
����������
�������

Citation: Kwon, J.-m.; Jo, Y.-Y.; Lee,

S.Y.; Kang, S.; Lim, S.-Y.; Lee, M.S.;

Kim, K.-H. Artificial Intelligence-

Enhanced Smartwatch ECG for Heart

Failure-Reduced Ejection Fraction

Detection by Generating 12-Lead ECG.

Diagnostics 2022, 12, 654. https://

doi.org/10.3390/diagnostics12030654

Academic Editors: Keun Ho Ryu and

Nipon Theera-Umpon

Received: 1 February 2022

Accepted: 2 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Artificial Intelligence-Enhanced Smartwatch ECG for Heart
Failure-Reduced Ejection Fraction Detection by Generating
12-Lead ECG
Joon-myoung Kwon 1,2,3,4,† , Yong-Yeon Jo 1,† , Soo Youn Lee 2,5, Seonmi Kang 1, Seon-Yu Lim 1,
Min Sung Lee 1,2,3 and Kyung-Hee Kim 2,5,*

1 Medical Research Team, Medical AI, Inc., San Francisco, CA 94103, USA; happywithhj@gmail.com (J.-m.K.);
yy.jo@medicalai.com (Y.-Y.J.); seonmikang@medicalai.com (S.K.); imsun211@medicalai.com (S.-Y.L.);
lylm@medicalai.com (M.S.L.)

2 Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon 14754, Korea;
leesy@sejongh.co.kr

3 Department of Critical Care and Emergency Medicine, Incheon Sejong Hospital, Incheon 21080, Korea
4 Medical R&D Center, Body Friend, Co., Ltd., Seoul 06302, Korea
5 Division of Cardiology, Cardiovascular Center, Incheon Sejong Hospital, Incheon 21080, Korea
* Correspondence: learnbyliving9@gmail.com; Tel.:+82-32-240-8568; Fax: +82-32-240-8094
† These authors contributed equally to this work.

Abstract: Background: We developed and validated an artificial intelligence (AI)-enabled smartwatch
ECG to detect heart failure-reduced ejection fraction (HFrEF). Methods: This was a cohort study
involving two hospitals (A and B). We developed the AI in two steps. First, we developed an AI model
(ECGT2T) to synthesize ten-lead ECG from the asynchronized 2-lead ECG (Lead I and II). ECGT2T is
a deep learning model based on a generative adversarial network, which translates source ECGs to
reference ECGs by learning styles of the reference ECGs. For this, we included adult patients aged
≥18 years from hospital A with at least one digitally stored 12-lead ECG. Second, we developed an
AI model to detect HFrEF using a 10 s 12-lead ECG. The AI model was based on convolutional neural
network. For this, we included adult patients who underwent ECG and echocardiography within
14 days. To validate the AI, we included adult patients from hospital B who underwent two-lead
smartwatch ECG and echocardiography on the same day. The AI model generates a 10 s 12-lead ECG
from a two-lead smartwatch ECG using ECGT2T and detects HFrEF using the generated 12-lead
ECG. Results: We included 137,673 patients with 458,745 ECGs and 38,643 patients with 88,900 ECGs
from hospital A for developing the ECGT2T and HFrEF detection models, respectively. The area
under the receiver operating characteristic curve of AI for detecting HFrEF using smartwatch ECG
was 0.934 (95% confidence interval 0.913–0.955) with 755 patients from hospital B. The sensitivity,
specificity, positive predictive value, and negative predictive value of AI were 0.897, 0.860, 0.258, and
0.994, respectively. Conclusions: An AI-enabled smartwatch 2-lead ECG could detect HFrEF with
reasonable performance.

Keywords: heart failure; electrocardiography; deep learning; artificial intelligence

1. Introduction

Heart failure (HF) is a significant healthcare burden worldwide, with an estimated
64.3 million people living with HF [1,2]. Despite advances in treatment, HF remains as a
high risk of morbidity and mortality and is the most common diagnosis in hospitalized
patients aged over 65 years, with a 5-year survival rate of only 57% [3–5]. In the United
States, HF affects ~$30.7 billion total annual costs and projection suggests that by 2030, the
total cost of HF will increase by 127%, to $69.8 billion [3,6].

