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Abstract: Brain computed tomography (CT) is commonly used for evaluating the cerebral condition,
but immediately and accurately interpreting emergent brain CT images is tedious, even for skilled
neuroradiologists. Deep learning networks are commonly employed for medical image analysis
because they enable efficient computer-aided diagnosis. This study proposed the use of convolutional
neural network (CNN)-based deep learning models for efficient classification of strokes based on
unenhanced brain CT image findings into normal, hemorrhage, infarction, and other categories. The
included CNN models were CNN-2, VGG-16, and ResNet-50, all of which were pretrained through
transfer learning with various data sizes, mini-batch sizes, and optimizers. Their performance in
classifying unenhanced brain CT images was tested thereafter. This performance was then compared
with the outcomes in other studies on deep learning–based hemorrhagic or ischemic stroke diagnoses.
The results revealed that among our CNN-2, VGG-16, and ResNet-50 analyzed by considering several
hyperparameters and environments, the CNN-2 and ResNet-50 outperformed the VGG-16, with an
accuracy of 0.9872; however, ResNet-50 required a longer time to present the outcome than did the
other networks. Moreover, our models performed much better than those reported previously. In
conclusion, after appropriate hyperparameter optimization, our deep learning–based models can
be applied to clinical scenarios where neurologist or radiologist may need to verify whether their
patients have a hemorrhage stroke, an infarction, and any other symptom.

Keywords: machine learning; neuroradiology; computed tomography; stroke; classification

1. Introduction

Brain computed tomography (CT) is a modality most commonly used for evaluating
the cerebral condition [1]. It is more widely available, fast, and cost-effective than is
brain magnetic resonance imaging. Although brain CT was developed in the 1970s, its
widespread clinical use became achievable only recently, after the introduction of rapid,
large-coverage multidetector-row CT scanners. Key clinical applications for brain CT
include the diagnoses of cerebral hemorrhage and ischemia neoplasm and evaluation of
the mass effect after hemorrhage, neoplasm, and cerebral edema secondary to ischemia.
However, immediate and highly accurate interpretation of emergent CT images remains
time-consuming and laborious, even for skilled neuroradiologists [2]. Lodwick described
computer-aided diagnosis (CAD) for the first time. Since then, a wide variety of lesion
detection systems have been reported [3,4]. The usefulness of CAD depends on the number

Diagnostics 2022, 12, 807. https://doi.org/10.3390/diagnostics12040807 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12040807
https://doi.org/10.3390/diagnostics12040807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7451-0690
https://doi.org/10.3390/diagnostics12040807
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12040807?type=check_update&version=1


Diagnostics 2022, 12, 807 2 of 12

of true- and false-positive markers. High-performance CAD systems are appreciated by
radiologists in the screening practices [5]. For nodule detection in chest X-ray, CAD can even
outperform the diagnosis efficiency of the unexperienced radiologists [6]. At present, some
CAD systems have received approval from the U.S. Food and Drug Administration [7,8].
Compared with traditional CAD (which may be limited by detecting specific disease and
requiring a work-alone station), deep learning can handle more complicated condition.
With a relatively wide scope, deep learning delivers multiple answers. The software
improvements over the last few decades have enabled not only a considerable amount
of research on image processing algorithms and methodologies but also rapid, faultless
identification and quantification of abnormalities in scanned regions [9].

Deep learning, a well-employed network for medicine [10–12], can outperform hu-
mans in diagnosis. Li et al. [13] proposed a U-net based model to identify cerebral hemor-
rhage, which has many advantages over human expertise, but it demands much manpower
and time for segmentation. We aimed at developing a simple model, like a CNN-based
system, to classify the results of brain CT as red-dot systems. Training a conventional con-
volutional neural network (CNN) from scratch typically requires a considerable amount of
data. Nevertheless, through transfer learning, a small amount of data can become sufficient
for finetuning a pretrained model [14]. For patients with preexisting cerebral changes, a
final human check of the deep learning–based diagnosis is required to ensure credibility;
nevertheless, it can improve the clinical decision-making of neuroradiologists [15]. Owing
to the wide variety commercial models available, understanding the mechanism under-
lying the “black box” in computer operation is difficult. Moreover, studies that defined a
reference to hyperparameter adjustment in the various models in certain conditions have
been limited.

