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Abstract: Coronavirus disease has rapidly spread globally since early January of 2020. With millions
of deaths, it is essential for an automated system to be utilized to aid in the clinical diagnosis and
reduce time consumption for image analysis. This article presents a generative adversarial network
(GAN)-based deep learning application for precisely regaining high-resolution (HR) CXR images
from low-resolution (LR) CXR correspondents for COVID-19 identification. Respectively, using the
building blocks of GAN, we introduce a modified enhanced super-resolution generative adversarial
network plus (MESRGAN+) to implement a connected nonlinear mapping collected from noise-
contaminated low-resolution input images to produce deblurred and denoised HR images. As
opposed to the latest trends of network complexity and computational costs, we incorporate an
enhanced VGG19 fine-tuned twin network with the wavelet pooling strategy in order to extract
distinct features for COVID-19 identification. We demonstrate our proposed model on a publicly
available dataset of 11,920 samples of chest X-ray images, with 2980 cases of COVID-19 CXR, healthy,
viral and bacterial cases. Our proposed model performs efficiently both on the binary and four-class
classification. The proposed method achieves accuracy of 98.8%, precision of 98.6%, sensitivity of
97.5%, specificity of 98.9%, an F1 score of 97.8% and ROC AUC of 98.8% for the multi-class task, while,
for the binary class, the model achieves accuracy of 99.7%, precision of 98.9%, sensitivity of 98.7%,
specificity of 99.3%, an F1 score of 98.2% and ROC AUC of 99.7%. Our method obtains state-of-the-art
(SOTA) performance, according to the experimental results, which is helpful for COVID-19 screening.
This new conceptual framework is proposed to play an influential role in addressing the issues facing
COVID-19 examination and other diseases.

Keywords: adversarial learning; chest X-ray images; contrastive loss; COVID-19; deep learning;
Siamese network; super-resolution

1. Introduction

Coronavirus 2019 (COVID-19) is a unique type of coronavirus disease that is a pul-
monary ailment instigated by severe pneumonia. It was first discovered in late 2019, be-
coming a universal epidemic and reaching over 418 million confirmed cases and 5.8 million
deaths across the globe as of 17 February 2022 [1,2]. In the earliest discovery of this dis-
ease, the only efficient means of containing COVID-19 were washing and sanitizing the
hands, wearing face shields, maintaining reasonable social distancing, testing the pop-
ulation and isolating the affected persons, as stated by the World Health Organization
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(WHO). Researchers and medical practitioners are currently developing vaccines as a cure
for COVID-19. However, there is no vaccine with 100% availability to treat COVID-19 or
medication to avert further spread. In alleviating the increasingly contagious disease, the
need for early identification of COVID-19 is critical.

Now, reverse-transcription polymerase chain reaction (RT-PCR) is an acceptable pro-
cedure for diagnosing COVID-19; this test is performed manually to carry out viral nucleic
acid examination by using nasopharyngeal and throat swabs [3]. RT-PCR is complex,
time-consuming and contains sampling errors. Moreover, it requires multiple tests for a
definitive result and has relatively low sensitivity. Defective equipment, the small number
of clinical professionals and the swift accumulation of affected patients demand robotic
screening applications. This type of application serves as an alternative for medical profes-
sionals to rapidly recognize individuals who have contracted the disease, thereby isolating
them. The following alternative screening methods [4,5], which have been established for
the COVID-19 process, are radiographs that employ either a chest X-ray radiograph or
chest tomography (CXR or CT) to search for viral presence in the lungs.

Chest X-ray (CXR) [6,7] is an essential medical tool that plays a vital role in the
earliest exploration of lung abnormalities. It can be used as an alternative solution for
screening in detecting COVID-19 or validating other related diagnoses, and extremely
skilled radiologists characterize the CXR images [8,9], searching for infectious lesions
contributing to COVID-19. These typical features involve varieties of opacities and multi-
focal in patients. However, manual comprehension of the delicate CXR digital image
attributes is challenging, thereby demanding a professional in the field. Moreover, the
rapid increase in individuals who have contracted this disease makes it challenging for
the radiologist [10,11] to accomplish the diagnosis rapidly, thus creating a higher death
rate [12,13]. A combination of CXR digital images gathered from various outpatient clinics,
articles and previous research studies was used [14–16]. After the retroactive analysis of the
earlier literature works, we noticed that previous research works had been accomplished
with a small amount of CXR or CT images as input, causing the deep learning (DL) models
to under-fit. However, with the high predominance of pneumonia, in comparison to the
massive amount of healthy images, there are a small number of COVID-19 images accessible
on which to create a deep learning model. Consequently, regarding CXR, DL methodologies
for COVID-19 classification have been thoroughly investigated [17,18]. A public-domain
deep convolutional neural network framework was proposed in [11], tailored to identify
COVID-19 from chest radiography. Several methods [19–22] have been incorporated to
resolve the COVID-19 diagnosis problem.

Meanwhile, these methods have some flaws in common:
1. Rather than recovering the displaced specific appearance information, they entail

high computing costs, as well as requiring a large number of correctly annotated CXR
images for model training, thereby restraining medical approval.

2. They focus exclusively on deeper neural networks [23–26], which leads to model
complexity and high computational costs, rather than using the ability of a simple convolu-
tional neural network to discover and maximize the distinctive characteristics, especially
regarding the resource constraints of an AI-based COVID-19 diagnosis system.

However, in AI-based COVID-19 diagnosis, low resolution (LR) remains a signifi-
cant challenge for large-scale CXR imaging applications. Naturally, super resolution (SR)
provides an effective algorithm to reduce the resolution disparity dilemma because of its
capability to generate high-frequency information [27]. In several studies, a GAN-based
architecture can resolve the unavailability of images, which causes over-fitting in the CNN
architecture. This study addresses the low-resolution AI-based COVID-19 diagnosis issue
by generating super-resolution images with the generative adversarial network method
and applying a COVID-19 identification algorithm in an incorporated framework termed
the enhanced Siamese fine-tuned model with wavelet pooling strategy and modified
enhanced super-resolution GAN plus based on low-quality images for COVID-19 identi-
fication (COVID-SRSNet). We carry out preprocessing to handle resolution mismatches
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by reshaping them to a targeted steady resolution of 224 × 224 pixels. This research aims
to investigate low-resolution COVID-19 identification; for this, we considered all images
that were low-resolution. Generally, after down-sampling, it is difficult to extract low-level
characteristics; however, we used a GAN-based enhanced super resolution to reproduce HR
correspondents from LR images to improve the network’s feature extraction capability. This
method extracts the specific visual appearance details effectively. Our proposed algorithm
adopts the super-resolution approach, thereby reducing the complexity of the problem and
the time it takes to solve it. Additionally, to maintain a lightweight and far less complex
architecture, a fine-tuned VGG19 twin network with wavelet pooling is applied to boost
the feature extraction. The proposed architecture algorithm supplies good interpretability
and sensitivity in comparison to existing methods.

The following points summarize the main significance of our article:
1. The enhanced Siamese fine-tuned model with wavelet pooling strategy and mod-

ified enhanced super-resolution GAN plus based on low-quality images for COVID-19
identification (COVID-SRSNet) sufficiently addresses the issues of resolution disparity by
taking inconsistent input dimensions and reshaping them to a fixed resolution dimension
using an image scale-based adaptive module.