Patients suffering with HF with reduced ejection fraction (HFrEF) become less active,
leading to repeated hospitalization, resulting in a poor quality of life, including a high
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medical cost burden [7]. Despite its poor prognosis and high economic burden, HFrEF
awareness remains relatively low due to its insidious onset, varied presentation, and syn-
dromic nature [8]. Early diagnosis and timely intervention may prevent irreversible HFrEF
progression and mortality [9]. Electrocardiography (ECG) is a low-cost test frequently
performed for a variety of purposes, especially basic examination and screening for cardio-
vascular disease [10]. We developed an artificial intelligence (AI)-enabled ECG algorithm,
which can increase the diagnosis of HFrEF [11,12]. However, it is also inconvenient to visit
the hospital for a 12-lead ECG.

Smartwatches have high processing power and sophisticated sensors that can provide
new health data, including ECG. In this study, we developed and validated an artificial
intelligence-enabled smartwatch ECG for HFrEF detection. As the smartwatch could obtain
a single lead ECG, we also developed a deep learning-based model (DLM) for generating a
12-lead ECG from a smartwatch ECG (Lead I and II) to enhance AI performance and detect
HFrEF using the generated 12-lead ECG. Moreover, we conducted internal and external
validation for the developed AI in this multicenter study. To the best of our knowledge,
this is the first study to generate a 12-lead ECG from a smartwatch ECG and detect heart
failure. Based on this deep learning model, heart failure with reduced ejection fraction
could be detected in daily living by using asynchronous 2-lead ECGs from lifestyle ECG
devices, such as smart watches.

2. Methods
2.1. Data Source and Study Population

We conducted a multicenter retrospective cohort study to develop and validate the AI
in two hospitals, as shown in Figure 1. Hospital A is a cardiovascular teaching hospital,
and hospital B is a community general hospital. Data from hospital A were used for
developing the AI and for internal performance tests, and data from hospital B for external
performance tests with smartwatch ECG. First, we included all adult patients aged 18 years
and older who underwent at least one 10 s 12-lead ECG at hospital A during the study
period (1 November 2015–31 May 2021). The 10 s 12-lead ECG was acquired in the supine
position and digitally stored at a 500 Hz sampling rate. The data were used to develop
the AI models, with ECGT2T (ECG synthesis from two-lead to ten-lead) being used to
generate the 12-lead ECG from two non-synchronized lead (Lead I and II) ECG. Second,
we included adult patients aged 18 years and older who underwent both 10 s 12-lead ECG
and echocardiography within 14 days at hospital A during the study period (1 November
2015–30 June 2021). The data were split into development data (80%) to develop the AI
model for detecting HFrEF using 12-lead ECG and internal performance test data (20%).
Third, for the external test dataset (smartwatch ECG), we included adult patients aged
18 years and older who underwent smartwatch ECG and echocardiography in the study
period (1 June 2021–30 July 2021). We used two types of smartwatches—Galaxy Watch
Active (Smart watch A) and Apple Watch 6 (Smart watch B). Two lead (Leads I and II) were
obtained from each patient using each smartwatch. The method to obtain two 2-lead ECG
using a smartwatch was described in a previous study [13]. The study population with
missing clinical information, including ECG, echocardiographic results, or demographic
data, was excluded. The Bucheon and Incheon Sejong Hospital Institutional Review Board
approved this study protocol and waived the need for informed consent due to minimal
harm and impracticality. This study complied with the Declaration of Helsinki.
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ography, which was recorded in the electronic health record database at the time of ac‑
quisition, symptom, and signs from medical records [14]. The EF was determined using a 
biplane approach with the Simpson and 2D methods. If the estimated EF was in a range, 
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Figure 1. Study flowchart. Legend: AI denotes artificial intelligence, ECG electrocardiography,
ECGT2T ECG synthesis from two-lead to ten-lead, HF heart failure, HFmrEF heart failure with mildly
reduced ejection fraction, and HFrEF heart failure with reduced ejection fraction.