In this study, pretrained models including CNN-2, VGG-16, and ResNet-50—with
varied data sizes, mini-batch sizes, and optimizers—were compared in terms of their
performance in classifying unenhanced brain CT image findings into normal, acute or
subacute hemorrhage, acute infarction, and other categories. We also reviewed other studies
on deep learning–based diagnoses of hemorrhagic and ischemic stroke and compared their
outcome with ours.

2. Materials and Methods
2.1. Data Preparation
2.1.1. Data Collection

This retrospective study was approved by our institutional review board, which also
waived the requirement for obtaining patient informed consent and using anonymized
patient imaging data. Our dataset included 24,769 unenhanced brain CT images from
1715 patients collected over 1 July–1 October 2019. Of these images, 4382, 6102, 3860,
and 2995 were from healthy patients, patients with hemorrhage, patients with infarction,
and patients with other findings, respectively. The uneven ratio between each group
also reflects the patient structure in our district. Moreover, only 10% of these images
(n = 2476) constituted the testing dataset (Table 1), which was used to evaluate the objective
performance to ensure that the accuracy of the data for a specific period was not represented.
We labelled these images based on clinical results after at least a half-year follow up and
split them randomly into training dataset, validation dataset, and testing dataset, based on
the case-based level. Once the abnormal findings were included in case-based images, the
results were defined as abnormal and further classified into hemorrhage, infarct, or others.

All images were confirmed by two radiologists, who had 1 year and 20 years of expe-
rience, to be ground truth for deep learning, with the other findings including craniotomy,
deep brain implantation, severe motion, or artifacts.
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Table 1. Dataset before augmentation.

Class Dataset (Images)

Train Validation Test

Normal 4382 1252 626
Hemorrhage 6102 1743 872

Infarct 3860 1103 551
Others 2995 856 427

Total (1715 people/24,769 images) 17,339 (70%) 4954 (20%) 2476 (10%)

2.1.2. Preprocessing Steps

The original images from the dataset were denominated and cropped to a standard
size of 224 × 224 × 3 using MicroDicom, a multiphase algorithm used for image processing.

2.1.3. Data Normalization

Data normalization is an important step for numerical stabilization of a CNN; it
changes the range of the pixel intensity values and converts an input image into a range
of pixel values that is more familiar or normal to the senses. It is faster and more stable
for gradient descent [16]. In the current study, the pixel value of input images was down-
sampled to 224 × 224 × 3 through simply scaling with centering in the range of 0–1 for
each channel.

2.1.4. Data Augmentation

CNNs are data-hungry and can be more powerful and perform better with larger
datasets [17]. However, collecting medical data can be difficult. Data augmentation, in
which a series of transformation procedures are used while preserving the ordinary labels,
has widely been applied to multiply the numbers of the images. This adjustment can
also aid in preventing overfitting as a regularizer. We randomly applied each horizontal
flipping, rotation, shift, zoom, and shear for each image. So, the range of our data size is
about 1- to 2-fold of the original (24,767 × 1~24,767 × 2). Figures 1–3 display the layout of
our proposed neural network architecture.
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Figure 1. CNN-2 model. The CNN-2 model consists of 2 convolution layers, each followed by a
pooling layer and a dense layer. A dense layer is also referred to as a fully connected (FC) layer
(illustrated in Figures 2 and 3). Our dense layers consist of 3 hidden layers, including 50,176 input
units and 4 output units. Dense layers of VGG-16 and CNN-2 are equipped with rectified linear unit
(ReLU) activation function, but the dense layer of Resnet-50 is not.
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2.1.5. Transfer Learning

Deep learning is data-dependent, which is the most challenging problem of this
modality. Here, sufficient training with a large amount of information is required for the
network to recognize data patterns. Ideally, both training and testing data are assumed
to have same distribution and features. However, constructing sufficiently large datasets
can be laborious, time-consuming, and even impossible in some cases. In this condition,
transfer learning from one pretrained domain to another is beneficial and efficient [14,18].