2. COVID-SRSNet is utilized for effective image recapturing for the purpose of
handling the problem of low-quality images and eliminating noisy presumable distortion
caused by GAN as a result of the JPEG decompressing nature of the image format. It
employs a residual-integrated-residual dense block to create real and genuine images.
The relativistic network consists of a discriminator used to boost the identification details
efficiently. The batch normalization layer is removed for regular training and performance,
as well as to eliminate the noisy artifacts [28]. The perceptual loss is enhanced by extricating
the distinct details before introducing the activation function to prevent detail scarcity [28].
In supporting the thorough network training, a minor initialization technique and residual
scaling were adopted.

3. With the use of our modified Siamese network of fine-tuned VGG16 by incorporating
a contrastive loss function and Euclidean distance, we efficiently classify our datasets into
a binary class and multiple classes.

The remaining parts of the paper will survey related works in Section 2, whereas
Section 3 will give a detailed explanation of the methodology. Descriptive information
about the dataset, the implementation technicalities and experimental outcomes will be
presented in Section 4. Section 5 will shed more light on the result validation and other
related discussions. Section 6 presents the conclusions of this study.

2. Related Works

An in-depth analysis of the literature relevant to our research is introduced in this
part. Firstly, we survey published works on the imaging-based screening of COVID-19
utilizing CXR or CT images. Secondly, we analyze various topics in conjunction with our
novel framework, including generative adversarial network (GAN), Siamese convolutional
neural network, identification and deep metric learning.

Imaging-Based Diagnosis of COVID-19

This section provides a comprehensive review of published research on COVID-19
investigation using CXR or CT images. Deep neural networks are adopted to accurately
diagnose a diversity of infectious and non-infectious diseases from medical imaging data,
which recurrently outweighs human efforts [12]. To recognize images as COVID-19, healthy
or pneumonia, a discriminative cost-sensitive learning (DCSL) was proposed in [13]. The
model was trained on two datasets from the public domain [13,15]. The model had a
sensitivity of 97.1%, accuracy of 97%, precision of 97% and F1 score of 91%. This degree of
efficiency is achieved by training on labeled data and fine-tuning the system’s millions of
parameters. Deep learning systems are being used in a variety of published research for
COVID-19 diagnosis and screening. The ImageNet weights were pre-trained on a designed
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18-layer residual network against 100 COVID-19 and 1431 pneumonia X-ray datasets [29].
Generally, COVID-19, healthy and viral pneumonia CXR images are the most commonly
curated datasets [30]. The subject of the effectiveness of AI-based COVID-19 diagnosis is
reported in [31], in which the authors focused on the role of the early detection of COVID-19
patients as a vital tool to mitigate the spread of the virus as well as ease the burden on
clinicians. The authors reported their findings that deep learning models are a promising
solution due their high sensitivity results compared to expert diagnosis. Lu et al. [32], who
adopted a neural network approach for the prediction of intensive care unit admissions,
concluded that biomarkers such as creatinine, C-reactive protein, etc., indicated momentary
variations among admitted COVID-19 patients in the ward and transferred to the intensive
care unit, in contrast to the patients not transferred.

A machine learning method is suggested in [33] to rule out routine blood tests as the
sole data for COVID-19 diagnosis in the emergency unit, especially among adults. The
authors of this study fused multicenter health data acquired from an emergency unit’s
laboratory and their method achieved 97% specificity and 98% sensitivity. Aslan et al. [34]
suggested a scheme of classifying COVID-19 chest computed tomography images using
famous feature extraction CNN architectures such as AlexNet, ResNet18, ResNet50, Incep-
tionv3, Densenet201, Inceptionresnetv2, MobileNetv2 and GoogleNet and achieved the
highest accuracy of 96.29%. The two key significances of their work involve the identifica-
tion of machine learning hyper-parameters by using Bayesian optimization and ANN-based
image segmentation.

Interestingly, the authors in [35] compared and quantified the preferences of selected
patients for AI-based clinicians and human clinicians. A method of propensity similarity
score matching was adopted to match similar demographic characteristics among two
separate groups of respondents. The final report presented in this study showed that 95%
of the respondents believed that the AI-based diagnosis technique achieves better accuracy
with lower expenses compared to human-based clinician diagnosis.

Aslan et al. [36] suggested two deep learning frameworks for automatically detecting
positive COVID-19 instances using chest CT images, which include lung segmentation as a
preprocessing phase for the CT images, which are then passed as input to the proposed
artificial neural network (ANN) architectures for automatic detection, with a hybrid model
achieving 98.70% accuracy.

When a random forest classifier was adopted with important multimodal characteris-
tics such as age, hypertension, gender, diabetes and cardiovascular disease, the authors
reported 96% prediction accuracy. Different classification methods of prioritizing symp-
tomatic patients for COVID-19 early detection using metadata such as age, gender and fever
were proposed in [37]. This method achieved an average of 90% accuracy. Li et al. [38]
formulated a DL model and a risk rating algorithm for the outcome of intensive care unit
admission and death in the hospital. The ROC-AUC was utilized as a metric to evaluate the
model’s performance. The authors discovered that these biomarkers were the leading ICU
indicators, besides age, cardiac troponin and oxygen saturation, which were the main death
indicators. A Bayesian CNN with weight reduction was advocated, utilizing ResNet-50 V2,
as proposed in [16], where normal, bacteria, viral pneumonia and COVID-19 were the
four classes included in the dataset. Furthermore, two of the COVID-19 instances were
incorrectly classified using CNN and BCNN.

To lessen the black-box traits of deep learning, various saliency maps were utilized;
conversely, the maps appeared to focus on some inexact areas not described in the article.
Nevertheless, the study noted that calculating the prediction’s ambiguity could improve
the model’s technique. A total of 50 images each for healthy and COVID-19 patients
were obtained in [18] and utilized in three pre-trained [19–21] DL algorithms to detect
COVID-19, obtaining better performance. A residual CNN with 18 layers and a sigmoid
activation function pre-trained on ImageNet for classification was proposed in [22,23]. The
authors reported that the algorithm obtained 72% sensitivity using 362 CXR images and
98% specificity. Nevertheless, while these models seem to produce great performance,
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model sensitivity is a primary concern due to the danger of misleading COVID-19 diagno-
sis results.

Several models are refined utilizing CT to examine COVID-19, as suggested in [8,9].
A UNet++ [24] approach to detect and examine COVID-19 lesions was proposed in [25].
Training the model on professionally annotated CT slices to obtain COVID-19 sections
showed comparable achievement to professional radiologists, with 100% sensitivity. Using
300 images of COVID-19 patients, a dice scoring rate of 91.6% [26] was achieved to segment
and analyze COVID-19. COVID-19 was segmented and quantified using a combination
of commercial software and DL techniques in [27], with 99.6% AUC. A weight-shared
twin ResNet-50 network was used for individual CT image slices, after which they were
combined by max-pooling to produce a single feature vector used for the classification
task in [28]. This algorithm utilized 285 images of healthy patients and 68 COVID-19
instances of confirmed infected cases to achieve an AUC of 96.0% [28]. Using 53 patients,
these authors [39] tested the patch-based technique with an SVM classifier and obtained
100% specificity and 93% sensitivity. Five-fold cross-validation based on an infection size
conscious random forest classifier approach was proposed in [40] using segmented scans to
identify infection and lung areas, and then images were categorized based on infection size,
which obtained an average of 94% AUC with 1027 healthy and 1658 COVID-19 images.

