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Abstract: The cuffless blood pressure (BP) measurement allows for frequent measurement without
discomfort to the patient compared to the cuff inflation measurement. With the availability of a
large dataset containing physiological waveforms, now it is possible to use them through different
learning algorithms to produce a relationship with changes in BP. In this paper, a novel cuffless
noninvasive blood pressure measurement technique has been proposed using optimized features
from electrocardiogram and photoplethysmography based on multivariate symmetric uncertainty
(MSU). The technique is an improvement over other contemporary methods due to the inclusion of
feature optimization depending on both linear and nonlinear relationships with the change of blood
pressure. MSU has been used as a selection criterion with algorithms such as the fast correlation and
ReliefF algorithms followed by the penalty-based regression technique to make sure the features have
maximum relevance as well as minimum redundancy. The result from the technique was compared
with the performance of similar techniques using the MIMIC-II dataset. After training and testing,
the root mean square error (RMSE) comes as 5.28 mmHg for systolic BP and 5.98 mmHg for diastolic
BP. In addition, in terms of mean absolute error, the result improved to 4.27 mmHg for SBP and 5.01
for DBP compared to recent cuffless BP measurement techniques which have used substantially large
datasets and feature optimization. According to the British Hypertension Society Standard (BHS), our
proposed technique achieved at least grade B in all cumulative criteria for cuffless BP measurement.

Keywords: electrocardiogram; photoplethysmography; symmetric uncertainty; fast correlation;
ReliefF algorithm; blood pressure measurement

1. Introduction

Cardiovascular diseases (CVD) are responsible for major health concerns around
the world. Potential symptoms or information which may provide early prediction of
CVD may help many people to take proper precautionary measures [1,2]. Consistent high
blood pressure (BP) is one of the four major risk factors for CVD and the main reason
for hypertension, so frequent monitoring and tracking of blood pressure trends should
be prioritized [3]. Chronic hypertension may cause damage to several organs [4]. So,
the early detection of hypertension allows patients to take treatment at an early stage
to reduce the possibility of deteriorating cardiac condition due to hypertension which
does not show symptoms at an early stage. The common BP measurement device cannot
detect the “white coat hypertension” syndrome [5], on top of that the traditional device
to measure BP uses techniques such as oscillometric [6] and auscultation [7], which are
useful for infrequent measurements but not continuous. In addition, even when the patient
tried to measure BP more frequently using these techniques, the amount of discomfort and
inconvenience makes it unsuccessful [8]. The proper way to get a continuous cuffless blood
pressure measurement with gold-standard accuracy is catheterization which requires a
medical facility with professional intervention [9,10]. So, finding a solution for the frequent
measurement of blood pressure during daily life in a cuffless and noninvasive manner
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remains a topic of research. The goal is to develop frequent BP measurement devices that
are non-invasive, inexpensive, cuffless, wearable, and convenient.

Over the past few years pulse transit time, which is the time it takes for the pres-
sure wave to go from one area of the body to another, has attracted a good amount of
attention as a characteristic of blood flow pattern behavior in the artery to measure blood
pressure [11–17]. Using photoplethysmography (PPG) and electrocardiography (ECG),
the PAT can be measured. However, PEP can be influenced by different factors such as
stress, age, emotion, movement, etc. In addition, it was found that PAT does not similarly
correlate with DBP as with SBP [18,19]. Blood is pushed through the vessels when the heart
ventricular chamber contracts maintaining expansion and contraction [20]. This regular
activity impacts significantly the elastic nature of vessel walls and over time the elastic
nature of vessel walls naturally degrades which in turn affects the pressure of the blood as
well as velocity of pulse wave [21]. However, the accuracy is not consistent because, due to
factors such as age, diet and stress, etc., the elasticity varies between individuals [22–24].
Along with PTT and PAT, the use of only a single sensor such as PPG also gained large
research momentum recently. Due to being optical and very inexpensive, it became very
popular among researchers to extract a different number of features from PPG waves and
use formulas motivated by fluid dynamics or machine learning to come up with a model
to measure blood pressure [25–30]. Volumetric change in the peripheral artery and blood
pressure change is correlated [31]. This characteristic is also being used along with some
other features from the PPG wave to make a model for BP measurements through different
machine learning algorithms [32–36]. These techniques heavily depend on the accurate
acquisition of PPG signals, on top of that there is yet to be a general formula or technique
which works across different databases with equal accuracy.