2.2. Hyperparameters for CNN-Based Models

In this study, the included CNN models were the pretrained CNN-2, VGG-16, and
ResNet-50 from ImageNet [19,20] (Table 2). They were tuned with the following hyper-
parameters: learning rate = 0.0001, max epochs = 50, and mini-batch sizes = 8, 16, 32, 64,
and 128. Early stopping was applied if gradient exploding occurred. The dropout rates
were 0.3 and 0.5 in all included models. ResNet-50 was applied without dropout for further
comparison. The optimizers were respectively added with Adam [21], SGD [22], and
RMSProp [23]. We applied a rectified linear unit (ReLU) activation function [24], converting
the input weighted sum into the node’s output, in each convolutional layer [25]. ReLU
was implanted in the hidden layers of the CNN. We also divided our dataset sizes into
four categories: <1000, 1000–5000, 5000–9000, and >10,000; these were compared in the best
environment in each model. We want to compare the different amounts of dataset sizes in
different models with the best environment.

Table 2. Architectural descriptions of the pretrained CNN models used in this study.

Model Layers Parameters Input Layer
Size

Output Layer
Size

CNN-2 2 11,954,982/11,954,982 (224,224,3) (4,1)
VGG-16 16 2,514,154/2,514,154 (224,224,3) (4,1)

Resnet-50 50 1,313,796/24,901,508 (224,224,3) (4,1)

2.3. Hardware

All processing was performed on Intel Xeon Gold 6126 3.7GHz CPU, DDR4-2666
256GB memory, and NVIDIA Tesla V100 PCIe 32GB GPU using Python (Tensorflow,
Keras, matplotlib).

2.4. Performance Evaluation

We evaluated our models in terms of the accuracy, precision, recall, and F1-score of the
proposed CNN and other pretrained models and plotted curves for calculating the areas
under the curves (AUCs), with epochs on X axis and accuracy on Y axis.

3. Results
3.1. Comparison of the Validation Accuracy among the CNN Models Trained with Different
Mini-Batch Sizes

With mini-batch sizes of 8, 16, 32, 64, and 128, the validation accuracy of CNN-2
was 0.9787, 0.9829, 0.9840, 0.9808, and 0.9872, respectively; that of VGG-16 was 00.8480,
0.8948, 0.9543, 0.9575, and 0.9479, respectively; that of ResNet-50 with dropout was 0.9606,
0.9659, 0.9734, 0.9681, and 0.9638, respectively; and that of ResNet-50 without dropout was
0.9770, 0.9851, 0.9776, 0.9808, and 0.9872, respectively. Thus, the highest accuracy of CNN-2,
VGG-16, ResNet-50 with dropout, and ResNet-50 without dropout was noted at mini-batch
sizes of 128, 64, 32, and 128, respectively (Table 3). Hence, these models were selected for
comparing the performance with different optimizers.
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Table 3. Validation accuracy of the CNN models trained with different mini-batch sizes.

Model Batch Size

8 16 32 64 128
CNN-2 0.9787 0.9829 0.9840 0.9808 0.9872
VGG-16 0.8480 0.8948 0.9543 0.9575 0.9479

Resnet-50 0.9606 0.9659 0.9734 0.9681 0.9638
Resnet-50 without

dropout 0.9770 0.9851 0.9776 0.9808 0.9872

3.2. Training Performance

The training performance data, including training loss, validation loss, and validation
accuracy, obtained by the selected models at different epochs are listed in Table 4 and
illustrated in Figure 4. Moreover, Figure 5 presents the confusion matrices for all the
models with testing data.

Table 4. Training performance data at different epochs.