The first attempt to use a 3D neural network to segment lesions with a 2D ResNet
network before classifying them as healthy or COVID-19 instances was proposed in [41].
This approach obtained 99% AUC on 128 healthy images and 154 COVID-19 images using
two hospitals’ data. The use of a segmentation network and a ResNet-152 network model
to classify CT slices was proposed in [42,43]. GradCAMs were then developed in [44] to
illustrate the diseased region. On 1072 healthy and 183 COVID-19 images, this network
model was trained using private and public data, attaining 98% AUC. The approach to
segmenting infection areas using a deep learning algorithm was suggested in [45]. Patches
of infected areas were considered the input data to the ResNet-18 network proposed in [45],
taking into account the distances from the lung’s edge as images are classified into healthy
and COVID-19 influenza images. The network model attained an average of 86.7% accuracy
on 30 COVID-19 and 60 non-COVID-19 images.

Another interesting work was proposed in [46], where the inception model was utilized
using an in-house dataset to diagnose COVID-19. The authors of this study reported their
findings in terms of two validation criteria; in the internal validation, the total accuracy was
89%, with 88% precision and 87% sensitivity, whereas in the external validation, it achieved
overall accuracy of 79%, with 83% precision and 67% sensitivity. The dataset consisted of
100 pneumonia and healthy images each, whereas only 10 COVID-19 images were used for
the validation. Moreover, a paired function pyramid network with an attention module
combined with the ResNet-50 approach proposed in [47] and tested using a private dataset
consisting of 24 healthy instances and 27 COVID-19 instances achieved 99% AUC and 93%
sensitivity. To determine the magnitude of COVID-19, the random forest (RF) technique
was suggested in [48], which focused on extensive features extracted using a deep learning
algorithm. With 176 images, using three-fold cross-validation, the procedure obtained an
average of 87.5% accuracy. A weakly supervised procedure was suggested in [49], where
segmentation masks were produced automatically using this technique. For labeling, the
CT images and masks were loaded into a 3D CNN. The AUC for this approach was 95.9% .

In summary, most experiments, including those using CXR, rely on inadequate training
sets of COVID-19 images from various sources, with no specific protocols. They only re-
purpose existing AI-based techniques to solve unique challenges, so AI innovation and
clinical utility are minimal. It is difficult to compare research because of the large data
variability. Even though all models performed well, it was suggested in [50] that the
probability of bias was extreme in all the articles analyzed by the authors, according to
the literature in [51]. Algorithms developed for diagnosing COVID-19 using CXR or CT
instances perform admirably in general. However, due to data scarcity, some models only
use 10 COVID-19 instances in their test set, and only a few models use external validation.
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As a consequence, they may or may not apply to such contexts. It is important to build
a more data-efficient approach to achieve better results on training images. This will
permit the incorporation of more images from the unusual class in the test data. The goal
of our research is to establish a method that can improve previous models and achieve
up-to-date results.

3. Methodology

This section introduces the problem statement, dataset and preprocessing procedure
used in this study. Then, we present the feature extraction procedure for super resolution.
Next, we describe the proposed enhanced Siamese fine-tuned model with a wavelet pooling
strategy and modified enhanced super-resolution GAN plus based on low-quality images
for COVID-19 identification (COVID-SRSNet). Finally, we provide the implementation
details for our proposed model.

3.1. Problem Statement

With the continued threat of the pandemic, effective COVID-19 screening is needed.
The shortage of COVID-19 test kits and the time taken to produce the samples’ (proper)
results in many developed/rural areas pose a significant problem for developing cities with
under-equipped hospitals and clinics. Often, developing countries do not have enough
COVID-19 kits, limiting primary healthcare clinics’ ability to receive, ship and analyze
them, so they must rely on more specialized centers to provide them with the test results. To
meet the increasing demand for new test cases, an automated and efficient complementary
method is required to respond to the third wave of the pandemic in areas with low access
to viral/antibody tests that can be useful in COVID-19.

There are many reports of CT scans being used to find ground-glass opacities and
other chest features that are higher in resolution than those of a standard chest X-ray [26].
Thus, because of infection management issues involved with bringing patients to CT units,
comparatively high costs (for procurement, installation and repair of CT equipment) and
low system availability in developing/rural areas, CT scans cannot be reliable for COVID-19
purposes. On the other hand, a chest X-ray (CXR) may be used to detect COVID-19 [52] and
other pneumonia outbreaks, as CXR imaging equipment is readily available in emergency
rooms (ERs), public healthcare centers and even remote clinics. However, there are two
main bottlenecks in AI-based CXR detection systems for large-scale imaging purposes:

1. Low-resolution (LR) features are a concern.
2. The image inconsistency of the obtained dataset samples also includes blurry and

meaningless information. Even for experienced radiologists, analyzing chest X-ray pictures
poses challenges in discriminating between the characteristics of COVID-19 pneumonia
and community-acquired bacterial pneumonia [52].

Furthermore, the influx of patients into hospital ERs during the pandemic, manual
inspection of radiograph data and accurate decision making will contribute to a serious
tradeoff regarding accuracy and detection time that can exhaust the radiology unit, and
as a result, an automated identification method is needed. COVID-19 third-wave activity
would necessitate an increase in portable chest X-ray instruments, as the universal use
of these makes CTs redundant. We cover the issues described earlier and present deep
learning-based GAN and identification model solutions to solve the third wave problems.

3.2. Datasets

There has not yet been any report on the high-quality mining of CXR images for
developing COVID-19 diagnosis systems of high clinical value. In this work, we have
utilized datasets from two different open sources. The first dataset is taken from the author
in [53], which consists of 3616 CXR images of patients diagnosed with COVID-19. In this
dataset, we only considered 2980 CXR image cases of COVID-19. The second dataset
contains 3029 scans of bacterial pneumonia, 8851 scans of healthy patients and 2983 scans
of viral pneumonia obtained from the Kaggle database of RSNA [54]. These collections of
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different datasets have different variations and dimensions, totaling 11,920 CXR images.
Above all, we have only considered 2980 scans for each class for our proposed framework
of the classification task on the binary class and multiple classes, respectively, as seen in
Table 1. For the binary class, we have considered COVID-19 versus healthy scans, whereas
for the multi-class, we have considered four classes, which are COVID-19, healthy, bacterial
and viral pneumonia scans. Moreover, since the amount of CXR associated with each class
is balanced, the dataset is partitioned into three sets of 40%, 40% and 20% for training,
validation and testing, respectively.

Table 1. Distribution of CXR image dataset and their descriptions, showing different categories of
pneumonia, healthy and COVID-19 image scans, as well as the number of selected images per category.

Classes Data Count
per Class

Selected No. of
Data per Class Train Set Val Set Test Set

Bacteria 3029 2980 1192 1192 596
COVID-19 3616 2980 1192 1192 596

Healthy 8851 2980 1192 1192 596
Virus 2983 2980 1192 1192 596
Total 11,920 4768 4768 2384

Image Scale-Based Adaptive Module

Prior to the super-resolution framework, the images were resized using the image
scale-based adaptive module. The OpenCV image scaling system was adapted in order
to adjust the various resolutions to a fixed dimension. It receives images from different
resolutions and converts them to a specific (fixed) resolution of 224× 224× 3 before passing
them to the COVID-SRSNet, as shown in Figure 1.

