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Abstract: Background: Electrical Impedance Tomography (EIT) is a radiation-free technique for image
reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction
of sharp conductivity images poses a major problem. With the emergence of artificial neural networks
(ANN), their application in EIT has recently gained interest. Methodology: We propose an ANN that
can solve the inverse problem without the presence of a reference voltage. At the end of the ANN,
we reused the dense layers multiple times, considering that the EIT exhibits rotational symmetries
in a circular domain. To avoid bias in training data, the conductivity range used in the simulations
was greater than expected in measurements. We also propose a new method that creates new
data samples from existing training data. Results: We show that our ANN is more robust with
respect to noise compared with the analytical Gauss–Newton approach. The reconstruction results
for EIT phantom tank measurements are also clearer, as ringing artefacts are less pronounced. To
evaluate the performance of the ANN under real-world conditions, we perform reconstructions on
an experimental pig study with computed tomography for comparison. Conclusions: Our proposed
ANN can reconstruct EIT images without the need of a reference voltage.

Keywords: artificial intelligence; deep learning; Electrical Impedance Tomography; lung imaging;
cardiopulmonary monitoring

1. Introduction

Electrical Impedance Tomography (EIT) enables the non-invasive visualization of the
dielectric properties of a medium of interest. EIT has a wide range of applications, including
the status monitoring of concrete [1], the monitoring of semiconductor manufacturing [2],
and observing cell cultures [3]. In the medical domain, the applications are broader, and
include the monitoring of lung recruitment and collapse [4], lung ventilation [5] and perfu-
sion, the monitoring of 3D brain activity [6], size and volume estimation of the bladder [7],
breast cancer imaging [8], and cardiopulmonary monitoring [9]. Here, EIT can be used
to assess metrics such as regional ventilation, end-expiratory lung volume, compliance,
regional respiratory system compliance, and regional pressure–volume curves [9].

The versatility of EIT stems from the fact that the measurements can be made non-
invasively and inexpensively. For an image to be reconstructed, electrodes need to be
placed around the domain. Small, low-frequency currents in the range of 100 kHz are fed
through these electrodes. Then, the voltage across the electrodes is measured, and an image
is reconstructed. Despite the advantages of EIT, it has one major drawback: it suffers from
a relatively low spatial resolution.
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This issue is due to the fact that EIT image reconstruction belongs to the class of inverse
problems [10]. Large changes in the conductivity of the medium may lead to only small
changes in the voltage measurements. To still be able to solve the problem, different types
of algorithms have been proposed in the literature. From a mathematical perspective, three
different types of algorithms can be distinguished.

The first set of algorithms is variational regularization methods. Their goal is to
minimize a cost function that contains two parts. First, the physical behavior of the
medium of interest is modeled. Given a set of voltage measurements, the algorithm helps
to find the best fit for the conductivities that could produce these voltages. Second, the
regularization strategy is applied, which plays a crucial role in finding a valid solution. Two
common examples of regularization strategies are total variation [11] and the Tikhonov
regularization [12].

The second type of algorithms is statistical inversion methods. Here, image reconstruc-
tion is modeled as a problem of statistical inference. The measurements and conductivities
are modeled as random variables from which an a posteriori distribution can be estimated,
through, e.g., Markov Chain Monte Carlo iterations. From this, the conductivity can be
derived [13]. This can be accomplished, by, for example, first obtaining a starting distribu-
tion through the one-step Gauss–Newton method. Thereafter, Markov Chain Monte Carlo
methods can be used to refine the starting distribution [14].

The final type is direct inversion algorithms. In these methods, the problem is an-
alyzed through the partial differential equations governing the system behavior. From
this, a solution strategy is developed. An example of these kinds of methods is the D-Bar
algorithm [15].

Artificial neural networks belong to the variational regularization methods, as they
solve the optimization problem once during training and then act like a complex look-up
table. The regularization performed by artificial neural networks is not straightforward:
first, the neural network architecture provides a part of the regularization. A very deep
architecture may provide sophisticated results for the training data set, but may lead to
profound over fitting, such that the results for slightly different data bring far worse results.
The second part of the regularization comes from the training data. There is no reference
technique to capture the conductivity distribution of body tissue. Thus, in EIT the training
data are simulated with the help of, for example, finite element method (FEM) software such
as EIDORS [16]. However, for simulations a multitude of assumptions have to be made:
What does the model shape look like? What are the electrode positions? Do they change?
What shape do the conductivity enclosures have? What is the range of conductivity? All of
these assumptions act as some kind of regularization.