Model Epoch Train Loss Valid Loss Valid Accuracy

CNN-2

1 1.2124 0.4175 0.8619
. . . . . . . . . . . .
49 0.0127 0.0554 0.9858
50 0.0125 0.0528 0.9858

VGG-16

1 1.3249 1.2072 0.4463
. . . . . . . . . . . .
49 0.0842 0.1094 0.9596
50 0.0886 0.1002 0.9660

Resnet-50

1 0.9963 0.6531 0.7559
. . . . . . . . . . . .
49 0.0154 0.0067 0.9932
50 0.0205 0.0179 0.9941
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Figure 5. Confusion matrices of the selected VGG-16, CNN-2, and ResNet-50 models.
CVA = infarction, Hx = hemorrhage, NP = normal, Oth = others.

For infarction, hemorrhage, normal, and other findings, the CNN-2 demonstrated
a precision of 0.99, 1.0, 0.98, and 0.98, respectively; a recall rate of 0.99, 0.98, 1, and 0.98,
respectively; and an F1 score of 0.99, 0.99, 0.99, and 0.98, respectively; moreover, the
overall accuracy and AUC of the CNN-2 were 0.9872 and 0.98, respectively. For infarction,
hemorrhage, normal, and other findings, the VGG-16 demonstrated a precision of 0.95,
0.98, 0.97, and 0.97, respectively; a recall rate of 0.97, 0.97, 0.95, and 0.92, respectively; and
an F1 score of 0.96, 0.98, 0.96, and 0.94, respectively; moreover, the overall accuracy and
AUC of the VGG-16 were 0.9575 and 0.97, respectively. For infarction, hemorrhage, normal,
and other findings, the ResNet-50 demonstrated a precision of 0.99, 1.0, 0.98, and 0.98,
respectively; a recall rate of 0.98, 0.98, 1.0, and 0.99, respectively; and an F1 score of 0.99,
0.99, 0.99, and 0.99, respectively; moreover, the overall accuracy and AUC of the ResNet-50
were 0.9872 and 0.99, respectively. Finally, the total training time for CNN-2, VGG-16, and
ResNet-50 was 8 min 19 s, 1 min 58 s, and 27 min 53 s, respectively (Table 5).

Table 5. Best performance in the testing groups with different models. The overall accuracy of CNN-2,
VGG-16 and Resnet-50 are 0.9872, 0.9575 and 0.9872, respectively. The area under curve (AUC) of
CNN-2, VGG-16 and Resnet-50 are 0.98, 0.97 and 0.99, respectively. The total training time of CNN-2,
VGG-16 and Resnet-50 are 8 min 19.76 s, 1 min 58.91 s and 27 min 53.60 s.

CNN-2 Precision Recall F1-Score

Infarct 0.99 0.99 0.99
Hemorrhage 1.00 0.98 0.99

Normal 0.98 1.00 0.99
Other 0.98 0.98 0.98

VGG16 Precision Recall F1-Score

Infarct 0.95 0.97 0.96
Hemorrhage 0.98 0.97 0.98

Normal 0.97 0.95 0.96
Other 0.97 0.92 0.94

Resnet-50 Precision Recall F1-Score

Infarct 0.99 0.98 0.99
Hemorrhage 1.00 0.98 0.99

Normal 0.98 1.00 0.99
Other 0.98 0.99 0.99

3.3. Comparison of Different Optimization Methods

The Adam optimizer was used for training all the models. To evaluate the classification
effectiveness of this optimization method, the results were compared with those of other
efficient optimization methods, such as SGD and RMSProp, as shown in Table 6. The Adam
optimizer was found to provide the most efficient results.
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Table 6. Performance of the CNN models trained with different optimization methods.