Figure 1. Scaling of images at different resolutions to a fixed resolution using image scaling adap-
tive module.

3.3. COVID-SRSNet Identification Architecture

The overall illustration of COVID-SRSNet can be seen in Figure 2. It comprises two
distinct flows. Before the super-resolution operation, we adopted an image adaptive
scaling module as a preprocessing technique to bring the heterogeneous dimensionality
of the image resolution to a predefined resolution of 224× 224× 3, before passing them
to the super-resolution network called Modified Enhanced Super Resolution GAN Plus
(MESRGAN+). MESRGAN+ is used to convert low-resolution images into high-resolution
images and eliminate compression artifacts. Finally, the reconstructed HR images are
passed to the Enhanced Siamese Fine-Tuned Model with Wavelet Pooling (ESFMWP)
algorithm to obtain and learn discriminative features for the identification of COVID-19.
For the sake of simplicity, we refer to the combined frameworks of MESRGAN+ and
ESFMWP as COVID-SRSNet.
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Figure 2. Our proposed modified ESRGAN+ and Siamese convolutional neural network.

3.3.1. Modified Enhanced Super-Resolution GAN Plus (MESRGAN+)

This study aims at enhancing the overall perception quality of the low-quality chest
X-ray images for super resolution before passing them to the proposed Siamese network
for COVID-19 identification. In this section, we will present the proposed modified en-
hanced super-resolution generative adversarial network plus (MESRGAN+) architecture
and describe the structural improvement for achieving a balance in perceptual quality and
PSNR. Before we discuss our proposed network architecture, we will briefly describe the
transition from SRGAN to MESRGAN+.

3.3.2. Transition of Super Resolution by GAN

SRGAN [55] utilizes basic blocks of a deep residual network to recover image-realistic
details, in which BN is followed after each convolutional layer, as depicted in Figure 3.
The transition from SRGAN to ESRGAN [56] is based on two modifications; the first
modification is the removal of all BN in the generator structure and the second modification
involves the replacement of the original basic block with a Residual-in-Residual-Dense
Block (RRDB), as shown in Figure 3. Finally, the transition from ESRGAN to ESRGAN+ [57]
is based on introducing an additional level of residual learning at every two layers inside
the dense block, as illustrated in Figure 3, without changing the convolutional structure.

3.4. The Proposed MESRGAN+ Architecture

In our proposed super-resolution architecture, the overall structural configuration of
the Residual-in-Residual-Dense Block (RRDB) in ESRGAN+ is kept the same, as shown in
Figure 3. We made a few modifications to the ESRGAN+ network in the generator structure
by extending the convolutional layers. We added two convolutional layers followed by
a ReLU activation function. Normally, the direct mapping of the high-dimensional LR
features to HR feature vectors ultimately results in high computational complexity, and
we know that the dimensions of the LR feature are normally very large. To address
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this bottleneck, we utilize a 1× 1 convolutional layer as the second layer to reduce the
computational cost by shrinking the LR dimensional features, thereby maintaining the same
kernel size of 64 after the first layer. In order to maintain consistency and the performance
of ESRGAN+, we utilized a 3× 3 filter size and a kernel size of 64 for the third and fourth
convolutional layers.

Figure 3. We adopted the fundamental structural configuration of ESRGAN+, where feature extrac-
tion and most computation is performed on the LR image feature. We redesigned the structure for
better optimization and performance by making a few modifications to the generator structure. The
transition from SRGAN to MESRGAN+ is equally showcased.

To produce the high-resolution images from the scale-adaptive module, the scale
factor is increased to 4. This image’s network generator produces vk+1 = Gk(vk). A
feature map is extracted to calculate the perceptual loss before being passed to the final
activation function. Pixel-wise loss is measured, and the created image is forwarded to
the discriminator network to differentiate between the created image vk+1 and the actual
image v̂k+1. This actual image v̂k+1 is fed to the discriminator network for training, which
results in the same super-resolution image vk+1. Then, the generator network recalculates
the loss function and produces the same image. This entire process was only completed
when the discriminator network could no longer distinguish between real and fabricated
images. We train the generator function Gk to approximate the HR of the next LR image
v̂k+1 that the LR input can represent. In Equation (1), the total super-resolution network is
calculated as:

ΠTotalloss = ΠGen
(
ΠPerceptualloss + µΠRa

G + ηL1
)
+ ΠRa

Dis (1)
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As Equation (1) is evaluated, ΠGen is the generator loss, ΠPerceptualloss is the perceptual
loss, ΠRa

G is called the adversarial loss, which is the loss of a relativistic generator, and L1
is the content loss. ΠRa

Dis is the discriminator loss, and µ and η are coefficients to offset
the losses.

Furthermore, noise not only interferes with the reception of images but also affects
network quality, so effective noise cancellation is critical to the optimum functionality
of image processing pipelines. The JPEG (.jpg) compression format [56] for training the
GAN network produces visible objects due to the way in which it decompresses. The
solution to this problem is to avoid the use of batch normalization. The method of creating
a replacement color for each pixel in the image is based on the concept of using an average
similar color of the pixel. It selects a pixel and looks for identical pixels around it, and
then computes the Euclidean distance. Finally, the chosen noisy pixel is replaced with the
replacement pixel, improving the network’s overall consistency. Removal of unimportant
artifacts aids in the extraction of valuable information for Siamese identification.

3.4.1. Perceptual Loss

Perceptual loss works to improve the texture and image accuracy of the generated
images [44]. Euclidean distance is used to compare the feature maps of the original image
v̂k+1 and the generated image vk+1. According to the definition of [44], the feature map
was extracted before using the generator network’s final activation function. In COVID-19
identification, an illumination difference occurs in the CT image datasets obtained from the
source. The extraction of feature maps after the activation function causes the model to be
inconsistently illuminated, directly impacting the model output. When recapturing HR
from LR, it provides close supervision between feature maps. The fact that CT images are
not sufficiently HR is well understood, and this aspect boosts model regeneration dramati-
cally. Mapping feature αij is obtained after jth -convolution and before the max-pooling
layer. The formality is measured as the distance between the function representations of
the super-resolution image Gk

(
vk) and the real image v̂k+1. Formal calculation between

feature maps is given in algebraic form in Equation (2).

ΠPerceptualloss =

Wij

∑
x=1

Hij

∑
y=1

(
αij(v̂k+1)xy − αij(Gk(vk))xy

)2 (2)

Instead of penalizing the output image vk+1, which is precisely the same as the input
image v̂k+1, perceptual loss prefers the representation to be identical.