2.2. Outcomes and Predictive Variables

The primary outcome of this study was the performance of the AI in detecting patients
with HFrEF using a standard 10 s 12-lead ECG or smartwatch ECG. HFrEF was defined
as an ejection fraction of 40% or less on transthoracic comprehensive echocardiography,
which was recorded in the electronic health record database at the time of acquisition,
symptom, and signs from medical records [14]. The EF was determined using a biplane
approach with the Simpson and 2D methods. If the estimated EF was in a range, we
used the middle value as a single EF value. If more than two echocardiographies were
obtained within 14 days from the ECG, we used echocardiography that was closest to ECG
as index echocardiography. The secondary outcome was the performance of the AI in
detecting patients with HF with mildly reduced EF (HFmrEF) to reduced EF (<50%) on
echocardiography [14]. Predictive variables were ECG, age, sex, weight, and height.

2.3. Data Preprocessing

We preprocessed the ECGs for sampling, normalization, and augmentations. We
constructed an ECG with 8 s by cropping of 1 s on each side and normalized (z-score) based
on the mean and standard deviation. In terms of augmentations, the addition of linear and
nonlinear noise causing baseline changes was performed. We also normalized the values of
age, weight, and height. We changed the value of sex to one-hot encoding.
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2.4. Development for a Platform Detecting HFrEF

Our AI consists of two phases. First phase generates a standard 12-lead ECG. We
developed an ECGT2T for generating a 12-lead ECG from an asynchronous 2-lead ECG, as
shown in Figure 2. ECGT2T is a deep learning model based on a generative adversarial net-
work that synthesizes a 10-lead ECG (III, aVR, aVL, aVF, and V1–6) from an asynchronous
2-lead ECG (leads I and II). It translates source ECGs to reference ECGs by learning the
styles of reference ECGs; it first generates a single latent code representing the cardiac
condition from two given leads and then reconstructs the other 10 leads by referring to the
single latent code based on the single given lead. For ECGT2T development, development
data from hospital A were used. We have described the detailed development process of
ECGT2T in our previous article [15]

Second phase detects a HFrEF. We developed another deep learning model based on
four residual blocks for detecting HFrEF using a 12-lead ECG. This model was trained
using the development dataset from hospital A. Figure 2 show the architecture of the
HFrEF detection model. Each residual block contains two submodules, each of which
has a one-dimensional convolutional neural network, batch normalization, rectified linear
unit activation, and a dropout layer. The difference between both sub modules is the skip
connection. The first sub module has only the skip connection. The latent variables passing
through all residual blocks are concatenated to auxiliary information including age, gender,
height, and weight. Thereafter, the final output was obtained through two fully connected
layers. We used the Adam optimizer, which is a popular algorithm in the field of deep
learning because it achieves good results fast. Additionally, we found that its performance
was better than that of SGD, RMSprop, or Adadelta in the pilot study. For parameter
settings, we set the learning rate to 1 × 10−4, weight decay to 1 × 10−5, epsilon to 1× 10−8,
beta1 to 0.9, and beta2 to 0.999, respectively. We confirmed the values of parameters by grid
search methods. We selected the search space of grid search by using random sampling
search of pilot study. We train the models on a high-performance computer composed
of 20 DGX servers with 160 NVIDIA A100 graphics processing units. All models were
developed using PyTorch and Python.

2.5. Statistical Analysis

We used the area under the receiver operating characteristic curve (AUC) to confirm
the performance based on the continuous prediction score and presence of HFrEF. The 95%
confidence intervals (CIs) of AUC were confirmed by the Sun and Su optimization of the
DeLong method. We confirmed the sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) using a cut-off point. The cut-off point was defined
using Youden’s J statistics [16]. We used two-sided 95% CIs to describe the variability of
the study population and estimates. We used exact CIs based on Clopper–Pearson to be
conservative for accuracy, sensitivity, specificity, PPV, and NPV. We analyzed the statistical
results using R version 3.4.3.

