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Abstract: Background: Novel, non-invasive diagnostic biomarkers that facilitate early intervention
in head and neck cancer are urgently needed. Polyamine metabolites have been observed to be
elevated in numerous cancer types and correlated with poor prognosis. The aim of this study was
to assess the concentration of polyamines in the saliva and urine from head and neck cancer (HNC)
patients, compared to healthy controls. Methods: Targeted metabolomic analysis was performed
on saliva and urine from 39 HNC patient samples and compared to 89 healthy controls using a
quantitative, targeted liquid chromatography mass spectrometry approach. Results: The metabolites
N1-acetylspermine (ASP), N8-acetylspermidine (ASD) and N1,N12-diacetylspermine (DAS) were
detected at significantly different concentrations in the urine of HNC patients as compared to healthy
controls. Only ASP was detected at elevated levels in HNC saliva as compared to healthy controls.
Conclusion: These data suggest that assessment of polyamine-based metabolite biomarkers within the
saliva and urine warrants further investigation as a potential diagnostic in HNC patients.

Keywords: head and neck cancer; biomarkers; metabolomics; polyamines; saliva; urine

1. Introduction

Head and neck cancer (HNC) is the seventh most common cause of cancer-related
death, and accounts for approximately 6% of all cancer cases globally [1]. There are over
800,000 new cases and over 400,000 deaths from HNC annually [1,2].

Effective treatment of HNC patients is facilitated by early detection, and appropriate
therapeutic interventions for each stage of cancer [3]. Unfortunately and commonly, HNC is
not clinically detected until a patient presents with symptoms associated with later stage
primary disease or when lymphatic metastases are palpable [4]. Such symptoms include
pain, bleeding, ulceration, otalgia, and dysphagia [5]. Some reports suggest that only 30%
of HNC cases are diagnosed at an early stage, while approximately 66% of patients present
with advanced stage III or IV tumors at the time of diagnosis [6].

Treatment of cancer is generally most effective when the tumor burden is lowest at the
primary site and when the lymphatic spread is minimal or absent [7]. Effective treatment
of HNC depends on early diagnosis and surgical/chemoradiation intervention [8]. Despite
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the apparent advantage of early diagnosis of neoplasia, no strategy has yet proven to be a
consistently effective means of diagnosing early stage HNC, and no conventional screening
methods have led to decreases in mortality [9]. Recently several groups have reported
promising preliminary analyses of biomarkers for the early detection of HNC. Further
investigation is required to validate these studies and determine the clinical feasibility and
diagnostic accuracy of the identified biomarkers [10].

The metabolome is the complete set of metabolites within a cell, tissue, or biological
sample at any given time point. The metabolome can provide important insight into the
pathophysiologic mechanisms of numerous diseases [11,12]. Evaluation of endogenous
metabolites such as nucleic acids, amino acids, peptides, organic acids, thiols, and carbohy-
drates represents a valuable tool for the identification of biomarkers for multiple diseases,
providing prognostic and disease monitoring insights [13]. Polyamines, which include
spermidine, spermine, and putrescine, are polycationic alkylamines that are present in
mammalian cells at millimolar concentrations [14]. These molecules are involved in many
critical processes such as cell proliferation, nucleic acid synthesis, and cyto-protection from
oxidative stress [15]. A growing body of work has established that polyamine metabolism
is frequently dysregulated in cancer [16]. Several published reports have determined that
elevated polyamine levels are essential for tumor progression [17].

The concentration of polyamines has been observed to be increased in the blood and
urine of patients with several types of cancer including breast, colon, and prostate [18].
Elevated levels of polyamines in these biological fluids have been demonstrated to correlate
with poor prognosis [19]. The polyamine levels may be attributable to the increased
synthesis of these by highly proliferative cancer cells [20]. It has also been observed that
elevated polyamine levels in cancer patients are often attenuated following surgical or
chemoradiation eradication of tumors [21].

As polyamines are indispensable for cellular growth, the capacity of cancer tissue to
produce abundant polyamines may contribute to the aggressive behavior of cancer cells
and the association of poorer prognosis in patients with enhanced polyamine levels [22].
However, the presence of elevated polyamine levels in HNC patients is currently uncertain.
Therefore, we decided to investigate whether specific, well-established polyamines (N1-
acetylspermine (ASP), N8-acetylspermidine (ASD), and N1,N12-diacetylspermine (DAS))
are elevated in the biofluids of HNC patients. An additional advantage of such an approach
is that targeted mass-spectrometry methods are more sensitive than untargeted approaches,
allowing for more robust detection of metabolites.