Improvement in digital signal processing through the use of filters made it possible to
easily process biomedical signals [37–45]. The motion artifacts, due to movement, and the
heavy deviation of results, due to change in datasets, still pose a significant challenge [33]
in adopting existing data-driven techniques. Evaluation with individual or another new
dataset their performance fails to uphold with an acceptable accuracy range that is given
by the Association for the Advancement of Medical Instrumentation (AAMI) [46]. In
solving classification and pattern recognition deep learning is now a very effective and
promising tool. Deep learning has the advantage of learning the features directly from
the raw signals and being applied in different fields such as image recognition, speech
recognition, and object identification, etc., [47–50]. A large amount of medical data is being
mined for diagnostic values such as cancer detection, heart beat classification, heart disease
detection brain tumor recognition, etc., [51–53]. Deep learning already started to play a
vital role in research related to heath states, detecting diseases, performing diagnoses, and
taking preventive measures. Liang et al. proposed blood pressure measurement technique
using wavelet transformation and CNN from PPG signal. The accuracy found from that
experiment was 82.9% [54]. Another study adopted a model that consisted of artificial
neural network in lower level for temporal feature extraction and LSTM layers in upper
layer for time domain variation in ANN layer features [55]. Unfortunately, the experiment
with only 39 subjects showed greater accuracy but they have not replicated it over larger
datasets. Shimazaki et al. proposed a different experiment [39] using a three-layer auto-
encoder to generate the features automatically and estimate BP [56]. Along with PPG,
speed of PPG, derivative of PPG and health data such as age, height, weight, sex, drug
presence, and pulse rate were used as inputs. The resulted deviation gold standard was
11.86 which was still quite high. Eom et al. proposed CNN-based BP estimation. Due to a
very small population number (only 15), the small standard deviation is not a significant
improvement [57]. Athaya and Choi proposed [58] a PPG-based deep learning technique
(U net) to measure blood pressure with a significantly small standard deviation, but the
population was only 100. Aguiree et al. proposed RNN encoder-decoder architecture whose
performance showed large estimation errors and standard deviation of 7.32 and 15.67 for
DBP and SBP [59]. All of these aforementioned experiments were done during the last three
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years and considering their performance it is evident that the cases which achieved better
accuracy or small standard deviation have smaller datasets or populations, and when the
larger datasets or different individuals from the original dataset were used, they cannot
sustain the same performance [60]. Recently, researchers used deep learning techniques
to measure BP. The performance showed better accuracy in contemporary methods while
using the same dataset for training and testing. Still, several shortcomings remain; first,
the testing was done using the same dataset, so the higher accuracies do not carry over
to new datasets or individuals. Second, in rare cases when they have chosen to test the
technique with separate datasets, the size of those datasets was very small. Third, since
deep learning takes care of feature extraction and selection without human intervention, it
is always difficult to explain the relationship between any feature and outcome [57,61–65].

To perform feature selection and optimization, the most common and popular choice
is the use of Pearson’s correlation coefficient. It results in a very accurate correlation
whenever the features are linear or very close to being linearly related. However, when
variables are nonlinearly related, Pearson’s correlation coefficient is calculated using linear
approximation between such variables. Based on how nonlinear the relation is, the Pearson
coefficient may or may not provide an accurate correlation value. If from beforehand
it is known that the relation among some of the features is highly nonlinear, Pearson’s
coefficient may provide the wrong feature selection [66]. This could impact the accuracy of
the BP measurements. A potential solution would be to calculate the correlation to measure
independence between features irrespective of their linear or nonlinear relationship. The
relationship among physiological measurements, such as the heart’s electrical activity,
pulse wave, and blood circulation through arteries, etc., are highly nonlinear [67–69]. For
example, blood pressure and artery diameter or stiffness are related in a strong nonlinear
manner and any sort of linear approximation would result in a much smaller correlation
value compared to their existing nonlinear relation between feature and target variable [67].
The nonlinear dependencies decrease the chance of reducing the dataset dimensions since
linear techniques or linear approximation may fail to sufficiently identify them [70]. In ad-
dition, extreme outliers or skewed distribution of data, which are common in physiological
datasets, may negatively impact the performance of linear methods [70]. In contrast to the
only linear model, the nonlinear models based on both linear and nonlinear dependencies
show better feature selection performance with more stability and are less affected by
including or excluding variables from the dataset [71,72]. For example, research was done
by extending the linear correlation to an alpha-grade monomial relation who maximizes
the correlation based on changing the value of alpha to which type of nonlinear relationship
data exhibit [71]. Their study proved that the proposed alpha-grade correlation coefficient
overcame the common drawback of statistical measure that evaluates the significance of
relationship between two variables based on their linearity. These studies have provided
the basis for the potential improvement of feature selection techniques for physiological
data. The expectation is it will solve all aforementioned shortcomings by considering the
correlation between both linearly and nonlinearly related features from vital signs, getting
rid of bias towards high cardinality features and allowing total correlation in place of
only pairwise.