3.4.2. Content Loss

By manipulating the HR image vk+1 to be close to the ground truth v̂k+1, the network
improves the accuracy at the pixel level by calculating the L1-norm distance between both
the ground truth and the recovered image. Compared to the L2 loss, which often results in
over-smooth results, the L1 loss is used for better efficiency and convergence. Equation (3)
calculates the L1-norm distance between the SR image

(
Gk(vk)

)
xy and the ground truth

(v̂k+1)xy, given as:

Ł1 =
W

∑
x

H

∑
y

∥∥∥(Gk(vk)xy − (v̂k+1)xy)
∥∥∥

1
(3)

3.4.3. Relativistic Loss

The majority of the preliminary research has focused on standard GAN. Meanwhile,
we employ a rational discriminative loss in our SR network, ensuring that HR photos are
not stylized or unrealistic. In Equation (4), the classification of the images is achieved using
the standard discriminator Dis in GAN.
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Dis = σ
(

fd(v̂k+1)
)
→ 1

Dis = σ
(

fd(vk)
)
→ 0

(4)

Equation (4) reflects the regular GAN’s operation. Dis is the discriminator’s output
to classify whether the images are real or artificial. The vector feature discriminator is
represented as fd(.). Additionally, the term “σ” stands for the sigmoid function. Adversarial
loss uses a binary classifier to verify whether the obtained result is true or not. We use the
relativistic GAN [43] to distinguish between the real v̂k+1 and created data Gk(vk) with the
distance computed as in Equation (5):

DRa
(
v̂k+1, Gk(vk)

)
(5)

RGAN produces images with sharp edges when used in a relativistic model and pro-
vides more graphic and detailed information than a typical GAN. It is seen in Equation (6)
that RGAN is presented as:

DRa(Real, Fake) = C(Real)− E
(
C(Fake)

)
→ 1

how realistic an image is compared to a fake one.
DRa(Fake, Real) = C(Fake)− E

(
C(Real)

)
→ 0

how fake an image is compared to a real one.

(6)

Equation (6) analyzes how realistic an image is compared to an artificial one. Here, E(.)
is the average of all real or artificial data in the sample. This slight modification makes the
model more efficient than the standard discriminator network. The discriminator network
loss is given in Equation (7) defined below:

ΠRa
Dis = −Ev̂k+1 [log

(
DRa(v̂k+1, Gk(vk))

)
]− EGk(vk)[log

(
1− DRa(Gk(vk), (v̂k+1))

)
] (7)

Despite this, Equation (8) illustrates the adversarial loss for the RGAN.

ΠRa
G = −Ev̂k+1 [log

(
1− DRa(v̂k+1, Gk(vk))

)
]− EGk(vk)[log

(
DRa(Gk(vk), (v̂k+1))

)
] (8)

The network is concurrently trained for both the actual image v̂k+1 and created image
Gk(vk). To minimize the failure of the discriminator and generator networks, when the
discriminator gradient hits its optimum point (1−Dv̂k+1)→ 0, i.e., it discriminates between
authentic images, it stops learning actual content v̂k+1 and focuses on generated images
Gk(vk). At this level, the custom GAN does not learn how to create more realistic images.
In comparison, RGAN studies both images and the gradients are dependent on both terms,
i.e., v̂k+1 and Gk(vk).

3.5. Enhanced Siamese Fine-Tuned Model with Wavelet Pooling (ESFMWP)

In the COVID-19 identification network, we propose two similar CNNs with the same
weights to learn fixed-length representations. To minimize the computational costs and
model complexity, we utilized the fine-tuned VGG19 model by making few modifications
to the pooling layers. We only kept the pooling layer of the first block the same, and we
replaced every other pooling layer with wavelet pooling in the other blocks, as seen in
Figure 2. The fine-tuned modified VGG-19 network is used as the backbone encoder in
the Siamese architecture to build feature embeddings from the input images and change
the network weights using the pairwise contrastive loss function. We used CXR images
from two public datasets to pre-train the embedding CNN network, which generates
feature representations that are used by the Siamese network, using metric learning to
classify unseen images without retraining. The contributions of our work are summarized
as follows:

1. We present framework for diagnosing COVID-19 patients from chest X-ray pictures
using COVID-SRSNet.
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2. The suggested research examines the advantages of employing a contrastive loss
and cross-entropy loss function in the framework’s construction.

3. To improve feature embeddings from the input images, a fine-tuned VGG19 encoder
is utilized to capture unbiased feature representations.

4. Performance evaluation is provided to show the usefulness of the proposed frame-
work with a CXR dataset.

To minimize over-fitting, we used 50 percent dropout for regularization. The rectified
linear units (ReLU) non-linearity was applied as the activation function, and the learning
rate was monitored by the adaptive moment estimation (Adam) optimizer. Euclidean
distance was used to evaluate the resemblance between images, and we computed the
contrastive loss function, which was then simplified to Equation (9):

L(W, I1, I2) = 1 − (L = 0) ∗ 1
2

D2 + 1(L = 1) ∗ 1
2
[max(0, margin− D)]2 (9)

where I1 and I2 are similar CNN images. 1(·) is an indicator function that shows whether
two images have the same name, where 1 means that they are identical and 0 means that
they are different. W represents the mutual parameter vector in neural networks, while
f (I1) and f (I2) represent the latent representation of the input I1 and I2, respectively. The
distance, D, between f (I1) and f (I2) is given in Equation (10).

|| f (I1) − f (I2)||2 (10)

Moreover, we examine the binary cross-entropy function as a parameter for compar-
ison with the contrastive loss function. The performance of a classifier with an output
probability ranging from 0 to 1 is estimated using binary cross-entropy loss, commonly
known as log loss. If the anticipated likelihood differs from the true label, the loss value
will rise. This can be expressed as follows in Equation (11), with y and p being the class
label and probability of prediction, respectively:

L = −y log p + (1− y) log (1− p) (11)

If we supply one training sample from each positive and negative category and
aggregate both losses, as shown below in Equation (12), we may train the network to
distinguish between similar and dissimilar images.

L = Lpos + Lneg (12)

4. Experiments
4.1. Experimental Setup

To investigate the performance of our proposed model on screening COVID-19, we
collected public datasets of chest X-ray images from two open sources. The first dataset is
taken from the authors in [53], which consists of 3616 CXR images of patients diagnosed
with COVID-19. In this dataset, we only considered 2983 CXR images of COVID-19
cases. The second dataset contains 3029 scans of bacterial pneumonia, 8851 scans of
healthy patients and 2983 scans of viral pneumonia obtained from the Kaggle database of
RSNA [54]. These collections of different datasets have different variations and dimensions,
totaling 11,920 CXR images. Above all, we have only considered 2980 scans for each class
for our proposed framework of the classification task on the binary class and multiple
classes, respectively. Moreover, we trained the model to differentiate between CXR images
of different classes. To execute this task, we made a random selection of N number of
images from one class and paired them with another class. This process was repeated until
the remaining classes were paired. Each pair contained two images, producing training
pairs of 4768 images, validation pairs of 4768 images and test pairs of 2384 images. If the
images were the same, we labeled the pair as one; otherwise, we labeled it zero. This is
one of the significant advantages of the Siamese neural network. We can generate a large
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number of training pairs using a relatively smaller number of training images. The L1-norm
distance, utilized in this work, calculates the difference between two embeddings. Finally,
we used a dense layer with sigmoid activation to predict the output as 0 or 1 depending on
whether the two images were similar or not. In our experiment, we conducted a two-class
and four-class identification task for verifying the proposed COVID-SRSNet model in
the screening task. To verify the effectiveness of our proposed model, we compared our
designed COVID-SRSNet model with other up-to-date models.