Artificial neural networks are beginning to gain more relevance in the field of EIT.
In 2017, Kłosowski and Rymarczyk [17] presented an ANN with fully connected layers
and convolutional layers. However, the proposed ANN can only reconstruct single targets.
Their outputs are the coordinates and the radius of the conductivity enclosure. Other ap-
proaches used ANNs to enhance the reconstructions of traditional EIT reconstructions [18].
In 2019, Hu et al. [19] used the spatial invariant properties of the EIT to improve upon
these results. However, to aid in the reconstruction, their approach is based on calibration.
Thus, their artificial neural network is not usable when the background data are missing.
By contrast, Chan et al. [20] proposed a network which does not need this preprocessing.
However, the structure of the artificial neural network does not account for the symmetry
of EIT measurements. We settled for artificial neural networks, as they have been used in
the past within the domain of EIT and show the greatest potential due to their ability to
recreate non-linear functions.

In the following, we propose an artificial neural network structure which can recon-
struct images without dependence on a reference voltage, while still using the rotational
symmetry of EIT adjacent measurements in adjacent drive. We call this structure the
Reference Free Rotational Electrical Impedance Map Network (RF-REIM-NET).
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The novelties of this research are:

1. We use real-world animal trial data with CT references to confirm that RF-REIM-NET
gives meaningful results in such a setting.

2. Our training data are unbiased, as we used a conductivity range bigger than what is
expected in the thorax region and did not try to model the conductivity distributions
typically encountered in the thorax region.

3. We present a method for time-effective data augmentation using the existing training data.
4. Even though RF-REIM-NET uses fully connected layers, it still preserves the rotational

invariance of adjacent measurements.

2. Materials and Methods
2.1. Fundamentals

In EIT, the goal is to find an optimal conductivity distribution given a set of voltage
measurements. When using variational reconstruction methods, this is expressed as

σrec = arg min
1
2
‖F(σ)− Vmeas‖2 + λ‖Lσ‖2, (1)

where σ is the conductivity, F(σ) is the forward model, Vmeas is the measured voltage, λ is
the weighting of the regularization term and L is the regularization matrix. When using
artificial neural networks (ANNs), the general scheme of this minimization is still true;
however, it is achieved differently. While variational reconstruction methods minimize
each measurement according to Equation (1), ANNs will perform the minimization on a
given dataset. This can be formulated as

arg min
1
2

∥∥Y ′(Vmeas)− Y
∥∥2, (2)

where Y denotes the ground truth value and Y ′(Vmeas) denotes the ANNs output depending
on the input of the network. During runtime, the ANN behaves deterministically like a
look-up table. When assuming that the dataset represents real measurements, the ANN
still minimizes the actual measurements.

2.2. Electrical Impedance Maps

Hu et al., pointed out the advantages of packing EIT measurements into the electrical
impedance map (EIM). EIMs can be used to represent EIT data in adjacent–adjacent mea-
surement mode. For 16 electrodes, the data are represented in a 16× 16 matrix; see Figure 1.
Along the matrix column are the measurement electrodes, while the excitation electrodes
are arranged along the rows. EIM[j, k] contains the measurement of the jth electrode pair,
while the kth electrode pair drives the current. Since four probe measurements are used,
voltages from injecting electrodes cannot be used. On those spots, the EIM matrix is filled
with zeros, causing the superdiagonal, diagonal and subdiagonal elements to become 0.

When a conductivity distribution is rotated by an angle of 2πk
16 , where k is an integer

number, the features of the EIM map do not change. The features are moved diago-
nally across the image. Thus, a convolutional ANN can extract features from the EIM
independent of rotation.
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Figure 1. A 16× 16 electrical impedance map (EIM) arrangement from an adjacent injection pattern.
The zeros represent values which are not gathered from adjacent–adjacent measurement mode, as at
least one electrode is used for current injection.

2.3. Training Data Set

In machine learning, the data set used for training is an important part of the algo-
rithm’s performance [21]. For EIT, there is no general high-resolution ground truth dataset.
Instead, the data have to be carefully designed. It is easy and tempting to craft a data set
that gives meaningful results on the available test data. If there is a relatively narrow band
of possible conductivities in the test data, using this conductivity band in the simulated
training data would bring a bias to the network—it might look better than it actually is.

