient (Table 1). No more than one whole-body scan was performed
on each patient. All patients fasted for ≥6 h before FDG injection (ca. 4 MBq/kg), and
emission scanning was initiated approximately 60-min post-injection. The effective dose
was used to calculate the whole-body dose to compare the radiologic detriments from
different radiation exposures. The effective dose from 18F-FDG PET scans was calculated
as the product of injected 18F-FDG radioactivity and the dose coefficient weighting factor
recommended in the International Commission on Radiological Protection publication
80 [11,29]. This weighting factor was set at 7.0 mSv/MBq for adults when 18F-FDG was
administered to be 370 MBq. All images were reconstructed using an ordered-subset
expectation maximization (OSEM) algorithm, time-of-flight algorithm, and point-spread
function correction. The reconstructed images had a matrix size of 144 × 144 and voxel
size of 4.0 × 4.0 × 4.0 mm. In this study, the “ground-truth” PET images in each patient were
reconstructed at 90 s, which unified the collection time in all patients. To obtain PET images
with simulated reduced injected FDG doses, three types of short-acquisition-time PET images
(10%, 20%, and 50%) were reconstructed from identical PET emission data for each patient.

Table 1. Patient characteristics and scan parameters in clinical data.

Median Range

Age (years) 66.5 20.0 86.0
BMI (kg/m2) 22.4 12.3 34.7

Weight (kg) 57.6 30.0 91.3
Height (m) 1.60 1.40 1.78

Injection dose (MBq) 258.7 124.0 400.7
Emission time (s) 90 90 180
Uptake time (min) 63 54 118

Exposure dose from PET (mSv) 4.9 2.3 7.6
Number of images per

patient 241 191 291
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3.2. Super Resolution

We used the residual dense network (RDN) model for this study, which acquired
SOTA at the time of research planning [30]. In short, this SR model fully exploited the
hierarchical features from all convolutional layers by the residual dense block (RDB),
which allowed direct connections from the state of the preceding RDB to all layers of the
current RDB. Consequently, the RDN model achieved better/comparable performance
against SOTA in experiments on benchmark datasets with different degradations [30]. This
SR model was limited to importation in an 8-bit 3-channel RGB color image. Because
the PET images represent one gray-scale channel, the training data in one channel were
trained and concatenated with those in the other two channels to construct complete, color,
high-resolution images. Thus, all reconstructed PET image data were anonymized and
converted from 16-bit grayscale digital imaging and communications in medicine (DICOM)
files to 8-bit three-channel grayscale portable network graphic (PNG) files using MATLAB’s
(MATLAB2019b, The MathWorks, Natick, MA, USA) “mat2gray” function. We used a
computer with two graphic processing units: NVIDIA GeForce GTX 1080 Ti 11GB (NVIDIA
Corporation, Santa Clara, CA, USA). In the RDN model training, because the RDN model
does not require low-resolution images, training data of the full-acquisition-time PET
images (ground-truth) were used, and one-fourth were downsampled with the bilinear
method. After the training, the predicted SR image was upsampled 4 times from the
low-resolution input test images, which was not included in the training data. The training
model hyperparameters were as follows: Maximum number of training epochs, 100; initial
learning rate, 10−5; mini-batch size, 4. We divided the reconstructed PET images into
9 equal subsets according to the number of patients. Based on the subsets, we performed
a 9-fold cross-validation procedure. We imported the half-acquisition-time PET image
(50% PET image) as the LR image to the RDN and subsequently predicted the SR image.
Overall, the output SR image had a four-fold upscaling resolution from these 50% PET
images. Figure 1 shows the flow chart of the proposed method and the model architecture
in this study.
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Figure 1. Flow chart of the proposed method and model architecture in this study. DICOM: Digital
imaging and communications in medicine, PET: Positron emission tomography, SR-PET: Super-
resolved PET, RDN: Residual dense network [30], RDB: Residual dense blocks.
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3.3. Evaluation

We divided the supervised data into nine subsets for nested cross-validation [31]. Each
subset was an independent combination of 96 patients used for training and 12 patients
used for test images to prevent the overlap of patient images between the training and test-
ing images within the subsets. To determine the effectiveness of SR for radiation exposure
reduction in PET examinations, we performed objective and subjective evaluations. The
objective evaluation is aimed at determining whether the SR model can be used to approx-
imate the reference image better, and the subjective evaluation is aimed at determining
whether the SR model can achieve an image quality appropriate for diagnosis.