2.6. Role of the Funding Sources

This study was supported by a National Research Foundation of Korea grant funded
by the Korean government (No. 2020R1F1A1073791). None of the listed entities played any
role in the design of the study; data collection, model development, result interpretation,
writing article, or decision to submit this paper. All authors had full access to the data and
the final decision of submission.
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Figure 2. Architecture of deep learning model for detecting heart failure. Legend: ECG denotes elec‑
trocardiography, ECGT2T ECG synthesis from two‑lead to ten‑lead, and HF heart failure. (A) Asyn‑
chronous two lead ECGs from smart watch. (B) ECGT2T for synthesizing ten lead ECG from two 

Figure 2. Architecture of deep learning model for detecting heart failure. Legend: ECG de-
notes electrocardiography, ECGT2T ECG synthesis from two-lead to ten-lead, and HF heart failure.
(A) Asynchronous two lead ECGs from smart watch. (B) ECGT2T for synthesizing ten lead ECG
from two lead ECG. (C) Generated twelve lead ECG which input to final AI model. (D) Deep learning
model for detecting heart failure with reduced ejection fraction using generated twelve lead ECG.
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3. Results

We identified 137,835 patients from hospital A and after applying exclusion criteria,
including 137,673 patients with 458,745 ECG for development dataset for developing
ECGT2T. Among 137,673 patients from hospital A, 38,643 adult patients who underwent
both 10 s 12-lead ECG and echocardiography within 14 days at hospital A were included to
develop model to detect HFrEF using a 10 s 12-lead ECG. For external testing to confirm the
performance for detecting HFrEF using smartwatch ECG, 761 patients from hospital B were
identified and 6 patients were excluded due to missing values of ECG and echocardiography.
Finally, 755 patients with 1510 ECG dataset (2-lead ECG from smart watch A and B) were
included in the external performance test. As shown in Table 1, the HFrEF patients were
older than the non-HFrEF patients. And HFrEF patients had more prolonged QRS interval
and atrial fibrillation or flutter than the non-HFrEF patients.

Table 1. Baseline characteristics table.

Hospital A (38,643 Patients)
Development and Interval Validation Data

Hospital B (755 Patients)
External Validation Smart Watch Data

Characteristics HFrEF HFmrEF Normal p † HFrEF HFmrEF Normal p † p ‡

Total Patients 2519 (6.5) 1755 (4.5) 34,369 (88.9) 39 (5.2) 31 (4.1) 685 (90.7) 0.241

Age (year) 64.82 (13.52) 64.98 (13.47) 58.60 (15.45) <0.001 60.69
(13.84)

58.97
(14.46)

55.61
(15.16) 0.067 <0.001

Male 1665 (65.7) 1083 (61.3) 16,341 (47.6) <0.001 29 (74.4) 20 (64.5) 325 (47.4) 0.001 0.969

Weight (Kg) 64.68 (13.90) 65.25 (13.34) 64.87 (12.60) 0.341 69.29
(14.02)

66.80
(12.68)

66.03
(14.07) 0.358 0.004

Height (cm) 162.68 (9.56) 162.37
(10.01) 162.20 (9.58) 0.044 168.41

(10.55)
164.48
(9.36)

163.38
(9.39) 0.005 <0.001

Body surface area
(m2) 1.70 (0.22) 1.71 (0.21) 1.70 (0.20) 0.505 1.79 (0.22) 1.74 (0.20) 1.72 (0.22) 0.145 0.001

Heart rate (bpm) 84.37 (24.54) 78.26 (20.53) 73.14 (15.82) <0.001 78.31
(19.78)

70.03
(14.55)

69.95
(12.56) 0.001 <0.001

PR interval (ms) 175.83
(36.69)

176.83
(37.36)

167.99
(29.01) <0.001 122.00

(60.53)
156.74

(144.40)
149.46
(97.07) 0.225 <0.001

QRS duration (ms) 111.81
(27.97)

104.85
(23.55) 95.47 (15.88) <0.001 155.74

(63.39)
139.42
(31.17)

138.95
(31.03) 0.010 <0.001

QT interval (ms) 407.78
(57.74)

408.08
(51.59)

398.94
(40.13) <0.001 421.90

(99.88)
417.63
(45.29)

425.56
(50.21) 0.681 <0.001

Atrial fibrillation of
flutter 296 (11.7) 170 (9.6) 1172 (3.4) <0.001 3 (7.7) 1 (3.2) 14 (2.0) 0.076 0.015

P wave axis 45.58 (39.72) 44.48 (35.84) 45.32 (28.89) 0.585 NA NA NA NA
R wave axis 27.71 (65.00) 31.15 (53.61) 39.80 (42.07) <0.001 NA NA NA NA
T wave axis 83.07 (85.26) 58.82 (72.34) 42.57 (44.37) <0.001 NA NA NA NA