To avoid this fallacy, we designed our data with as few assumptions as possible. We
used FEM simulations to create the training data. These simulations were executed using
EIDORS [16]. The first practical constraint faced was simulation time, and in general,
higher mesh density is better for the quality of the simulations. However, the time taken
for meshing and actual computation increases non-linearly. Thus, we used a mesh density
of 0.075, while the model radius was chosen to be 28, as this is a feasible trade-off between
simulation quality and computation time. Our domain shape was cylindrical. We used
16 electrodes, each with a height of 40 mm and a width of 20 mm. The electrodes were
placed equidistantly around the domain. This setup was chosen as it imitates the typical
measurement configuration of the clinically available device for thoracic images from
Draeger (Draeger Pulmo Vista 500, Draeger Medical GmbH, Lübeck, Germany).

2.3.1. Basic Object Shapes

To create conductivity enclosures, we used three different basic shapes: an ellipsoid,
a cube and an octahedron. The basic size of these objects is 1 in all directions, and their
center of gravity is in the origin of the coordinate system. To save computation time, we
did not re-mesh each impedance enclosure from scratch. Instead, we created a mask for
each conductivity enclosure and then changed the conductivities of mesh elements inside
the mask m. The formulas for the three basic shapes are given as:

masksphere = (x2 + y2 + z2) ≤ 1 (3)

maskcube = max(|x|, |y|, |z|) ≤ 1 (4)

maskoctahedron = |x|+ |y|+ |z| ≤ 1 (5)
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2.3.2. Transformation of the Basic Objects

Only inserting the same shape at the same place in the FEM model would be of no
use for real-world reconstructions. Thus, the basic shapes have to be transformed. Our
transformation involves the translation, rotation and scaling of the enclosures. This can be
mathematically described as:

v′ = (R(v− t))� s, (6)

where v = {x, y, z} is the coordinate vector, v′ is the transformed coordinate vector, t ∈ R3

is the translation vector, R ∈ R3×3 is the rotation matrix, s ∈ R3 is the scaling vector and �
denotes the element-wise division.

The positioning of the enclosures is important. As the ANN should be able to detect
any conductivity enclosures in the domain with the same quality, the distribution of the
object’s center of gravity should be uniform across the domain. Thus, we sampled the
values of t from a uniform distribution, such that every component of t = {x, y, z} is well
inside the domain boundaries. Figure 2 gives a visual example of the transformations
applied to the data.

Each entry of the scaling vector s is uniformly sampled between 10% and 80% of the
model radius.

The angle of the rotation matrix R is uniformly sampled from [0, 2π), and thus the
basic shape can be rotated in any direction. This enables the ANN to learn features that are
valid for a variety of positions, as only the position of the feature changes. In Figure 2, the
transformation is visualized.

(a) (b) (c)

Figure 2. An example of the random transformation used in dataset generation, applied to a circular
shape. (a) Circle with offset. (b) Circle with offset and scaling. (c) Circle with offset, scaling
and rotation.

2.3.3. Conductivity Range

Another important degree of freedom is the conductivity range used. When using
EIT tanks for testing, the conductivity range of the test data is typically known. Thus, it
would be very tempting to just use this conductivity range for the training of the ANN.
However, in practice, the conductivity is typically not known to this level of detail. Through
a slice of the chest, conductivity values can range from 3.5× 10−3 S/m (cortical bone) up
to 4.64× 10−1 S/m (deflated lung) [22]. We used a range of 1× 10−5 S/m to 1 S/m for the
background conductivity, as this covers the conductivity values typically encountered in
chest measurements, while at the same time providing a margin well outside to improve
generalization. The values were sampled uniformly from a logarithmic arrangement of
the mentioned conductivity range. This is also known as a reciprocal or log-uniform
distribution. This was chosen because the ANN should be able to differentiate objects
that are one order of magnitude bigger than the background, regardless of the actual
background conductivity.