Although they have yet to be widely utilized in routine clinical care, numerous urine-
based biomarkers have been developed as alternatives or adjuncts to standard tests for
the initial diagnosis of several types of cancer and assessment of recurrent disease [23].
The essential advantages of urine as a biofluid source for biomarker research and develop-
ment are that its acquisition is noninvasive, and the fluid contains proteins and metabolites
associated with pathophysiology [24]. In addition, urine samples can be analyzed cost
effectively, and are easily stored, stable, and sterile [25]. To date, no less than six urinary
biomarkers have been approved by the Federal Drug Administration for the detection and
surveillance of cancer [26].

Saliva is a biological fluid comprised of approximately 99% water and 1% pro-
teins, electrolytes and other low-molecular weight components such as metabolites [27].
Oral secretions are an acidic fluid derived from salivary glands, cellular debris, crevicular
fluid, nasal/bronchial secretions, bacteria and exogenous ingested substances [28]. Saliva is
largely generated from three pairs of major salivary glands (submandibular, parotid,
and sublingual) as well as from 300–400 minor glands present in the oral cavity [29].
Saliva can be obtained in a facile, noninvasive, and inexpensive manner, and can reflect a
patient’s physiological state. Saliva testing ostensibly allows for patients to gather their own
samples at home, saving healthcare costs, and enabling a convenient way to garner multiple
sequential samples. Currently, oral fluid tests have been developed for the detection of
specific infectious agents (e.g., HIV, HSV, HPV, SARS-CoV-2, etc.) to evaluate metabolizer
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status for numerous drugs and for the detection of illicit drugs. Mucosal HNCs may also
contribute cellular components to saliva, which may allow the fluid to be utilized to detect
potential prognostic and disease monitoring biomarkers.

Here we establish that both p16 positive and p16 negative HNC patients have differ-
ential levels of one or more polyamines present in both saliva and urine as compared to
healthy controls. These data suggest that polyamine concentrations from biofluids may
serve as a diagnostic biomarker for HNC, indicating that further investigation to validate
such approaches may be warranted.

2. Materials and Methods
2.1. Reagents

N1-acetylspermine (ASP) and N8-acetylspermidine (ASD) standards were purchased
from Sigma-Aldrich (St. Louis, MO, USA). (N1,N12-diacetylspermine) DAS was synthe-
sized in-house, and confirmed via liquid chromatography retention time matching and
tandem MS/MS spectral-matching. Deuterium-labeled DAS (DAS-d6) was purchased
from Santa Cruz Biotechnology Inc. (Dallas, TX, USA). Ammonium formate, LC-MS grade
acetonitrile, water, formic acid, and methanol were purchased from Fisher Scientific (Hamp-
ton, NH, USA). Chromatographic separation was attained using an ACQUITY UPLC HSS
PFP column (1.8 µm particle size, 2.1 mm, 100 mm) purchased from Waters Corporation
(Milford, MA, USA). One milliliter, 96-well plates were purchased from Eppendorf (Ham-
burg, Germany). 96-well 0.2-micron PVDF filter plates were obtained from Agilent (Santa
Clara, CA, USA). 12-[[(cyclo-hexylamino) carbonyl]amino]-dodecanoic acid (CUDA) was
purchased from Cayman Chemicals (Ann Arbor, MI, USA). Urine and saliva were provided
by Dr. Peter Belafsky with appropriate IRB approval (#708419).

2.2. Biofluid Samples

Saliva and urine samples were collected via an approved IRB protocol at the Uni-
versity of California Davis Medical Center in Sacramento, CA. Partners and other live-in
relatives of HNC patients consented to donate the healthy saliva and urine control samples.
Polyamines were evaluated in urine from 39 HNC patients and 89 healthy controls. Thirty
five HNC patients and 72 healthy control saliva samples were used to evaluate polyamines
concentrations. Patient and tumor data were collected from HNC patients.

2.3. Sample Processing

Metabolite extractions and LC-MS/MS analysis were carried out in a high-throughput
manner as published previously [30], with some modification. Briefly, saliva samples
were first centrifuged at 3000× g for 10 min to precipitate denatured mucins as described
elsewhere, and 100 µL of supernatant was taken from each saliva sample. Urine sample
volumes were normalized to creatinine levels prior to extraction, volumes ranging from 1
to 66 µL, and water was used to bring the final volume to 100 uL. All further steps were
applied to both saliva and urine equally. An extraction solvent consisting of 1:1 mixture of
aceto-nitrile:methanol and spiked with 200 pg/mL of DAS-d6 internal standard was cooled
to −20C and added to each sample well. Plates were capped with silicon 96-well plugs,
followed by vortexing for 5 min at speed 6 of a VX-2500 vortexer (VWR, Radnor, PA, USA).
Precipitated proteins were pelleted by 5 min centrifugation. Supernatants were moved
to a new 96-well plate and subsequently evaporated in a EZ-2 plus centrivap (GeneVac,
Ipswich, UK). One hundred microliters of a 9:1 water:acetonitrile solution spiked with
50 ng/mL of CUDA was used to resuspend samples. CUDA peak intensities were moni-
tored throughout the analysis to ensure consistent injection volumes. Sample plates were
plugged, and vortexed for 5 min, then samples were passed through a 0.2-micron PVDF
filter to remove residual particulate matter. Sample plates were sealed with aluminum foil
by an ALPS 3000 Microplate Sealer (Thermo Scientific, Waltham, MA, USA), stored at 4C