For objective evaluation, 50% of the PET images were first downsampled using a
bilinear model with a scaling factor of 4. Next, downsampled 50% PET images were
upsampled by bilinear and RDN models with a scaling factor of four, to compare the output
SR image and original “ground-truth” images in the same matrix size. The peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) were calculated using MATLAB “PSNR”
and “SSIM” functions [32,33]. These objective indices are well-known quality metrics for
the comparison of two images. The PSNR is based on comparisons using explicit numerical
criteria, using the mean squared error (MSE). However, SSIM is considered to be correlated
with the quality perception of the human visual system, designed by modeling any image
distortion as a combination of three factors (loss of correlation, luminance distortion, and
contrast distortion). For a reference image x and test image y, the details of the PSNR and
SSIM calculation equations are as follows:

PSNR(x, y) = 10 log10
Vp

2

MSE(x, y)
(1)

MSE(x, y) =
1

M N

M

∑
i=1

N

∑
j=1

(
xij − yij

)2 (2)

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (3)

C1 = (0.01 L)2 (4)

C2 = (0.03 L)2 (5)

where Vp is the peak value of the signal, which was set to (28 − 1 = 255) in this study;
MSE(x, y) is the simplest and most widely used full-reference quality metric calculated by
averaging the squared intensity differences of distorted and reference image pixels; µx and
µy are the means of x and y; σxy and σy are the variances of x and y; σxy is the covariance of
x and y; and L is the dynamic range of the pixel values (255 for 8-bit grayscale images). The
value of PSNR(x, y) approaches infinity as MSE(x, y) approaches zero, and a small value
of PSNR(x, y) implies large numerical differences between x and y. The SSIM ranges
from 0 to 1, where 1 denotes perfect similarity between two images. These measures were
calculated for all images.

For the subjective evaluation, 50% PET images were upsampled using the RDN model.
Bilinear interpolation was used to resample the other PET images to the same matrix size as
the output SR-PET images. Three experienced board-certified nuclear medicine physicians
(KH, 14 years; SW, 4 years; and RK, 1 year after board certification) visually evaluated all the
images, independently, without access to the image label (i.e., which recovery method was
used). We selected images for the subjective evaluation of the lung, liver, and bowel levels of
each patient. All images were provided to the physicians in random order for image review.
We performed a mean opinion score (MOS) test to quantify this ability [34]. Specifically, we
asked these physicians to assign scores from 1 (poor image quality) to 5 (excellent image
quality) to the original PET image, 10% PET image, 20% PET image, 50% PET image, and
image super-resolved via RDN from the 50% PET image. Intraclass correlation coefficients
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(ICCs) were used to assess agreement between quantitative measurements in terms of
consistency and conformity [35]. Based on ICC selection guidelines, we used the following
forms using two-way mixed effects for model selection, consistency for definition selection,
and single rater for type selection [36]:

ICC(3, k) =
MSR − MSE

MSR + (k − 1)MSE
(6)

where 3 refers to the two-way mixed effect model, k is the number of raters, k = 3 was
set in this study, and MSR is the mean square for rows. When MSE = 0, ICC(a, b) = 1.
ICC values less than 0.5 indicated poor reliability, values between 0.5 and 0.75 indicated
moderate reliability, values between 0.75 and 0.9 indicated good reliability, and values
greater than 0.90 indicated excellent reliability [36].