The next step is an appropriate choice of the conductivity enclosures. As mentioned,
it is important that the ANN is able to distinguish conductivity contrasts. At the same
time, the ANN shall also be able to distinguish those contrasts symmetrically in the lower
and upper bound of the conductivity range. To achieve this, the enclosure’s conductivity
is chosen with respect to the background conductivity. This ensures that the ANN has



Diagnostics 2022, 12, 777 6 of 16

no bias towards a conductivity contrast higher or lower than the background. Thus, the
enclosure conductivity is chosen by multiplying the background conductivity with values
from a range of 1× 10−2 to 1× 102. Again, this is sampled uniformly from the logarithmic
arrangement of those values.

In a real-world setting, conductivities are rarely perfectly homogeneous across a tissue
type. Because of this, the enclosures, as well as the background, are perturbed. We again
scale each node of the FEM model by different values. This is achieved by using a Gaussian
distribution with a mean value of 1. For each training sample and chosen conductivity
value, a different standard deviation (std) from 1× 10−8 to 1× 10−2 was chosen. When
the std is chosen, the values of one conductivity are perturbed by multiplication with the
sampled values.

2.3.4. Electrode Contact Impedance

Another effect to consider is the electrode contact impedance. Although the adjacent
drive pattern used here relies solely on four probe measurements and, thus, will reduce
the effect of electrode contact impedance, we included the effect into our training data.
We multiplied EIDORS default contact impedance by a value randomly sampled from a
Gaussian distribution with a mean value of 1. To simulate high and low differences, we
sampled the values from three different distributions with an std of 1× 10−5, 1× 10−3 and
1× 10−1.

2.3.5. Measurement Noise

ANNs typically struggle with generalizing learned samples to cases that the ANN has
not yet seen [23]. To tackle this problem, further data augmentation strategies need to be
used. While the previously mentioned steps required new simulations for each training
sample, the following steps rely on already simulated data. This saves computation time.

EIT measurements can be affected by several sources of noise. Paired with the ill-
conditioned nature of the EIT problem, this can cause artifacts in the reconstruction. Often,
reconstruction algorithms have a hyperparameter, which in essence balances the robustness
to noise and the quality of the reconstruction. As for ANNs, the sensitivity to noise can be
adjusted through the noise in the training data.

A major component in EIT systems is the analog digital converter; the noise consists
primarily of thermal, jitter, and quantization noise [24]. The first two depend on the
magnitude of the signals. The greater the signal, the bigger the noise. We can model this by
multiplying the noise-free signal with a constant drawn from Gaussian noise:

Ui,j
ther,jit = Ui,j · nmult, nmult ∼ N (1, σ2), ∀i, j ∈ {1, . . . , 16} (7)

where Ui,j
ther,jit is the thermal noise-affected measurement, Ui,j is the noise-free measure-

ment and nmult is the noise sampled from a normal distribution. The quantization noise
does not depend on the signal level, and can be modeled by adding a noise term to the
voltage signals:

Ui,j
quant = Ui,j + nadd, nadd ∼ N (0, σ2), ∀i, j ∈ {1, . . . , 16} (8)

where Ui,j
quant is the quantization noise-affected measurement and nadd is the noise sampled

from a normal distribution. However, there is still another source of noise. Different
measurement channels of a given EIT system can have different gains. This is due to
different gains in the multiplexers [25]. The noise can be described through

Ui,j
gain = Ui,j · nmult, nmult ∼ N (0, σ2), ∀j ∈ {1, . . . , 16} (9)
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Note that this noise only affects one row of the EIM, compared with Equation (7), where
every entry is affected individually. For the additive noise, nadd a std of 1× 10−8 was
chosen. For the multiplicative noise, nmult, an std of 1× 10−6 was chosen.

2.3.6. Rotation of the Data

To specifically incorporate the rotational invariance into the ANN, the voltage data
were prepared with minimal computational costs, as follows. A shift of n columns along
the EIM results in a rotation of the reconstructed image by 2πn

16 . Thus, the target image
must be shifted according to that angle. To get rid of the rotational variance, we produced
15 additional shifted voltages for each training sample, described previously.