Model Optimizer Precision Sensitivity Accuracy F1-Score

CNN-2
SGD 0.98 0.98 0.986 0.98

Adam 0.98 0.98 0.984 0.98
RMSProp 0.98 0.98 0.985 0.98

VGG-16
SGD 0.82 0.45 0.447 0.57

Adam 0.96 0.95 0.945 0.95
RMSProp 0.94 0.93 0.931 0.94

Resnet-50
SGD 0.73 0.73 0.732 0.73

Adam 0.98 0.98 0.977 0.98
RMSProp 0.98 0.98 0.981 0.98

3.4. Comparison of Different Data Sizes for Training

Training data sizes of <1000, 1000–5000, 5000–9000, and >10,000, respectively, provided
a validation accuracy of 0.3312, 0.6111, 0.8655, and 0.9872 in the CNN-2; 0.5250, 0.7075,
0.8884, and 0.9575 in the VGG-16; and 0.5750, 0.7266, 0.9567, and 0.9872 in the ResNet-50
(Table 7). In general, the accuracy of all the included models increased in proportion to the
data sizes, with the highest accuracy with data sizes of >10,000. Nevertheless, the accuracy
values of the ResNet-50 for data sizes of 5000–9000 and >10,000 were very close, indicating
that high accuracy (≥0.9567) can be achieved by using ResNet-50 even for a data size >5000.
This is in contrast to the results for the CNN-2 and VGG-16, which could not achieve high
accuracy for a data size <10,000.

Table 7. Accuracy obtained by the CNN models trained with different data sizes.

Model Data Size

<1000 1000–5000 5000–9000 >10,000
CNN-2 0.3312 0.6111 0.8655 0.9872
VGG-16 0.5250 0.7075 0.8884 0.9575

Resnet-50 0.5750 0.7266 0.9567 0.9872

4. Discussion

On the basis of the current results, CNN-based deep learning models can be used to
detect strokes automatically and with high accuracy after hyperparameter optimization.
We also compared the performance with different hyperparameters, regularizers, and
data sizes.

Hemorrhagic stroke, a common and fatal disease, often presents symptoms similar
to the more commonly diagnosed ischemic stroke. However, the treatment for hemor-
rhagic stroke is focused on controlling the bleeding from ruptured cerebral vasculatures
or aneurysms, whereas that for ischemic stroke is focused on recannulating clot blockages
in cerebral arteries. Misdiagnosis leading to the erroneous use of anticoagulant agents
for treating a hemorrhagic stroke can cause death. Unenhanced brain CT is the most
common and recommended test of choice to identify the two stroke types. Nevertheless,
it is more difficult to make a diagnosis of subtle infarct only based on unenhanced CT.
Schriger et al. [26] claimed that in the absence of support from a radiologist, the accuracy of
this interpretation is only 0.67 among emergency physicians treating patients with stroke.

Since the advent of deep learning, the use of brain CT images for accurate prediction
of critical anomalies has received considerable attention. Several attempts have thus been
made to develop a reliable diagnosis model using deep learning methods. Transfer learning
has also been extensively used with the recent CNN-based networks [27]. However, most
of these methods have employed an imbalanced and limited amount of data, which has
led to unsatisfactory results. In the current study, we developed a system that classifies
hemorrhagic and ischemic strokes by using numerous brain CT images sampled uniformly
from a patient population.
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Here, we comprehensively evaluated the effectiveness of the three most efficient CNN
models, namely CNN-2, VGG-16, and ResNet-50, in the classification of hemorrhagic and
ischemic strokes from brain CT images after hyperparameter optimization. One of the most
crucial hyperparameters considered in this study was the mini-batch size. We accordingly
identified the mini-batch size that provided the highest validation accuracy for the CNN-2,
VGG-16, and ResNet-50 with regard to classifying the brain CT images. Moreover, the
best performing models in this study were found to be CNN-2 and ResNet-50 (highest
accuracy = 0.9872). Grewal et al. [28] developed an automatic intracranial hemorrhage
detection model based on deep learning, with a sensitivity of 0.8864 and a precision of
0.8124 in a dataset of 77 brain CT images interpreted by three radiologists. However, the
authors included a small dataset and detected only hemorrhagic stroke in their analysis.
Moreover, Prevedello et al. [29] assessed the performance of a deep learning algorithm to
detect hemorrhage, mass effect, hydrocephalus, and suspected acute infarction by using
a dataset of 50 brain CT images and reported AUCs of 0.91 for hemorrhage, mass effect,
and hydrocephalus and only 0.81 for suspected acute infarction. In the current study, after
optimization, all three models, trained with relatively more data, demonstrated outstanding
performance, with F1 scores >0.95.