Bland–Altman plots were generated to evaluate the agreement of the MOS between
operators in each image set. In the Bland–Altman plot, the horizontal axis shows the mean
of the MOS between operators, and the vertical axis represents the difference in MOS
between operators (d). Cohen’s weighted kappa (k) was used as a measure of agreement of
interoperator variance [37,38]. This indicates the magnitude of the disagreement between
the operators in the calculation. The interpretation of agreement for k was categorized as
follows: Poor (k < 0), slight (0 ≤ k ≤ 0.2), fair (0.21 ≤ k ≤ 0.4), moderate (0.41 ≤ k ≤ 0.6),
substantial (0.61 ≤ k ≤ 0.80), and almost perfect (k > 0.8).

The Wilcoxon signed-rank test was used for statistical analysis. Differences were
considered statistically significant when p < 0.05. All statistical analyses were performed
using the Statistical Package for the Social Sciences (SPSS) Statistics 26 (IBM Corp., Armonk,
NY, USA).

4. Results

In the objective evaluation, the mean PSNR was 30.9 dB (95% confidence interval [CI]:
30.7–31.0 dB) in bilinear upsampling and 31.3 dB (95% CI: 31.1–31.5 dB) in the RDN model
super-resolved image. In addition, the mean SSIM was 0.927 (95% CI: 0.924–0.930 dB) in
bilinear upsampling and 0.931 (95% CI: 0.928–0.934 dB) in images super-resolved using the
RDN model. Statistically significant differences were observed in both PSNR and SSIM
(p < 0.05). Thus, the quality of the super-resolved image obtained using the RDN model
was significantly better than that of the conventional bilinear upsampled image.

In the subjective evaluation, Figure 2 shows an example of an image at the liver level.
Figure 3 shows the MOS results for each image set and Table 2 summarizes the subjective
evaluation results. As shown in Table 2, the MOS of the super-resolved image obtained
via the RDN model at all levels was significantly higher than that of the 50% PET image
upsampled by the bilinear method (p < 0.05). However, the MOS of the super-resolved
image obtained using the RDN model was significantly lower at all levels than that of the
original image upsampled using the bilinear method (p < 0.05). Furthermore, Figure 4
shows the Bland–Altman plots for the inter-operator difference in MOS for each image
set. The ICC estimates and their 95% CIs for the 50% PET image set were 0.62 (95% CI:
0.48–0.73) for the lung level, 0.56 (95% CI: 0.56–0.39) for the liver level, and 0.14 (95% CI:
−0.18 to 0.39) for the bowel level. The ICC estimates and their 95% CIs for the SR-PET
image set were 0.48 (95% CI: 0.28-0.63) for the lung level, 0.43 (95% CI: 0.22-0.60) for the
liver level, and 0.32 (95% CI: 0.07–0.52) for the bowel level. All kappa indexes (k) exceeded
0.8 (Table 3).
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Table 2. Summary of the subjective evaluation of each image set.

10% PET Image Set 20% PET Image Set 50% PET Image Set
Mean (95% CI) Mean (95% CI) Mean (95% CI)

MOS
Lung 1.41 1.35 1.48 2.17 2.09 2.26 3.41 3.32 3.49
Liver 1.40 1.34 1.46 2.08 2.00 2.16 3.31 3.22 3.39
Bowel 1.20 1.15 1.25 1.78 1.69 1.86 3.08 2.99 3.17

ICC (3,3)
Lung 0.48 0.28 0.63 0.53 0.36 0.67 0.62 0.48 0.73
Liver 0.55 0.38 0.68 0.43 0.21 0.59 0.56 0.39 0.69
Bowel 0.06 −0.29 0.33 0.35 0.10 0.54 0.14 −0.18 0.39

SR-PET Image
(Proposed Method) 100% PET Image Set

Mean (95% CI) Mean (95% CI)

MOS
Lung 3.96 3.87 4.05 4.23 4.15 4.31
Liver 3.80 3.71 3.89 4.27 4.20 4.35
Bowel 3.67 3.57 3.77 3.85 3.77 3.94

ICC (3,3)
Lung 0.48 0.28 0.63 0.31 0.06 0.51
Liver 0.43 0.22 0.60 0.55 0.38 0.68
Bowel 0.32 0.07 0.52 0.19 −0.12 0.42

PET: Positron emission tomography, SR-PET: Super-resolved PET, MOS: Mean opinion score, ICC: Intraclass
correlation coefficients, and 95% CI: 95% confident interval.