2.3.7. Alpha-Blending

With the given data set, there is still potential for obtaining entirely new training samples.
In the field of image classification, there is a technique called α-blending [26–28]. It produces
a new image from a linear combination of two other images, and an α ∈ [0, 1] factor weights
these images. An α of 0.3 would mean that the resulting image is a combination of 30% of the
first image and 70% of the second image. For EIT images, we can describe the technique as

σcomb = ασ1 + (1− α)σ2 (10)

From Ohm’s law with conductivities and the constant injection current follows the
procedure to combine the voltages accordingly

Ycomb = αY1 + (1− α)Y2 (11)

⇔ I
Ucomb

= α
I

U1
+ (1− α)

I
U2

(12)

⇔ 1
Ucomb

= α
1

U1
+ (1− α)

1
U2

(13)

⇔ Ucomb = (
α

U1
+

1− α

U2
)−1 (14)

where Y denotes the admittance between the voltage measurement electrodes.

2.3.8. Conclusion on Trainign Dataset

All in all, the choice of the simulated training data was made such that it was as
realistic as possible, but at the same time no major assumptions were made on the structure
and content of the simulated data nor on the bias in the dataset (e.g., restricting conductivity
values to the range expected in the testing data). Furthermore, the described augmentation
techniques impose no bias on the simulated data.

2.4. On the ANN Structure

In the domain of classification, ANNs can often be separated into two parts. The first
part, consisting of convolutional layers, is used for the extraction of features, while the
second part is used for processing these features into educated guesses about the class label.
Two very famous examples are AlexNet and VGG19 [29,30]. The second part is realized
through fully connected layers. In this work, we modified this basic approach and tailored
it specifically for use in EIT. The structure can be seen in Figure 3. When calculating the
receptive field of the convolutional layers, it can be seen that the receptive field is of the
shape 21× 21, although the EIM only has a shape of 16× 16. However, Luo et al. showed
that the receptive field exhibits a Gaussian distribution [31], which means that features
in the center are strongly recognized by the network, while closer to the boundary the
features are less recognized. To dampen this problem, we increased the receptive field of
RF-REIM-NET.

From Figure 3, it can also be seen that the shape of the input after the convolutions
does not change. To achieve this, we used circular padding rather than the standard zero



Diagnostics 2022, 12, 777 8 of 16

padding. This choice can be understood by the nature of adjacent–adjacent measurements.
On the boundaries of the EIM, values from the other side are inserted, as the neighbor of
the 16th electrode pair would also be the 1st electrode pair.

16×13 16×16 16×16×32 16×16×64 16×16×128 16×16×256

16×2048

16×4096
16×64×64 64×64

Input EIM Convolutional layers FC layers Sum Output

conv
3×3

conv
5×5

conv
7×7

conv
9×9

Figure 3. Illustration of the RF-REIM-NET structure. At the beginning, the 16× 13 = 208 voltages
are transformed into an EIM. From these, features are extracted with the help of convolutional layers.
At the end, these features are processed by fully connected layers, which reconstruct the image for
each injection electrode.

Our proposed RF-REIM-NET structure also comes without any form of pooling layers.
In general, pooling layers tend to increase the efficiency of ANNs; however, this comes at
the cost of broken location invariant properties of the convolutional layers [32]. Another
problem is that down sampling, when carried out by pooling, causes aliasing [33]. Thus,
we did not use pooling and increased the receptive field of the RF-REIM-NET.

Instead of batch normalization, we used layer normalization. Instead of normalization
along the batch, layer normalization computes the normalization along the features of the
layer’s output. We found that this works best for training.

The second part of RF-REIM-NET consists of a fully connected layer, adapted such
that the rotational invariance is considered. The input to the first fully connected layer
has the shape 16× 2048. This was purposeful, as the 16 represents the 16 different current
injection pairs. Thus, instead of passing a vector of 16× 2048 = 32,768, 16 passes of a
2048 vector are used. This saves time during training and considerably decreases the size
of the RF-REIM-NET. The second fully connected layer works the same way, but at the
same time the output will be doubled to obtain a 64× 64 reconstruction image.

2.5. Training of the Neural Network

Our training procedure was as follows. α-blending was used during training, and two
batches were randomly combined as described in the methods section. As a regularization
strategy, L2 weight regularization, dropout with a dropout rate of 0.1 and total variation
(TV) regularization were used. L2 weight regularization was added, scaled to the loss of
RF-REIM-NET, and can be described as

Lw2 =
N

∑
i=1

wi, (15)

where N is the total number of weights and wi is the ith weight. For details about dropout,
see [34]. TV regularization is commonly used for image de-noising and de-blurring [35].
The TV regularization loss is computed with