4.2. Implementation Details

In this study, we performed preprocessing to scale the input data to a predefined
dimension using the image scaling module. Moreover, we adopted the super-resolution
generative adversarial learning technique to address the problem of low quality by gener-
ating high-resolution images from the low-resolution counterparts, as well as improving
the perceptual quality of the CXR images. The high-resolution imagery was used to
construct the COVID-19 identification network. The identification network is a shared
weighted Siamese convolutional neural network with the VGG16 pre-trained model as the
feature extractor. We fine-tuned the network by replacing the max-pooling layers in each
convolutional block with discrete wavelet transform (DWT) pooling, except for the first
convolutional block, which retained its max-pooling layer, as illustrated in Figure 2. We
added a dropout of 0.5 in the first fully connected (FC) layer to avoid over-fitting. More-
over, another dropout of 0.5 was introduced in the second fully connected layer to avoid
over-fitting during the transmission between FC layers. The feature tensor was reduced to
1× 1× 2048 at the second FC layer. Finally, with the use of the L2-normalization layer, the
distance matrix between the feature tensors was computed, followed by a dense layer for
classification. Our proposed Siamese model was trained for 30 epochs and a batch size of 16
with the Adam optimizer and a learning rate of 0.002. Moreover, the proposed method has
been evaluated in terms of the following metrics: accuracy, precision, sensitivity, specificity,
area under the curve and F1 score. The Euclidean distance and contrastive loss function
were used to evaluate the resemblance between images and to compute the similarity score.
The model was trained on an NVIDIA GTX1080 with Keras as the framework.

4.3. Evaluation

The evaluation consists of two parts; first, we illustrate the super-resolution network’s
benefits in the image generation process. The second portion of the report involves evaluat-
ing the identification network. The evaluation criteria as seen in Equations (13)–(17) was
adopted as the metrics to examine the diagnostic performance of our COVID-SRSNet as
follows: accuracy (ACC), precision (PRC), sensitivity (SEN), specificity (SPE), F1 score and
the area under the curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Sensitivity =
TP

TP + FN
(14)

Specificity =
TN

TN + FP
(15)

Precision =
TP

TP + FP
(16)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(17)

TN, TP, FP and FN represent true negative, true positive, false positive and false
negative, respectively.
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4.4. Super-Resolution Evaluation

Here, the aim is to show the efficacy of the super-resolution network for high-resolution
imagery tasks. Figure 4 shows the performance of our proposed super-resolution MESR-
GAN+ and other state-of-the-art models, which are SRGAN, ESRGAN and ERSGAN+. For
fair comparison, we employed their available source code with our CXR dataset. One of the
aims of this research is to check the PSNR and perceptual index (PI) of the super-resolution
models in which our model gives the best results in both cases. MESRGAN+ produces
more appropriate images, removes artifacts and improves the extracted features’ clarity
by extending the convolutional layer of the generative structure of the residual block and
removing batch normalization. Table 2 illustrates the quantitative results of the super-
resolution models, and Figure 4 shows the image restoration comparison of our model and
other state-of-the-art models.

Figure 4. Comparison results of our proposed MESRGAN+ and other selected SOTA models with
the same dataset. The PI value is reported on the left and the PSNR is reported on the right.

Table 2. Comparison of the structural configuration of SRGAN, ESRGAN, ESRGAN+ and our
proposed MESRGAN+, including their reported peak signal to noise ratio (PSNR) and PI value, using
the same CXR dataset.

Parameter SRGAN ESRGAN ESRGAN+ MESRGAN+

Residual block of the
generator

Conv(3, 64, 1)
Batch norm

ReLU
Conv(3, 64, 1)
Batch norm

Conv(3, 64, 1)
ReLU

Conv(3, 64, 1)

Conv(3, 64, 1)
ReLU

Conv(3, 64, 1)

Conv(3, 64, 1)
ReLU

Conv(1, 64, 1)
ReLU

Conv(3,64,1)
ReLU

Conv(3, 64, 1)
Input size LR LR LR LR

PSNR 19.71 dB 19.23 dB 18.65 dB 18.12 dB
PI 2.56 2.37 2.21 2.09

4.5. Loss Function Evaluation

We evaluated the performance of our proposed COVID-SRSNet model for COVID-
19 diagnosis by taking into consideration a few parameter optimizations, such as loss
functions. We compared the effect of the cross-entropy loss and contrastive loss function
on the overall performance of the model. Since our model is based on the shared weighted
technique, we are concerned with how the model performs with different loss functions.
To this end, we conducted different experiments to investigate the performance between
the cross-entropy and contrastive loss functions in terms of accuracy, AUC, sensitivity,
specificity, F1 score and precision. Table 3 illustrates the performance of our proposed
model for both binary-class and multiple-class identification problems. The binary class
includes COVID-19 and healthy cases, while the multiple class includes COVID-19, healthy,
bacterial and viral pneumonia cases. It is evident from the results in and Figure 5 that
the model’s accuracy and other performance evaluation metrics increase when using the
contrastive loss function for both binary and multiple classes compared to the cross-entropy
loss function, as shown in Figure 6. We conducted a similar experiment using the cross-
entropy loss function; the results from Figure 6 show that the performance of the model
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is considerably lower for both binary- and multiple-class identification compared to the
contrastive loss function shown in Figure 5, even though it seems to be the common choice
for classification tasks. Our proposed model works based on the similarity of image pairs,
and the contrastive loss function is presented in this study to be more effective than the
cross-entropy loss function.

Figure 5. Contrastive loss function report for binary class and multi-class.

Figure 6. Cross-entropy loss function report for binary class and multi-class.
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Table 3. Performance evaluation metrics for the proposed model.

Model ACC (%) SEN (%) SPE (%) AUC (%) PRE (%) F1 Score (%)

Cross-entropy binary class 96.1 96.7 98.0 97.4 97.3 96.3
Cross-entropy multi-class 95.4 96.8 97.2 97.0 96.5 96.3

Contrastive loss binary class 99.7 98.7 99.3 99.7 98.9 98.2
Contrastive loss multi-class 98.8 97.5 98.9 98.8 98.6 97.6

4.6. COVID-19 Identification Evaluation
4.6.1. Result

Our proposed COVID-SRSNet model for COVID-19 identification yields the best
results as evaluated on the collected CXR image dataset. Figures 7–10 give a clear illus-
tration that our proposed algorithm achieves a promising result in comparison to other
state-of-the-art models, including some selected pre-trained models. Our model can help
radiologists in the fight against COVID-19, especially with regard to minimizing the low
sensitivity result obtained from human-based diagnosis. Our proposed network achieves
identification accuracy of 99.7%, precision of 98.9%, sensitivity of 98.7%, specificity of 99.3%,
an F1 score of 98.2% and AUC of 99.7% for our binary classification task, as illustrated in
Table 4. For multiple classes, our model achieves accuracy of 98.8%, precision of 98.6%,
sensitivity of 97.5%, specificity of 98.9%, an F1 score of 97.8% and AUC of 98.8%, as seen
in Table 4. Tables 5 and 6 show the performance comparison of our algorithm with a few
selected pre-trained models, including some state-of-the-art COVID-19 models.

Figure 7. Accuracy report for our proposed model and selected pre-trained models for binary class
and multi-class.
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Figure 8. AUC report for our proposed model and selected pre-trained models for binary class and
multi-class.

Figure 9. Sensitivity report for our proposed model and selected pre-trained models for binary class
and multi-class.
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Figure 10. Our proposed MESRGAN+ and Siamese Capsule Network (Siamese-CapsNet).

Table 4. Classification performance of our proposed model based on binary and multiple cate-
gory tasks.