Ejection fraction
(%) 32.03 (9.44) 46.08 (5.98) 60.64 (6.33) <0.001 31.23

(7.21)
45.97
(2.50)

64.63
(5.19) <0.001 <0.001

Left atrial
dimension (mm) 45.66 (8.97) 44.05 (9.48) 38.98 (7.84) <0.001 43.76

(7.48)
42.48
(9.31)

36.48
(6.90) <0.001 <0.001

E 67.69 (27.32) 63.05 (25.71) 63.50 (19.49) <0.001 72.00
(22.11)

68.65
(27.26)

66.55
(19.21) 0.37 <0.001

A 68.40 (23.50) 71.03 (21.03) 70.06 (20.23) 0.002 71.28
(22.05)

74.00
(25.71)

66.74
(20.64) 0.251 <0.001

E′ 5.04 (1.91) 5.72 (2.09) 7.10 (2.67) <0.001 5.80 (3.81) 6.06 (2.54) 7.64 (4.62) 0.044 <0.001

E/E′ 14.90 (7.84) 12.04 (6.27) 9.88 (4.58) <0.001 15.37
(6.90)

13.13
(7.88) 9.85 (4.22) <0.001 0.534

† The alternative hypothesis for this p value was that there was a difference between the heart failure with reduced
ejection fraction, heart failure with mildly reduced ejection fraction, and non-heart failure. ‡ The alternative
hypothesis for this p value was that there is a difference between hospital A (derivation and internal validation
data group) and hospital B (external validation group) for each variable.
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During internal validation of ECGs (hospital A), the AUC of the AI model to detect
HFrEF and HFmrEF to HFrEF using a 10 s 12-lead ECG were 0.934 (0.929–0.938) and 0.909
(0.904–0.914), respectively. As shown in Figure 3, the ECGT2T generated a 10 s 12-lead ECG
using a smartwatch 2-lead ECG (Lead I and II). We input the generated 10 s 12-lead ECG to
develop an AI model that detects HFrEF using a 12-lead ECG. During external validation
(hospital B), the AUC of AI for detecting HFrEF using ECG from smartwatch A and B
were 0.946 (0.925–0.968) and 0.925 (0.888–0.963), respectively. The overall performance of
1510 ECG datasets (755 smartwatch A and 755 smartwatch B) was 0.934 (0.913–0.955), as
shown in Figure 4. The AUC of ensemble score, defined as the average of the prediction
scores of smartwatch A and B, was 0.954 (0.935–0.972). The sensitivity, specificity, PPV, and
NPV of the AI model in smartwatch A were 0.974 (0.925–1.000), 0.821 (0.793–0.849), 0.229
(0.165–0.293), and 0.998 (0.995–1.000), respectively. The sensitivity, specificity, PPV, and
NPV of the AI model in smartwatch B were 0.949 (0.879–1.000), 0.820 (0.792–0.848), 0.223
(0.160–0.286), and 0.997 (0.992–1.000), respectively. During external validation (hospital
B) of secondary output, the AUC of AI for detecting HFmrEF to HFrEF using ECG from
smartwatch A and B were 0.847 (0.795–0.898) and 0.845 (0.793–0.896), respectively.
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Figure 3. 12-lead ECG generation using smartwatch ECG based on ECGT2T. Legend: ECG denotes
electrocardiography and ECGT2T ECG synthesis from two-lead to ten-lead.
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0.793 
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Smart watch A only 0.946 
(0.925–0.968)
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(0.657–0.858)
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Smart watch B only 0.925 
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0.820 
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0.223 
(0.160–0.286)
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0.845 
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Ensemble score, AUC=0.954 (0.935–0.972)
Overall performance, AUC=0.934 (0.913–0.955)
Smart watch A, AUC=0.946 (0.925–0.968)
Smart watch B, AUC=0.925 (0.888–0.963)

Ensemble score, AUC=0.863 (0.813–0.913)
Overall performance, AUC=0.838 (0.801–0.876)
Smart watch A, AUC=0.847 (0.795–0.898)
Smart watch B, AUC=0.845 (0.793–0.896)

Figure 4. Performance of artificial intelligence for detecting heart failure using smart watch ECG.
Legend: AUC denotes area under the receiver operating characteristic curve, CI confidence inter-
val, ECG electrocardiography, NPV negative predictive value, PPV positive predictive value, SEN
sensitivity, and SPE specificity.