LTV = ∑
i,j
|Y ′i+1,j − Y ′i,j|+ |Y ′i,j+1 − Y ′i,j|, (16)

where Y ′ is the output of RF-REIM-NET.
For the loss function we used the mean squared logarithmic error (MSLE). This error

was chosen as our training data vary in orders of magnitude, and RF-REIM-NET should be
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able to predict the conductivities in the same way across the whole range. MSLE can be
described as

LMSLE =
1
N ∑(log(Y + 1)− log(Y ′ + 1))2, (17)

Y is the ground truth conductivity distribution.
The total loss of RF-REIM-NET is described by

Ltotal = Lw2 + λ1 · LTV + λ2 · LMSLE (18)

with λ1 = 0.1 and λ2 = 1× 10−6.
RF-REIM-NET was then trained with the help of the TensorFlow [36] and the Adam

optimizer [37]. Additionally, we used a learning rate decay: whenever the loss reached a
plateau, the learning rate was reduced by 70%.

2.6. Evaluating RF-REIM-NET

We compared RF-REIM-NET to the standard Gauss–Newton (GN) reconstruction for
absolute EIT. To compare the two algorithms quantitatively, we used a modified version of
the GREIT figures of merit [38]. Some modifications were necessary, as the original GREIT
figures of merit only allow the evaluation of difference images.

First, the calculation of the evaluation mask needs to be modified. The median value
of the reconstructed image is subtracted from the original image,

σeval = σ − σ̃, (19)

where σ̃ denotes the median value of σ. The median was chosen, as it is more robust to
outliers in the data. When inserting only one target for evaluation, an ideal reconstruction
would have just two values, the background and the target. If we then subtracted the
mean, the background would be slightly negative. This is prevented with the help of the
subtraction of the median. The mask is then composed of all values, which are 50% less or
more than the minimum/maximum value. The choice is dependent on the value of the
target with respect to the background. In our evaluation case, the target is less conductive
than the background. Thus, our mask is defined as

m =

{
1 i f σeval <

1
2 ·min(σeval)

0 else
, (20)

where m is the evaluation mask. We denote all pixels inside the mask as σ̂eval , while all
pixels outside the mask are denoted as ∼σ̂eval .

2.6.1. Amplitude Response (AR)

The AR is now defined as

AR = ∑ σ̂eval . (21)

The std of the AR should be low.

2.6.2. Position Error (PE)

The PE is defined as

PE =
√
( x(σ̂eval)− tx)2 + ( y(σ̂eval)− ty)2, (22)

where x denotes the x-component of the center of gravity, y denotes the y-component
accordingly, tx is the ground truth x-position and ty the ground truth y-position. The mean
and the std of the PE should be low.



Diagnostics 2022, 12, 777 10 of 16

2.6.3. Ringing (RNG)

The RNG was defined as the std of all pixels outside the mask m. Formally, this is
written as

RNG = std(∼σ̂eval). (23)

The mean and standard RNG deviation should be low.

2.7. Evaluation Data

To validate our RF-REIM-NET, we used three different types of input and analyzed
the output according to the three introduced figures of merit (AR, PE and RNG).

2.7.1. FEM Data

First, we used FEM data that the network had not yet seen. Multiple enclosures were
simulated, and the enclosure was positioned such that it move from the domain center to
the outside. RF-REIM-NET is compared with GN. For the hyperparameter selection of GN,
we at first used the L-curve criterion, but did not find usable results. We are convinced
that this is due to the reference-free reconstruction, which destabilizes the EIT problem
compared with differential EIT. Thus, we made multiple sweeps of the hyperparameter to
narrow down the optimal hyperparameter iteratively.

2.7.2. Noise Performance on FEM Data

Second, we compared the noise performance on a FEM data sample. For that, an
enclosure near the boundary was simulated and the noise level was increased from 200 to
5 db. For evaluation, GN reconstructions are given.

2.7.3. Tank Data

Third, we used data from a circular EIT tank. The tank had a diameter of 28 cm and
had 16 electrodes attached equidistantly around the surface. The tank was filled with
0.9% saline solution and the target was a pickle with a circumference of 4.5 cm. The pickle
was moved from the center in the direction of one electrode in nine steps, where the last
position was 9 cm in front of an electrode. The measurements were performed with the EIT
evaluation kit 2 (Draeger EEK2, Draeger Medical GmbH).