Table 3. Summary of agreement of inter-operator variance using Cohen’s weighted kappa (k) statistics.

Operator
10% PET Image 20% PET Image 50% PET Image

d
k

d
k

d
kMean (95% CI) Mean (95% CI) Mean (95% CI)

1 vs. 2
Lung −0.28 −0.42 −0.14 0.96 −0.47 −0.64 −0.30 0.94

−0.40 −0.57 −0.23 0.94

Liver −0.18 −0.31 −0.05 0.97 −0.06 −0.22 0.11 0.95 0.05 −0.11 0.20 0.96

Bowel −0.30 −0.43 −0.17 0.97 −0.85 −0.99 −0.71 0.92
−0.79 −0.97 −0.61 0.91

1 vs. 3
Lung 0.18 0.04 0.31 0.97 −0.07 −0.26 0.11 0.94

−0.32 −0.50 −0.15 0.94

Liver 0.20 0.08 0.32 0.97 0.53 0.36 0.69 0.94 0.40 0.22 0.57 0.94

Bowel −0.04 −0.14 0.06 0.98 −0.29 −0.47 −0.10 0.94
−0.68 −0.91 −0.44 0.88

2 vs. 3
Lung 0.45 0.32 0.59 0.96 0.40 0.23 0.57 0.94 0.07 −0.10 0.25 0.95
Liver 0.38 0.26 0.50 0.96 0.58 0.41 0.76 0.93 0.35 0.19 0.51 0.95
Bowel 0.26 0.14 0.38 0.97 0.56 0.38 0.75 0.92 0.11 −0.10 0.32 0.92

Operator

SR-PET Image
(Proposed Method) 100% PET Image

d
k

d
kMean (95% CI) Mean (95% CI)

1 vs. 2
Lung −1.06 −1.22 −0.91 0.86 −0.40 −0.56 −0.24 0.92
Liver −0.74 −0.89 −0.59 0.93 −0.12 −0.26 0.01 0.97
Bowel −1.09 −1.27 −0.92 0.87 −0.73 −0.89 −0.57 0.92

1 vs. 3
Lung −0.12 −0.32 0.08 0.93 −0.18 −0.39 0.04 0.92
Liver 0.36 0.17 0.56 0.93 0.11 −0.06 0.28 0.95
Bowel −0.66 −0.89 −0.42 0.88 −0.58 −0.79 −0.38 0.91

2 vs. 3
Lung 0.94 0.76 1.13 0.89 0.22 0.03 0.41 0.94
Liver 1.10 0.95 1.26 0.88 0.23 0.07 0.40 0.95
Bowel 0.44 0.25 0.62 0.93 0.15 −0.06 0.35 0.93

d: Difference of MOS between operators, PET: Positron emission tomography, SR-PET: Super-resolved PET, MOS:
Mean opinion score.
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5. Discussion

18F-FDG PET-CT scans are required to provide accurate tumor diagnoses and monitor
the metabolic response of patients to treatment. However, this examination involves
considerable radiation exposure [11,39]. By replacing CT with MRI, the resulting PET/MR
system can reduce radiation exposure from CT scans. Many previous studies have focused
on replacing CT with MRI for the registration of anatomical and functional information
from PET. However, reduction of the injected FDG dose has received less attention. The
major problem associated with a reduced injected FDG dose is the increase in image
noise [21]. In this study, we evaluated the image quality of 18F-FDG PET images generated
with 50% of the typically injected FDG dose. In this study, using the RDN model, we
created an SR-PET image set from a 50% PET image obtained using a Vereos PET/CT
scanner equipped with a SiPM detector. In our objective evaluation of PSNR and SSIM,
the SR-PET image set showed high similarity to the conventional method. In addition,
our subjective evaluation of MOS by three different experienced board-certified nuclear
medicine physicians suggested that the SR-PET image set was of significantly higher quality
than the 50% PET image set. On the other hand, the MOS of the SR-PET image set was
significantly lower than that of the original “ground-truth” image. Moreover, the ICC was
moderately reliable in all cases. Our results thus suggest that SR-PET images enable the
use of a low FDG injection dose in whole-body PET scans. This is useful not only for adults,
but also for pediatric and adolescent young adults.