and analyzed within 48 h.
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2.4. LC-MS/MS Analysis

Quantification of APs was performed using a Sciex 6500+ QTRAP (Redwood City, CA,
USA) mass spectrometer with electrospray ionization source. Separation was achieved
using a Waters ACQUITY high strength silica (HSS) penta-fluorophenyl (PFP) ultra-
performance liquid chromatography (UPLC) column (1.8 µm, 2.1 mm × 100 mm) mounted
in a Waters ACQUITY I-class UPLC system (Milford, MA, USA). Mobile phase composition
and gradient information have been described elsewhere [30]. Mass spectrometer ion-
source and collision cell settings were optimized previously [30] for acetylated polyamines
The mass spectrometer was operated in multiple reaction monitoring mode, and two ion
transitions per metabolite target were monitored (Figure 1).
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Figure 1. Workflow schematic of targeted metabolomics assessment of polyamine levels in urine and
saliva in head and neck cancer patients as compared to healthy controls, * p < 0.05.

2.5. Data Processing

Data was processed using Sciex software, MultiQuant v3.0.2. A twelve-point calibra-
tion curve was created using a 3:1 serial dilution in order to quantify the target metabolites.
CUDA peak areas were visually assessed to ensure complete injections of the desired
volumes. The ratio of the analyte’s peak area to DAS-d6 internal standard’s peak area was
utilized to generate a calibration curve for each metabolite. Calibration curves were all gen-
erated linearly, with the X variable weighted as 1/X. Acetylated polyamine concentrations
were calculated via the calibration curves.

2.6. Statistics

Statistical analyses were calculated using SPSS v25, and graphs generated using
GraphPAD Prism v8.2.1. For dual variant analyses, a Mann-Whitney U test was utilized.
For multivariate analyses a Kruskal–Wallis Test was used with a Dunn’s post hoc to
determine significance of intergroup differences.

3. Results
3.1. HNC Population Characteristics

A total of 39 HNC patients were included in the study, with an age range of 39–83,
with a mean age of 66 years old (Table 1). We had an even distribution of early (I,II) and
late (III,IV) stage HNCs (19 early stage and 20 late stage. Nine patients were p16 positive.
The majority of HNCs were from the oral cavity (54%) or oropharynx (41%). The ratio
of female participants to male was 16:23, respectively (Table S1). Controls samples were
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collected from 89 healthy individuals (59% female, 41% male), with an age range of 18–85,
and with a mean age of 52 years old (Table S2).

Table 1. HNC patient and tumor characteristics.

HNC Cohort Characteristic Number (Percentage)

Age 66 (range: 39–83)

Gender
Male 23 (59)

Female 16 (41)

Site

Oral Cavity 21 (54)
Oropharynx 16 (41)

Larynx 1 (3)
Nasopharynx 1 (3)

Stage

I 11(28)
II 8 (21)
III 5 (13)
IV 15 (38)

P16 Status
Positive 9 (23)

Negative 30 (77)

3.2. Polyamine Levels in HNC-Derived Saliva

To assess whether polyamines are present at elevated levels in the biofluids of HNC
patients compared to healthy controls, we used a targeted metabolomics approach [30]
(Figure 1). Using a novel mass spectrometry approach we quantified concentrations of N1-
acetylspermine (ASP), N8-acetylspermidine (ASD), and N1,N12-Diacetylspermine (DAS)
in saliva samples, as previously reported [30]. Standard curves were generated using
MS2 spectra from each metabolite standard. Mass spectrometry spectra were also used to
generate the MRM chromatograms for the three target metabolites and a stable isotope
labeled internal standard (Figure 2).
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Figure 2. The MS2 spectra from metabolite standard and the generated MRM chromatograms for
the three target metabolites and the isotopically labeled internal standard, chromatographic data
taken from a HNC saliva sample. (A) N1,N12-diacetylspermine (DAS) (B) N1-acetylspermine (ASP)
(C) N8-acetylspermidine (ASD) (D) Deuterium labeled N1,N12-diacetylspermine (DAS-d6).
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A total of 107 samples were analyzed: controls n = 72, HNC = 35 (p16 positive
n = 8, and p16 negative n = 27). Comparisons of HNC saliva to healthy control samples
determined ASP to be differentially represented (p < 0.007) (Figure 3). ASD and DAS
were not significantly different in HNC than in control saliva samples. Further analysis
established a significant differential level of ASP in p16 negative HNC saliva as compared to
healthy controls (p < 0.05, and p < 0.0001, respectively) (Figure 4). ASD and DAS metabolites
were not enriched in HNC saliva samples as compared to controls, regardless of p16 status
(Figure 4). These data suggest a small but significant enrichment of ASP in HNC derived
saliva samples.
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3.3. Polyamine Levels in HNC-Derived Urine