4. Discussion

In this study, we proposed AI-enabled smartwatch ECG to detect HFrEF and it showed
reasonable performance as a screening tool. These results outperformed other screening
tools, such as B-type natriuretic peptide for HFrEF (AUC 0.871) [17]. This study showed
the feasibility of using a smartwatch to diagnose diverse diseases other than arrhythmia.
As this smartwatch is already used in our daily lives, we could monitor and detect HFrEF
patients using our proposed AI model.

The ECG of each lead is a signal for measuring the electrical flow of the heart in each
lead vector. The electrical vector of the heart can be estimated by synthesizing the ECG data
of the two leads. A 12-lead ECG can be generated by reconstructing the ECG corresponding
to the vector of each lead, determined based on the estimated electrical flow of the heart.
ECGT2T is a deep learning model based on this concept and generates an ECG using a
generative adversarial network.

Twelve-lead ECG was required for evaluating cardiovascular disease status using
diverse vector information of the heart. However, in daily living, 12-lead ECG is not
always practical or feasible because it is difficult to place the chest and limb lead at the
exact location. In this study, we generated 12-lead ECG and detected heart failure with
reduced ejection fraction using only leads I and II, which could be captured by a smart
watch in use in daily living. Therefore, this study is a milestone in using ECG to detect
cardiovascular disease in daily living. Although previous studies have detected diseases
using ECG, studies using 12-lead ECG and other devices have been conducted only in
hospital settings. Here, we developed a deep learning methodology that generates ECGs
from lifestyle devices and smartwatches. Therefore, our methodology can be used in daily
living. The major contribution of this study is to provide a methodology for detecting
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disease in daily living based on deep learning model using a single lead life style device,
such as a smart watch.

The increasing prevalence of HF making it among the most costly diseases to Medi-
care [18]. More than 30% HF patients are seen in the clinic setting, and more than 40% of
those recently admitted with decompensation will require a second hospitalization within
a year [19]. Early detection of HFrEF offers the opportunity to test and develop an effective
lifestyle and life-saving medical therapy [9]. The evolution and adoption of digital health
technology and mobile health devices may address this issue. Our day-to-day lives are
impacted by technological innovations, and the recent trend of commercial smart wearable
devices aims in improving our health [20]. Smart wearables are connected electronic de-
vices designed for everyday use that can be worn on the body as an accessory or integrated
into clothing. Smartwatches and wristbands have high processing power and sophisticated
sensors that can provide new health information [20]. Wearable health devices are an aspect
of medical health that may improve the delivery of HF care by allowing medical data
collection outside of a clinician’s office or hospital. Wearable devices are externally applied
and capture functional or physiological data to monitor and improve patients’ health. It
could be a cost-effective method to detect HF before it becomes fatal. Personalized patient
care has become remote and decentralized owing to the COVID-19 pandemic [21]. The
cardiovascular community must utilize the commercially available wearable technologies
as well as the wide range of clinical applications that they can serve. This technology
integration into the clinical workplace, however, is still in its early stages.

Per previous medical knowledge, ECGs could be used to detect small coverage dis-
eases, such as arrhythmia and ST-segment elevation myocardial infarction. We could
not develop diagnostic criteria and tools using non-linear correlations between diverse
diseases and subtle changes based on conventional statistical methods, such as logistic
regression [22]. Recently, AI has been adopted to diagnose many diseases and conditions
and to predict the development of disease [23]. Most AI for detecting diseases using ECG
is based on deep learning. The most important strength of deep learning is the automatic
feature extraction [24]. Specifically, deep learning automatically extracts the features of
ECG to detect disease, without any human engineering resource needed to define the
features for using the model. This has reduced the time and cost of AI development. The
importance of automatic feature extraction is that we can extract features and develop a
model without human prejudice. AI based on deep learning is based only on information
from data, not medical knowledge. This aspect showed the possibility of enhancing the
model to detect diverse diseases and show new medical findings over previous medical
knowledge.