Performance Metrics Proposed Model for
Binary Class

Proposed Model for
Multi-Class

Accuracy (%) 99.7 98.8
Sensitivity (%) 98.7 97.5
Specificity (%) 99.3 98.9

AUC (%) 99.7 98.8
Precision (%) 98.9 98.6
F1 score (%) 98.2 97.8
Time (min) 36.3 39.8

In addition, our algorithm outperforms all other algorithms based on the performance
metrics, as shown in Tables 5–9 for both binary and multiple classification tasks. In as much
as there were complex and indistinct lung regions in our CXR images, our algorithm still
achieved accurate results, demonstrating its robustness, strength and lower computational
cost. Both Figures 11 and 12 illustrate the stability and convergence of the COVID-SRSNet
model for COVID-19 diagnosis in both binary and multiple classification tasks. Moreover,
the contrastive loss function with the Adam optimizer using a learning rate of 0.002 and
epochs of 30 were utilized in the training process.
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Figure 11. Performance accuracy in comparison with our proposed model and other pre-trained
models and selected state-of-the-art COVID-19 models for binary class.

Figure 12. Performance accuracy in comparison with our proposed model and other pre-trained
models and selected state-of-the-art COVID-19 models for multi-class.

The receiver operating characteristic curve provides a well-informed procedure for
decision making. However, our model could offer a better understanding to radiologists in
reducing the amount of false positives by balancing the specificity and sensitivity curves, as
presented in Figures 13 and 14 for binary and multiple classifications, in comparison with
other pre-trained models and a few state-of-the-art COVID-19 models, respectively. The
excellent outcome of our proposed model depicts how effective and robust our architecture
is, yielding better accuracy in screening COVID-19.
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Figure 13. Performance ROC in comparison with our proposed model and other pre-trained models
and selected state-of-the-art COVID-19 models for binary class.

Figure 14. Performance ROC in comparison with our proposed model and other pre-trained models
and selected state-of-the-art COVID-19 models for multi-class.
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Table 5. Comparison of our proposed model with other state-of-the-art COVID-19 screening methods.

SOTA Research
Report Methodology Performance Evaluation (%)

Chen et al. [24] 2D UNet ++
ACC 95.2
SEN 100.0
SPE 93.6

Jin et al. [41] 2D UNet ++ and 2D CNN
SEN 97.4
SPE 92.2

Jin et al. [42] 2D CNN
SEN 94.1
SPE 95.5

Li et al. [28] 2D ResNet-50
SEN 90.0
SPE 96.0

Shi et al. [40] Random forest-based CNN
ACC 87.9
SEN 83.3
SPE 90.7

Song et al. [47] 2D ResNet-50 SEN 86.0
Wang et al. [11] 2D CNN ACC 82.9

Wang et al. [46] 3D ResNet and attention
ACC 93.3
SEN 87.6
SPE 95.5

Xu et al. [40] 2D CNN ACC 86.7

Zhang et al. [40] 2D UNet and 2D CNN
SEN 90.7
SPE 90.7

Ours MESRGAN+ with Siamese VGGNet
for multi-class

ACC 98.8
SEN 97.5
SPE 98.9

AUC 98.8
PRE 98.6

F1 score 97.8

Ours MESRGAN+ with Siamese VGGNet
for multi-class

ACC 99.7
SEN 98.7
SPE 99.3

AUC 99.7
PRE 98.9

F1 score 98.2

Table 6. Comparison of our proposed model with famous pre-trained feature extraction models
for multi-class.

Feature
Learning

Model
ACC (%) SEN (%) SPE (%) AUC (%) PRE (%) F1 Score

(%)

AlexNet 86.3 86.5 87.7 86.8 86.8 86.9
VGG16 88.7 89.5 88.0 89.8 87.9 89.9

Xception 88.9 88.6 88.6 89.5 88.1 89.8
MobileNet 91.2 90.8 89.2 90.6 89.7 90.5
DenseNet 92.5 91.7 92.2 91.2 91.8 90.8

InceptionV3 91.9 91.5 92.1 91.3 92.1 91.8
ResNet50 92.3 92.1 92.5 92.7 92.5 92.1

Ours 98.8 97.5 98.9 98.8 98.6 97.8
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Table 7. Comparison of our proposed model with famous pre-trained feature extraction models for
binary class using the dataset.

Feature
Learning

Model
ACC (%) SEN (%) SPE (%) AUC (%) PRE (%) F1 Score

(%)

AlexNet 88.9 89.3 89.9 89.1 88.2 89.5
VGG16 90.2 90.4 90.3 90.2 89.9 90.1

Xception 89.5 89.6 90.6 90.5 88.6 90.8
MobileNet 90.7 90.9 91.2 91.6 89.8 91.7
DenseNet 91.1 91.7 93.7 90.0 90.8 91.2

InceptionV3 92.6 93.0 93.2 91.5 92.2 92.1
ResNet50 94.8 94.8 94.1 93.0 93.6 93.8

Ours 99.7 98.7 99.3 99.7 98.9 98.2

Table 8. Comparison of our proposed model with famous pre-trained feature extraction models for
multi-class using the dataset.

COVID-19
Model ACC (%) SEN (%) SPE (%) AUC (%) PRE (%)

COVID-Net [11] 90.5 89.2 91.1 89.9 90.0
DRE-Net [47] 86.1 86.7 85.9 86.0 85.8

DeCoVNet [49] 93.4 92.8 93.2 92.1 91.5
Cov-Net [28] 96.7 95.9 96.3 96.1 96.5

Ours 98.8 97.5 98.9 98.8 98.6

Table 9. Comparison of our proposed model with some COVID-19 models for binary class using
the dataset.

COVID-19
Model ACC (%) SEN (%) SPE (%) AUC (%) PRE (%)

COVID-Net [11] 92.7 91.8 92.8 92.2 92.5
DRE-Net [47] 88.3 87.5 88.2 89.4 88.8

DeCoVNet [49] 95.6 95.1 95.8 95.0 95.4
Cov-Net [28] 97.3 97.2 96.9 96.1 97.5

Ours 99.7 98.7 99.3 99.7 98.9

4.6.2. Comparison of Procedures

We compared the findings of our proposed model with those of previous SOTA
COVID-19 screening methods, which included Chen et al. [24], Jin et al. [41], Jin et al. [42],
Li et al. [28], Shi et al. [40], Song et al. [47], Wang et al. [11], Wang et al. [46], Xu et al. [45]
and Zhang et al. [23], on COVID-19 diagnosis tasks, as listed in Table 5. Most research works
have laid emphasis on developing new strategies in distinguishing COVID-19 from other
forms of pneumonia. Chen et al. [24] constructed a technique to detect COVID-19 based on
deep learning from retrospective CT images collected and processed at Renmin Hospital in
Wuhan. Their model achieved 95 percent accuracy. Another interesting work proposed
by Jin et al. [41] is the timely detection of COVID-19 from CT exams using an AI-based
model, with an impressive result of 94 percent accuracy. A medical-based AI algorithm
was implemented by Jin et al. [42] to correctly distinguish COVID-19 from other forms
of pneumonia using CT exams. This model achieved 92 percent accuracy. Li et al. [28]
proposed a COVID-19-based neural network to distinguish COVID-19 from other forms of
pneumonia using CT exams, with overall accuracy of 90 percent. Shi et al. [40] proposed
an infection region-specific segmentation technique based on a random forest model to
distinguish COVID-19 from other forms of pneumonia using CT exams. This study reported
88 percent accuracy. Song et al. [47] proposed a deep learning diagnostic technique based
on CT images known as DeepPneumonia, where they utilized 88 CT data of confirmed
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COVID-19 patients from two hospitals in China. This study reported accuracy of 93 percent.
Wang et al. [11] reported a COVID-Net framework tailored to identify COVID-19 from chest
radiography. Wang et al. [46] presented a DL framework using CT images for COVID-19
identification. Xu et al. [45] proposed an AI-based technique to screen coronavirus from
healthy and viral pneumonia (influenza A) using CT exams. Zhang et al. [23] proposed a
method involving a UNet deep learning model based on a weakly supervised technique to
correctly examine COVID-19 using 530 CT exams and achieved 90 percent accuracy. An
interesting aspect of their study is the adoption of the region of interest as input data. The
authors reported a result of 85 percent accuracy.