2.7.4. Experimental Data

Finally, we give an impression of the performance of RF-REIM-NET on real-world
data. The data were taken from an experimental pig trial using a clinical EIT device (Draeger
Pulmo Vista 500, Draeger Medical GmbH). For the trial, eight pigs were anesthetized and
tracheotomized in supine position [39]. During the trial, CT measurements from the pigs
were taken. In our data sample, we used two measurement points from a single pig, which
was healthy in the time span we chose. The length of the data sample was around 30 s.

As there is no ground truth regarding the conductivity, we show two pictures. The
first picture shows the mean conductivity over an entire breathing cycle, while the second
shows the std over an entire breathing cycle. As the background, a CT image is given, as it
will give a sense of quality. This is given for transparency, as tank data have more ideal
conditions, which are closer to the training data. The absolute Gauss–Newton algorithm
did not yield any meaningful results after a thorough hyperparameter sweep and was thus
not given as a reference.

3. Results

At first, we give the results of simulated FEM data, outside the distribution of the
training data used to train RF-REIM-NET. The results for the figures of merit are given in
Table 1. The std of the AR is bigger for the GN algorithm; however, the std is one order of
magnitude lower compared with the mean. Visually, this is confirmed by the reconstructions
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in Figure 4. The AR for both reconstructions stays roughly the same. For the PE, GN has
a lower mean and std. The PE mean is half that of the RF-REIM-NET, while the std is a
quarter. The RNG for the GN is also lower compared with RF-REIM-NET. This, again, can
be seen in the images. The RNG for RF-REIM-NET is larger, due to the higher differences
in magnitude outside the mask m.
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Figure 4. Illustration of RF-REIM-NET (middle) and GN (bottom) reconstructions of FEM that mimic
the position of the tank pickle data. The ground truth target positions are given at the (top).

Table 1. Figures of merit for the simulated FEM data. Given is the mean ± std.

Algorithm/Metric AR PE RNG

GN 0.069± 0.0069 2.7± 1.1 0.11± 0.0094

RF-REIM-NET 0.066± 0.0046 5.6± 4.0 0.14± 0.019

To better see the difference between the original ground truth image and the recon-
struction, we present in Figure 5 the ground truth, the reconstruction of RF-REIM-NET
and the MSLE error. It can be seen that the error is for the most part on the edges of the
enclosures. In the second column, we can see that the middle target is barely visible in the
reconstruction.
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Figure 5. Illustration of RF-REIM-NET reconstructions on the validation dataset. At the top, the
original targets are given. In the middle, the reconstructions of RF-REIM-NET are presented. At the
bottom, the MSLE error between the original image and the reconstruction are presented.
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3.1. Noise Comparison on Simulated Data

Here, we compare the noise performance of the RF-REIM-NET compared with GN.
We positioned a target near the boundary of the FEM domain and simulated the voltages.
In Figure 6, the results can be seen. The reconstructions of RF-REIM-NET are more robust
to noise, compared with GN. At 100 db the reconstruction of GN is barely visible, while
RF-REIM-NET is still clearly visible. At 15 db the reconstruction of RF-REIM-NET begins
to degrade and also becomes less visible.

N
et

w
or

k

raw 200 100 50 25 20 15 10 5

10−2

10−1

100

G
N

100

101

102

Figure 6. Evaluation of the noise performance of RF-REIM-NET (top) compared with GN (bottom).
The columns represent different noise levels added with the EIDORS function add_noise. The target
position is equal to T6 in Figure 4.

3.2. Tank Results

Next, we provide the results from the tank measurement. As shown in Figure 7, the
pickle was moved from the center to an electrode. The reconstruction from the Gauss–
Newton algorithm shows a more diffuse boundary, while RF-REIM-NET has a more clear
boundary. The background from the Gauss–Newton algorithm shows many, but small
background disturbances, while the background of RF-REIM-NET has fewer disturbances,
where one is at the top and the other surrounds the conductivity enclosure.
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Figure 7. Illustration of RF-REIM-NET and GN reconstructions on the pickle measurements of the
tank dataset. The empty measurement was not used in both reconstructions, and is given only
for a better view of the reconstruction artifacts. Pickle 1 is the center pickle, while Pickle 7 is the
outer pickle.