Based on the literature survey it is evident that there is a need for a reliable and
accurate cuffless blood pressure measurement system that can be used frequently by a
person at his/her convenience. In this paper, a cuffless BP measurement technique that
accounts for linearly and nonlinearly dependent feature with blood pressure is proposed.
For the first time, a hybrid feature selection algorithm based on multivariable symmetric
uncertainty (MSU) is used to optimize the number of relevant features and reduce the
number of redundant and nonlinearly related to BP. The MSU-centered fast correlation and
ReliefF feature selection techniques can identify dependence among features irrespective
of whether they are linearly or nonlinearly related compared to the popular Pearson’s
coefficient which only deals with linearly dependent features. The use of the mentioned
hybrid feature selection algorithm is expected to give more accurate measurements than
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what is currently available in the state of the art. The rest of the paper is organized as follows:
Section 2 focuses on the proposed technique for BP measurement using biomedical signal,
Section 3 discusses data analysis followed by Section 4 with the result and performance
of the technique using an online dataset and finally, Section 5 concludes the paper and
discusses future work

2. Materials and Methods

The significant issues which were addressed in the technique are: first, to select
the biomedical signals and features that have noticeable biological impacts on change
in blood pressure; second, using symmetric uncertainty to perform a fusion of the fast
correlation and ReliefF algorithms to optimize feature selection; third, to use regularized
regression to develop a relationship between the extracted features and BP measurements.
As the primary features selection is done considering their biological significance and the
feature optimization algorithm is performed based on total correlation rather than just
pairwise, this technique is expected to result in a smaller number of predominant features.
The penalty-based regularization technique used in this study solves the problem of the
unbalanced result of bias-variance found in ordinary least square regression. In Figure 1,
a flowchart shows the steps of the proposed measurement technique. In subsequent
subsections, these steps will be described in detail.

Figure 1. Diagram for model used for cuffless BP measurement.

When the raw signal is used for this kind of study the best way to proceed with
that is to annotate them into acceptable and unacceptable signals. The recording of the
measurement of vital signs can deviate from the ideal case due to so many reasons other
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than the physical deterioration of patients. So, without annotation, it is hard to differentiate
between acceptable and unacceptable signals. In this study, annotation was not performed,
and we tried to find the deviated signals by using manual inspection. Ideally using an
index such as signal-to-noise ratio or some other statistical parameters can be used to use
only acceptable signals based on a preferred threshold. A basic classifier can be used to
find out which index would perform the best. Another limitation of this kind of study is
the choice of location from where the vital signs were recorded or measured. Since the
dataset used in our research was from the MIMIC-II dataset, which is data acquired from
hospital settings from ICU patients, the physical locations of data acquisition from patients
were predefined. Study [73] shows wrist PPG is difficult to measure accurately which
results in an error in peak detection; compared to that, head and finger is the much better
choice. Since the distance travel by the pulse originated at the heart plays a significant part
in calculating blood pressure, the best case would be to use multiple places to measure
PPG signals to validate each other’s data and make the measurement of pulse transit time
more reliable.

Different lead information of ECG records the electrical activity of the heart from
different directions and orientations. Ideally, all 12-lead information is the best way to
select any feature necessary from ECG but to make the data acquisition inexpensive and
the calculation simple it is hard to accommodate more than one or a few leads at the same
time. It will become cumbersome for the patient to measure the signal as well; on the other
hand, not having information from all the leads deprives them of having some necessary
information or the ability to cross-check any specific deviation in ECG wave. This study
put focus on making the system as simple as possible while keeping accuracy and feature
number optimized, so only lead information from lead II was used. The use of more lead
information may help to bring forth more features that are dependent on consecutive lead
information. The intrinsic stiffness of the carotid artery was only shown to increase for
young patients irrespective of the change in BP but for the elderly, it is the opposite [74].
In addition, a continuous increase in BP enhances increases in vascular thickness and
structural stiffness, and load on the arterial wall [75]. Damage to either small or large
arteries affects the rise of central BP by increasing more wave reflections during blood
flow [76]. All this information points directly to the necessity of accurately measuring
the change in arterial stiffness as it changes due to the physical changes of patients, so
measuring the changes in arterial stiffness using a separate sensor would be ideal.