Nevertheless, the major drawbacks of their papers is that the authors did not consider
that real-world CXR images are low-quality in nature and very deep convolutional neural
networks may suffer from the vanishing problem, leading to a decline in performance
metrics such as accuracy, sensitivity and specificity in COVID-19 screening tasks. To this
end, we present a framework that is capable of handling the above challenge and obtains
better performance for the diagnosis of COVID-19. Additionally, our proposed COVID-
SRSNet model records a high value of 99.7% in accuracy, 99.3% in specificity and 98.7%
in sensitivity, which indicates that it is a promising alternative approach to human-based
methods of COVID-19 diagnosis since human detection-based methods can lead to a
significantly increased rate of false positive outcomes. We presented the receiver operating
characteristic curves to assist experts in arriving at a well-informed tradeoff between
sensitivity and specificity, which ultimately translates to the relationship between precision
and accuracy. Our proposed model is computationally cost-effective, with lower model
complexity compared to state-of-the-art models and some famous pre-trained models
adopted for comparison, due to the fact that we avoided the use of batch normalization
in the residual block of the generator structure in the super-resolution network, while the
max-pooling layer in the Siamese convolutional neural network is replaced with wavelet
pooling, except for the first convolutional block. We implemented our model using the
Keras framework on an NVIDIA GTX 1080. Our model’s complexity is considerably
reduced compared to the state-of-the-art models adopted for comparison in this study.

5. Discussion

SR imaging holds tremendous promise for practical medical applications. In practice,
technical constraints dictated by device components and radiation exposure criteria limit
imaging efficiency, necessitating the use of computational methods to improve image
resolution. For the identification of COVID-19, our results have demonstrated that the
integration of a GAN-based algorithm into the identification network for image super
resolution and the proposed Siamese CNN actually improve the overall performance
of our proposed model based on low-quality images. Furthermore, using adversarial
learning as the SR imaging regularization is a novel mechanism for capturing anatomical
details. Current GAN-based methods, on the other hand, introduce additional noise into
the produced images. To cope with this limitation, the modified enhanced super-resolution
generative adversarial network plus (MESRGAN+) was proposed to learn the complicated
deterministic mapping, which improves the quality of images by removing noisy artifacts
and inconsistent details. The noise-free SR output from the MESRGAN+ module is fed
into the COVID-19 identification Siamese network in an end-to-end framework. Our
proposed enhanced Siamese fine-tuned model with wavelet pooling (ESFMWP) network is
a similar CNN with the same weights to learn fixed-length representations. The network
learns discriminative features and calculates the similarity score to determine whether
the pair of input CXR images includes the same scans or not. To achieve a good tradeoff
between computational complexity and perceptual quality, we also considered altering a
few parameters, such as the filter size, kernel size and the addition of batch normalization
in the generator structure of the residual block. It was observed that a smaller filter size
and reduced number of kernels help to reduce the model’s complexity and computational
cost. However, the perceptual quality did not improve significantly. It is worth mentioning
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that the addition of batch normalization contributes to the computational complexity of the
model and hence reduces the performance of the model in terms of perceptual quality. It
also introduces unnecessary distortion, which reduces the generalization capability of the
model. Conclusively, training a batch normalization layer under a GAN scheme will most
likely introduce artifacts for very deep networks.

Furthermore, a number of researchers have adopted deep convolutional models for
identification tasks, but this usually leads to the vanishing gradient problem and huge
computational costs. To prevent this problem, we utilized a fine-tuned VGG19 network
as the backbone encoder in the Siamese network for feature extraction after making a few
modifications, and the L2 regularization term is utilized to regularize the CNN embeddings,
while the contrastive loss function and Euclidean distances metric are used to calculate
the distances and similarity scores between two CXR scans. It is commonly considered
that the decline in performance of image-based COVID-19 diagnosis is because of the low-
resolution dataset of CXR. However, this claim is partial because it is possible that deeper
convolutional networks perform badly due to exploding vanishing problems. Therefore,
we conclude that both the data and architecture are equally responsible for the decline in
performance of AI-based COVID-19 diagnosis tasks. To mitigate these issues, we combined
a modified enhanced super-resolution generative adversarial network plus (MESRGAN+)
without batch normalization in an end-to-end framework with an enhanced Siamese fine-
tuned model with wavelet pooling (ESFMWP) network, jointly called COVID-SRSNet,
for COVID-19 diagnosis based on low-quality CXR images. In most assessment metrics,
the proposed COVID-19 identification network outperforms SOTA methods and pre-
trained models, as illustrated in Tables 5–9. Generally, our suggested approach consistently
produces better results in terms of accuracy, specificity, sensitivity, precision, F1 score and
AUC in both binary and multiple classification tasks.

6. Conclusions

In this study, we proposed an enhanced Siamese fine-tuned model with a wavelet
pooling strategy and modified enhanced super-resolution GAN plus, jointly called COVID-
SRSNet, for a COVID-19 identification framework with the aim of addressing the issue of
low quality in COVID-19 CXR images. We implemented an image scaling adaptive module
to address the dilemma of resolution variations, while employing our modified enhanced
super-resolution generative adversarial network plus (MESRGAN+) to resolve the problem
of low-quality CXR images by recapturing high-resolution images from low-resolution
counterparts. Then, the generated super-resolution images are passed to the enhanced
Siamese fine-tuned model with wavelet pooling (ESFMWP) to learn distinctive features
for the COVID-19 identification task. We have demonstrated that our model can create
more reasonable and real images, as well as capturing distinct features for COVID-19
identification. By a broad margin, our proposed approach outperforms previous up-to-date
COVID-19 diagnostic techniques and some pre-trained models.

This study has some limitations. To begin with, perceptually convincing image re-
construction is a demanding task that will be addressed in the future. The creation of
content loss algorithms that characterize image spatial content while being less susceptible
to changes in pixel space could improve realistic image SR outcomes even further. Second,
the symptoms of COVID-19 may be similar to those of other forms of pneumonia, such as
viral pneumonia, bacterial pneumonia and so on. We only compared COVID-19 infection
CXR tests to healthy CXR exams for the binary class and other forms of pneumonia for
multiple classes,; however, we did not consider CT and ultrasound datasets. For COVID-19
clinical diagnosis, the patient’s contact history, travel history, early symptoms and labora-
tory assessment are still required. Finally, in as much as our datasets were balanced classes,
we will consider imbalanced classes using the GAN-based technique for synthetic images
while optimizing our parameters for better performance in our future work. Moreover, we
will also consider imbalanced datasets by a synthetic process using GAN-based techniques.
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