Next, we used the same methodology to evaluate polyamine concentrations in urine
sample isolated from both HNC patients and healthy controls. A total of 124 samples
were analyzed: controls n = 89, HNC = 39 (p16 positive n = 9, and p16 negative n = 30).
HNC urine samples contained significantly different concentrations of all three metabolites
(ASP, ASD, and DAS), as compared to healthy controls (p < 0.03, p < 0.007, and p < 0.02,
respectively) (Figure 5). Further analysis established that both ASD and DAS metabo-
lites were enriched in p16− urine samples, as compared to healthy controls (p < 0.04,
and p < 0.0001, respectively) (Figure 6). These data indicate a small but significant en-
richment of the polyamines ASP, ASD, and DAS in HNC urine samples, as compared to
healthy controls.
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4. Discussion

In this study, we analyzed specific polyamines (ASP, ASD, and DAS) levels in urine
and saliva biospecimens in HNC patients in comparison to normal controls. We identify
elevated levels of ASP in HNC patient saliva, and elevated levels of ASD and DAS in
HNC patient urine, in comparison to control patients. To our knowledge, this is the first
study identifying elevated levels of ASP, ASD and DAS polyamines in saliva and urine
samples of HNC patients. In sum, these initial analyses suggest a potential role for assessing
polyamines as a liquid biomarkers in HNCs in further investigations.

Numerous investigations into liquid biomarkers in HNC are actively being performed;
however, no technique has consistently identified usable biomarkers in HNCs. Studies
assessing viral signatures in virally-associated HNCs (human papillomavirus and Epstein-
Barr virus) have been successful [31,32]; unfortunately, these only represent a subset of
HNCs and a majority of HNCs are not virally-associated. Additionally, many biomarkers
predominantly use blood for analysis. The development of a liquid biomarker utilizing
non-invasive techniques (i.e., urine or saliva) and able to identify all subsets of HNC (virally
and non-virally mediated) would be of enormous value.

Elevated polyamine levels have been identified in other cancer types, including breast,
colon and prostate cancers [18] and have been associated with worse prognosis in other
cancers [19]. Thus, there is notable biological rationale to assess polyamines as potential
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biomarkers both in cancer screening and in assessing response to treatment. Published
reports have indicated that polyamines and their metabolite derivatives may be useful as
markers of tumor progression in lung and liver cancers [33,34]. Polyamines evaluated in
urine and blood serum have also demonstrated potential as biomarkers for colon, prostate
and pancreatic cancers [35–38].

Notably, initial studies analyzing polyamine levels were limited by the low sensitivity
of the methodologies used. Recently developed, highly sensitive metabolomic techniques
can provide more robust measurements. Thus, there is interest and a rationale for further
metabolomic investigations for optimization and analysis of polyamines in HNC and other
cancers. Given the noninvasive nature of saliva and urine collection, and the potential
cost-effectiveness and large-scale analysis opportunities with certain metabolomic ap-
proaches, there are opportunities for developing future screening opportunities for at-risk
patient populations.

There are limitations to our study. Notably, our HNC cohort was of modest size.
Additional specimen collection and analysis would bolster our initial results. Nevertheless,
we were able to detect differences in polyamine levels in this initial HNC cohort.

To date, the diagnostic value of polyamines in HNC have been unclear. The data
in this investigation suggests that the polyamines ASP, ASD and DAS are present at
significantly different concentrations in the saliva and urine of HNC patients as compared
to healthy controls. These proof of concept data indicate that alterations in the presentation
of the metabolites ASP, ASD and DAS in biofluids is significant, although the differentials
were modest in this moderately sized study. Further larger-scale investigations would be
highly valuable to provide additional support and rationale for the preclinical and clinical
development of these biomarkers for screening and surveillance for HNCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Controls data.
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