The inclusion of statistical and spectral features along with morphological features
has both positive and negative aspects for measuring blood pressure. On the positive
side, more features would increase the chance of getting more relevant features in the final
feature list as well as have the advantage of observing the change in features from another
perspective such as statistical or frequency wise. On the negative side, the use of statistical
features carries the risk of misinformation due to the improper segmentation of signals;
also, lack of information about how the frequency components are directly related to the
change in blood flow pose a risk of either accepting a frequency that has a minimum effect
or neglecting one with higher impact. Another common limitation of this kind of study
is the lack of a centrally managed dataset to test the produced model. The best way to
test a trained model is to train with one standard database and test with another standard
database, but unfortunately, the unavailability of biomedical data collected reliably for a
longer period with high-quality raw data is still difficult to find from several sources. These
drawbacks create several bottlenecks: first, people are forced to acquire data by themselves
and with a limited number of data it is quite impossible to bring forth any robust model;
second, even if one’s model shows very high accuracy, it could fail to hold similar accuracy
when another dataset is used to validate the performance. Since the datasets are differently
standardized, it is very difficult to conclude whether the difference in performance came
due to a difference in dataset or technique.
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2.1. Selection of Vital Sign

The pressure on the walls due to blood flowing inside the vessels is proportional to
the force that the heart uses to pump blood; this pressure is called blood pressure. The
flow of blood is proportional to the pressure gradient which is the force that pushes the
blood along the vessels and is inversely proportional to the resistance against the flow.
From the aorta and throughout the cardiac cycle, the pressure is highest but when the large
vein brings the blood back to the heart it becomes lowest and is around 0 in the vena cava
area. These facts indicate that the pressure gradient is proportional to the blood pressure
throughout the heart cycle [77].

The most commonly known reason behind hypertension is a build-up of plaque in
arterial walls and a decrease in the elasticity as well as the radius of arteries requiring
more force from the heart to pump blood and higher pressure on the vessel wall. This
plaque build-up impacts patients’ health in two ways. First, it progressively worsens the
health condition by obstructing blood flow to different important organs of the body and
second, it brings significant cardiovascular disorders. This knowledge guided us to choose
appropriate vital signs which reflect changes in blood pressure. As explained in what
follows, the ECG and PPG waves are the proper biomedical signals to be used to perform
cuffless BP measurements. Consider Figure 2a,b, where PPG and ECG waves are shown.

Figure 2. (a) A single PPG signal. (b) Electrical activity pattern from ECG wave.
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In the ECG wave, when the R peak in the QRS complex of the ECG wave occurs, that
means the left ventricle forces the blood out to the aorta. Now when this rush of blood
flow reaches the place where the PPG wave was measured, the time interval between the
R peak and corresponding to any significant points in PPG wave, such as systolic peak,
diastolic peak, point with the highest slope, dicrotic notch, or start point of systolic phase,
etc., can be measured. These time intervals have a highly correlated relation with changes
in blood pressure [78]. In a study using the Windkessel model simulation, a trend line was
obtained by measuring systolic rise time (SRT) and diastolic fall time (DFT) for two different
compliances where compliance is the ability of the vessel to extend or be elastic enough to
respond to an increase in pressure due to a larger amount of blood [78]. Blood pressure
is predominantly affected by the compliance of the vessel wall. The compliance works
in inverse order compared to tension or stiffness in the artery walls. The behavior from
simulation also resembles the behavior of vascular change such as an increase in compliance
and decrease in DFT peak [78]. The reason is when artery blood pressure increases at the
same time the stiffness or tension in vessel increases which in turn decreases the compliance.
With the opposite change in blood pressure, the action reverses in terms of compliance too.

2.2. Pre-Processing Signals

Contamination comes in the ECG wave from noise and artifacts, and the goal of pre-
processing step is to reduce them as much as possible keeping the integrity of the original
signal [79]. The noise and artifacts are power line interference (50–60 Hz), base-band
wanders (around 0.3 Hz), power line interference, motion artifacts, and noise from nearby
electronic devices, etc. The pre-processing stage starts with a filtering block to delete the
artifacts from the ECG signal [80]. An example of noisy and noise-free ECG signals is
depicted in Figure 3. Typically, a band stop filter and an FIR filter of order 50 is sufficient to
get rid of noise with cut-off frequencies of 0.5 Hz and 100 Hz [81]. The output of the FIR
filter is being passed through a moving average filter to smooth the signal and remove the
unusual momentary spike. Unlike the low pass filter, the high pass filter does not attenuate
much of the signal but suffers from phase shifts [82]. The high pass filter removes the
DC offset which comes from electrode/gel/body interference and is used to remove the
baseband wanderer.