These observations are also reflected in the figures of merit given in Table 2. The
mean and std of the AR from RF-REIM-NET are bigger than the ones of Gauss–Newton.
This can also be visually confirmed in Figure 7. The PE and its std, however, are lower
in RF-REIM-NET. The mean of the PE from RF-REIM-NET is ∼35% lower than that of
Gauss–Newton, while its std of the PE is ∼50% lower. The mean RNG of RF-REIM-NET
is 20% lower compared with Gauss–Newton. However, the inverse is true for the std: the
RNG std is 20% higher compared with Gauss–Newton. However, the std is 1

14 th of the mean.
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Table 2. Figures of merit for the tank experiment. The left number in each cell is the mean of the
metric, while the right number is its std.

Algorithm/Metric AR PE RNG

GN 0.1± 0.0056 11± 5.7 0.1± 0.0045

RF-REIM-NET 0.14± 0.0086 7.1± 2.9 0.08± 0.0054

3.3. Experimental Data

For the experimental data, only qualitative analysis is given. The results are shown in
Figure 8. On the left, a CT measurement is given to better judge the results. In the middle,
the mean reconstruction over 20 s of mechanical ventilation is given. At the top, there is an
artifact in the reconstruction. The two lungs are visible, but they are smaller compared with
the original size. The heart on the other hand, between the lungs and the artifact, matches
the position given in the CT image. The standard deviation picture on the right confirms
the findings. The artifact stays in the position, as the standard deviation is near zero at this
position. At the position of the heart a high standard deviation is visible, and the same
holds true for the lungs. The shape of the standard deviation picture for the lungs better
resembles the general shape of the lung.

CT image Reconstruction Mean

10−5 10−4 10−3

Reconstruction Std. Dev.

10−7 10−6 10−5

Figure 8. Comparison of the RF-REIM-NET reconstruction with CT scans. On the very left, the CT
scan of the pig thorax is given. In the middle, the mean over 20 s of mechanical ventilation is given.
On the very right the std is given.

3.4. Discussion

In the FEM setting, GN outperformed RF-REIM-NET in the metrics of PE and RNG,
both with the mean and the std. The mean and std of the AR are a little higher using GN.
However, the values only differ slightly. Thus, we would argue that GN outperformed
RF-REIM-NET in the FEM setting. This is probably due to the fact that the setting has not
much disturbance by factors such as hardware or the imperfect conductivity of the target.

In a tank setting, RF-REIM-NET has a lower mean PE and mean RNG. The PE also has
a std that is roughly half that of the GN PE std. This can be visually observed in Figure 7.
However, at the same time, the mean AR and its std is higher. This, again, can be seen
in Figure 7. In the samples “pickle 2”, “pickle 3” and “pickle 4”, the reconstruction is
clearly larger than in the other samples. In contrast, GN has a less clear object boundary.
Thus, we argue that on the tank dataset, RF-REIM-NET has a better performance. We
showed that RF-REIM-NET is able to give reconstructions from experimental data, even
though the ANN does not need any reference voltage, as can be seen in Figure 8. To
the best of our knowledge, this is the first work to evaluate the performance of ANNs
for EIT reconstructions on real-world experimental data from an ANN solely trained on
simulated data.

While the heart was reconstructed accurately, the lungs were too small, which is at
that point not fully useful for clinical diagnostics. Another shortcoming is the artifact at the
top, which constantly stays in that position. We assume that the artifact is due to electrode
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position errors. At the top of the picture, the EIT belt is closed. Thus, the electrodes have a
larger distance from each other at that place.

4. Conclusions and Outlook

We present an ANN (RF-REIM-NET) that is able to reconstruct conductivity enclosures
without using a reference voltage. RF-REIM-NET is inspired by ANNs that are commonly
used for classification: the first part of these ANNs extracts features, while the second part
is responsible for the evaluation. Compared with GN on FEM and tank data, our approach
tends to give clearer reconstructions. However, the images tend to be a little bigger than
in real life. We also showed the performance on real-world subject data. Compared with
GN, which did not obtain any meaningful reconstructions from the experimental data
set, RF-REIM-NET was able to give reconstructions. For future work, the network needs
to be made more robust against electrode position errors and domain shape influences,
which may be the biggest impact factors on the experimental data performance. Thus, in
the future, altering the electrode positions in the training data might improve the overall
reconstructions. Second, the boundary shape has to be altered more drastically, as this
might further increase the performance of RF-REIM-NET.
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