Wang et al. demonstrated the generation of diagnostic 18F-FDG PET images of
pediatric cancer patients from an ultra-low-dose (6.25%) 18F-FDG PET image by using a
convoluted neural network algorithm [40]. Recently, image generation techniques, such as
generative adversarial networks, have been considered for generating PET images, such
as reconstructed normal injected doses from lower injected dose images [27,28]. Based on
these reports, the use of simulated half-injected FDG dose images is reasonable [22,23].
The median injected FDG dose and exposure dose related to PET in clinical data were
258.7 MBq and 4.9 mSv (Table 1). If an SR image sufficient for diagnosis can be obtained
from a half-acquisition-time PET image, it can be expected that the exposure dose will be
reduced by half. Because a lower injected FDG dose for patients causes lower radiation
exposure in PET scans, we should consider a much lower injected dose image as the input
image set.

This study had some limitations. The first limitation is the selection of the SR deep-
learning model architecture. As many new architectures are released every year, it was
difficult to verify which model would be optimal for our purposes [2–6]. Therefore, we
selected the RDN model, which achieved excellent results when considering this research
plan. However, the RDN model was fine-tuned for natural-color images and not for medical
grayscale images. However, since there are many colored quantitative images in medicine
for evaluating blood flow and function [41,42] in the human body, training with three
channels of RBG instead of one channel of grayscale input would be useful for transfer
learning of the created model. Consequently, we converted the 16-bit DICOM image to
an 8-bit PNG image, as the RDN model could not demonstrate its performance on PET
images. As a result, the expressivity of the intensity histogram would be reduced. If an SR
PET image was directly generated from the 16-bit DICOM image, the expressivity would
maintain the intensity histogram. Recently, a model of direct super-resolution for DICOM
images was proposed. Sim et al. designed deep convolutional networks for working
with grayscale DICOM images of the brain [43]. In this way, further improvement can be
expected by using the directly imported DICOM image model without needing to convert
them to PNG images.

The second limitation of our study was inter-operator bias. As shown in Figure 4
and Table 3, the inter-operator agreement was almost perfect. However, the absolute
d in our proposed method was higher than 1 at some points. This suggests that oper-
ator 2 understood the SR-PET images generated by the RDN model more than did the
other operators.



Diagnostics 2022, 12, 872 11 of 13

The third limitation was the evaluation of the maximum standardized uptake value
(SUVmax). In this study, we mentioned the image quality of the SR PET image and did not
sufficiently consider the quantitative diagnostic ability. As a quantitative measurement
index of the de facto standard, SUVmax has been used to express the degree of FDG uptake.
Normally, SUVmax is calculated using the DICOM tag with each voxel expressed in a 16-bit
integer in the Metavol software package for PET-CT volumetric analysis [44,45]. Because
quantitative measurements using SUVmax are important in clinical use, it is required to save
the quantitative value for each voxel. In this study, however, the SUVmax was not calculated
because we converted the 16-bit DICOM images into 8-bit PNG images. Therefore, the
current challenge is to secure a quantitative value of SUVmax when using SR. Based on
the above, we will improve the SR model and generate diagnostic PET images from much
lower injected FDG doses in future research.

6. Conclusions

In conclusion, we evaluated the image quality of super-resolved images obtained from
50% simulated injected FDG-dose PET images using the RDN model. By using the SR
model, the image quality was improved compared to that before SR image processing.
Although there are some limitations to its clinical use, our results suggest that implementing
the SR model could be effective in reducing the injected FDG dose for PET examination.
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