In addition to accuracy, efficiency is an important factor in medical image classification.
In this study, the VGG-16 and CNN-2 required only about 2 and 8 min on average to provide
the outcome, respectively, which is nearly 14 and 4 times faster than the time taken by the
ResNet-50, respectively. We thus believe that this significant difference in time consumption
occurs because of the relatively complicated structure of ResNet-50, with numerous hidden
layers. If the data size is bigger, it costs several folds of time higher than ours, and the
difference in time consumption is bigger.

The images that are false positive are illustrated in Figure 6. However, we cannot pro-
vide a clear explanation of why the classification failed, due to the mechanism underlying
the “black box”. There is no relationship between size, laterality, location, or augmentation
process. It is possible that an increase in data size will achieve better performance.
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Tandel et al. [30] reported that the simplest CNN-1 could classify benign and malignant
gliomas with high efficiency from magnetic resonance images, with further high-efficiency
subclassification into low- and high-grade malignant gliomas enabled by the CNN-2.
Further segmentation of low-grade and high-grade malignant gliomas can be performed
using the CNN-3 and CNN-4. They utilized artificial neural networks (ANNs) as feature
extraction algorithms and a CNN as classifier, with high accuracy of 0.98. Despite the
simple architecture of a CNN, it is effective in classifying gliomas from magnetic resonance
images; hence, we considered it efficient to classify the four categories in our study.
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Ioffe and Szegedy [31] claimed that removing dropout as an optimizer from ResNet
allows the network to achieve increased accuracy. We noted similar results for our brain
CT images (Table 3), even in different mini-batch sizes.

Activation function is key in deep learning architectures, and many types of nonlinear
activation functions exist. Pedamonti [24] reported that both ReLU and LeakyReLU are
suitable activation functions for CNN-based models, particularly deeper neural networks.
In the current study, we also compared the different activation functions on VGG-16 for
stroke classification, and no apparent difference between ReLU and LeakyReLU was noted;
nevertheless, their performance was better than that of the sigmoid activation function.
However, considering the wide range of activation functions available, including ReLU,
LeakyReLU, ELU, SELU, and sigmoid, the activation function most suitable for classifying
stroke images warrants further investigation.

The clinical application of our result is mainly as a classifier for radiologists, who
can quickly issue a warning to clinicians. Rather than a “red-dot system”, we will apply
this result to further develop a system combined with the nature language process (NLP).
Although understanding the mechanism underlying the “black box” in computer operation
is difficult, we can supply many image inputs for NLP training through this classifier. We
are committed to doing this in the future.

5. Limitations

Although deep learning has a considerable potential in medical applications, some
related limitations include data availability and variability. At the institutional level, the
contrast, noise, and resolution levels used for CT vary, and this can impede adaptation for
deep learning. Moreover, data privacy is essential when considering the use of medical
images for research and development, and this limits the amount of data available. Data
generalization is achievable through transfer learning and data augmentation (both of
which can produce additional features to learn), such that any related problem may be
resolved within one day; however, this may take a long time and a considerable amount of
available data to accomplish.

6. Conclusions

In this study, the use of CNN-based deep learning was proposed for efficient clas-
sification of hemorrhagic and ischemic stroke using unenhanced brain CT images. The
CNN models CNN-2, VGG-16, and ResNet-50, pretrained through transfer learning, were
analyzed by considering several hyperparameters and environments, and their results were
compared. CNN-2 and ResNet-50 outperformed the VGG-16 with an accuracy of 0.9872;
however, ResNet-50 required longer time than the other networks. After optimization, the
tested models may be applied by radiologists to verify their screening results and thus
reduce their workload. Our results also pave the way for further development of effective
deep CNN models (using residual connections) for increasing the diagnosis accuracy for
stroke. In the future, we will verify the effectiveness of our proposed models in terms of
time required and performance and explore the use of optimization algorithms along with
the models used in this study to design a more reliable model.
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