An important pitfall of deep learning is overfitting [23]. Especially, deep learning can
be subjugated to the environment in which development data are obtained. Therefore, we
should validate the developed AI to other hospitals and environments. The important point
of this study was external validation. We confirmed the performance of the AI model using
data from other hospitals and other devices in this study. In other word, we developed AI
using 12-lead ECG data from hospital A and external validated AI using smartwatch ECG
from hospital B.

The advantage of AI is that it saves healthcare costs. Using this AI, HFrEF could be
screened by a wearable watch without a physician, and it could refer patients at risk to
cardiologists for confirmative diagnostic tests. Therefore, this procedure is advantageous
for low-income countries to save patients from irreversible disease progression and death.
This AI could be used in wearable watches in daily living and HFrEF could be detected
and monitored in the early stages without complications. This predictive care solution is
essential to reduce healthcare costs.

This study had several limitations. First, we validated the AI-enabled smartwatch ECG
to detect HFrEF in a hospital setting. As there is a possibility of decreasing performance
in daily living at home, we needed to validate this AI in a home setting [25]. Second,
this study was conducted in South Korea, and it is necessary to validate the AI in other
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countries. We will verify the performance and significance of the proposed model through
a prospective remote home care setting in a multinational study.
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Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42,
3599–3726. Available online: https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehab368/6358045
(accessed on 8 October 2021). [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/30496104
http://doi.org/10.1016/S0140-6736(18)32279-7
http://www.ncbi.nlm.nih.gov/pubmed/29390051
http://doi.org/10.1093/eurheartj/ehy005
http://www.ncbi.nlm.nih.gov/pubmed/29390051
http://www.ncbi.nlm.nih.gov/pubmed/31992061
http://doi.org/10.1161/CIR.0000000000000757
http://www.ncbi.nlm.nih.gov/pubmed/31992061
http://doi.org/10.1016/S0140-6736(14)61889-4
http://www.ncbi.nlm.nih.gov/pubmed/32483830
http://doi.org/10.1002/ejhf.1858
http://www.ncbi.nlm.nih.gov/pubmed/32483830
http://doi.org/10.15420/cfr.2016:25:2
http://doi.org/10.1093/ehjqcco/qcy061
https://jamanetwork.com/journals/jama/fullarticle/2768982
http://doi.org/10.1001/jama.2020.10262
https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehab368/6358045
http://doi.org/10.1093/eurheartj/ehab368


Diagnostics 2022, 12, 654 11 of 11

10. Jonas, D.E.; Reddy, S.; Middleton, J.C.; Barclay, C.; Green, J.; Baker, C.; Asher, G.N. Screening for Cardiovascular Disease Risk
with Resting or Exercise Electrocardiography. JAMA 2018, 319, 2315–2328. [CrossRef]

11. Kwon, J.-M.; Kim, K.-H.; Jeon, K.-H.; Kim, H.M.; Kim, M.J.; Lim, S.-M.; Song, P.S.; Park, J.; Choi, R.K.; Oh, B.-H. Development
and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification. Korean Circ. J. 2019, 49,
629–639. [CrossRef] [PubMed]

12. Cho, J.; Lee, B.; Kwon, J.-M.; Lee, Y.; Park, H.; Oh, B.-H.; Jeon, K.-H.; Park, J.; Kim, K.-H. Artificial Intelligence Algorithm for
Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography. ASAIO J. 2020, 67, 314–321. [CrossRef]
[PubMed]

13. Spaccarotella, C.A.M.; Polimeni, A.; Migliarino, S.; Principe, E.; Curcio, A.; Mongiardo, A.; Sorrentino, S.; De Rosa, S.; Indolfi, C.
Multichannel Electrocardiograms Obtained by a Smartwatch for the Diagnosis of ST-Segment Changes. JAMA Cardiol. 2020, 5,
1176–1180. [CrossRef] [PubMed]

14. Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.;
Butler, J.; et al. Universal Definition and Classification of Heart Failure. J. Card. Fail. 2021, 27, 387–413. Available online:
https://linkinghub.elsevier.com/retrieve/pii/S1071916421000506 (accessed on 8 October 2021). [CrossRef] [PubMed]

15. Jo, Y.-Y.; Kwon, J.-M. Electrocardiogram synthesis from two asynchronoous leads to Ten leads. arXiv 2021, arXiv:2103.00006.
Available online: http://arxiv.org/abs/2103.00006 (accessed on 8 October 2021).

16. Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal Cut-point and Its Corresponding Youden Index to Discriminate
Individuals Using Pooled Blood Samples. Epidemiology 2005, 16, 73–81. [CrossRef] [PubMed]

17. Lokuge, A.; Lam, L.; Cameron, P.; Krum, H.; Smit, D.V.; Bystrzycki, A.; Naughton, M.T.; Eccleston, D.; Flannery, G.;
Federman, J.; et al. B-Type Natriuretic Peptide Testing and the Accuracy of Heart Failure Diagnosis in the Emergency Department.
Circ. Hear. Fail. 2010, 3, 104–110. [CrossRef]

18. Jackson, S.L.; Tong, X.; King, R.J.; Loustalot, F.; Hong, Y.; Ritchey, M.D. National Burden of Heart Failure Events in the United
States, 2006 to Circ. Hear. Fail. 2018, 11, e004873. [CrossRef]

19. Cowie, M.R.; Anker, S.D.; Cleland, J.G.F.; Felker, G.M.; Filippatos, G.; Jaarsma, T.; Jourdain, P.; Knight, E.; Massie, B.; Ponikowski,
P.; et al. Improving care for patients with acute heart failure: Before, during and after hospitalization. ESC Hear. Fail. 2014, 1,
110–145. [CrossRef]

20. Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.;
Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917.
[CrossRef]

21. Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al.
Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [CrossRef] [PubMed]

22. Breiman, L. Statistical Modeling: The Two Cultures. Stat. Sci. 2001, 16, 199–215. [CrossRef]
23. Kwon, J.-M.; Jo, Y.-Y.; Lee, S.Y.; Kim, K.-H. Artificial intelligence using electrocardiography: Strengths and pitfalls. Eur. Hear. J.

2021, 42, 2896–2898. [CrossRef] [PubMed]
24. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. Available online: http://arxiv.org/abs/1603.05691

(accessed on 8 October 2021). [CrossRef]
25. Tison, G.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.; Gladstone, R.A.; et al.

Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 2018, 3, 409–416. [CrossRef]

http://doi.org/10.1001/jama.2018.6897
http://doi.org/10.4070/kcj.2018.0446
http://www.ncbi.nlm.nih.gov/pubmed/31074221
http://doi.org/10.1097/MAT.0000000000001218
http://www.ncbi.nlm.nih.gov/pubmed/33627606
http://doi.org/10.1001/jamacardio.2020.3994
http://www.ncbi.nlm.nih.gov/pubmed/32865545
https://linkinghub.elsevier.com/retrieve/pii/S1071916421000506
http://doi.org/10.1016/j.cardfail.2021.01.022
http://www.ncbi.nlm.nih.gov/pubmed/33663906
http://arxiv.org/abs/2103.00006
http://doi.org/10.1097/01.ede.0000147512.81966.ba
http://www.ncbi.nlm.nih.gov/pubmed/15613948
http://doi.org/10.1161/CIRCHEARTFAILURE.109.869438
http://doi.org/10.1161/circheartfailure.117.004873
http://doi.org/10.1002/ehf2.12021
http://doi.org/10.1056/NEJMoa1901183
http://doi.org/10.1038/s41551-020-00640-6
http://www.ncbi.nlm.nih.gov/pubmed/33208926
http://doi.org/10.1214/ss/1009213726
http://doi.org/10.1093/eurheartj/ehab090
http://www.ncbi.nlm.nih.gov/pubmed/33748841
http://arxiv.org/abs/1603.05691
http://doi.org/10.1038/nature14539
http://doi.org/10.1001/jamacardio.2018.0136

	Introduction 
	Methods 
	Data Source and Study Population 
	Outcomes and Predictive Variables 
	Data Preprocessing 
	Development for a Platform Detecting HFrEF 
	Statistical Analysis 
	Role of the Funding Sources 

	Results 
	Discussion 
	References