Figure 3. Example of normal noise-free and noisy signal.
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Normalization is another step in the pre-processing stage which helps us to make
comparisons among data from different patient at the same time. One of the most important
pre-processing techniques is the use of the Pan and Tompkins algorithm [83] which includes
the differentiation, squaring, and finding of the peak. In Figure 4, the flowchart for the Pan
and Tompkins algorithm is depicted.

Figure 4. Block diagram of Pan–Tompkin’s algorithm [83].

PPG and ABP waves have similarities in terms of morphological aspects at least; FFT
was used to remove high frequency noise. In lower frequency regions, a segment from
0.15 to 0.4 Hz, which is a consequence of respiratory effect, and another segment from 0.01
to 0.15 Hz vascular resistance, are divided [84]. Although in numbers there is coherence
between the lower frequency region of PPG and BP, the mechanism or rationale behind
the coherence is still debated among researchers [84]. Change in respiration rhythm is
reflected in the change in stroke volume which in turn affects PPG wave pattern. Although
researchers are not yet agreed on how much respiration affects pulse wave, it is agreed that
the change is very minor when only amplitude and slopes are in question. The ideal way
is to reduce or nullify the impact of respiration on PPG wave pattern by leveling the PPG
wave without the envelope created by respiration.

The main peak of each PPG cardiac cycle was detected through Daubechies 3 wavelet.
The DB3 is similar to the changes in PPG wave. The common peaks and intervals in PPG
waves are systolic peak, diastolic peak, systolic time, diastolic time, and dicrotic notch.

The derivatives of PPG waves are very useful for interpreting original PPG signals.
In Figure 5, the original and the first derivative and Figure 6 shows a PPG signal and its
second derivative. In Figure 5, the significant points in the first derivative were shown as
∆T and crest time (CT). The ∆T is the time interval between the first derivatives of PPG
where the signal is going to zero from a positive direction to negative directions. The CT is
defined as the time interval from the minimum of the PPG wave to its maximum peak. ∆T
and CT are closely related to any abnormality related to a heart condition [85]. In Figure 6,
the significant points are shown as points a, b, c, d, e. According to a previous study, the
ratios, such as b/a, c/a, e/a, and (b-e)/a, etc., strongly related to the change in arterial
stiffness [86]. The points a~e and the time interval between different points of ECG and
PPG are used as features to measure blood pressure.
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Figure 5. Original raw PPG wave and first derivative of PPG wave.
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Figure 6. Original raw PPG wave and second derivative of PPG wave.

2.3. Feature Extraction

The whole process of finalizing the features to be extracted is shown in Figure 7. First,
the morphological features from ECG will be discussed which are relevant to blood pressure
measurement. The main challenge with ECG features is that the morphological changes in
ECG for a hypertensive patient can either change for a short time period at the onset of
high pressure or the change can sustain for a longer period [87]. The characteristics of the P
wave from an ECG envelope, such as P wave area, amplitude, minimum duration, amount
of dispersion, etc., have shown some relation with a change in blood pressure [88–90].
The length of PR interval increases with the increase of blood pressure [89–92]. The QT
interval is the duration between Q waves until the end of the T wave, the characteristics
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which were found related to BP changes were: QT duration maximum, minimum, and
QT dispersion [91]. The fragmented QRS complex is found more often with high blood
pressure patients, also with a higher amplitude of the R and S wave. In the case of the T
wave, the features are the same but the P wave was found to be related in some way to
a change in blood pressure [90,93–95]. In previous studies, along with other discoveries,
there were some shortcomings. For example, in some studies [91,92,94], the BMIs were not
well spread out, some have patients mostly of a young age, some have limited patients
with specific prior diagnosis, and several studies did not report any comorbidities or
confounders, etc., [90,95]. These limitations require further study with these features before
finalizing a specific list. Till today, there is no clear list of features from the ECG wave that
are optimized in identifying hypertension reliably [96].

Figure 7. Diagram with the steps to finalize the features extraction process.

In the PPG wave, the first phase is related to the systolic period and the second phase
is related to the diastolic period. Systolic amplitude is found to be suitable for measuring
pulse arrival time [97]. The pulse width is the time duration for the whole pulse.

Researchers use different parts of pulse width for their experiment, such as using a
half or quarter of the amplitude of systolic peak for their experiments [98]. Since the pulse
width varies with the vascular resistance using the dicrotic notch, the area under the wave
can be divided into two parts. The ratio of those parts indicates a strong relationship with
total peripheral resistance, which is the force necessary to keep the blood flow from the
aorta to the venous exit into the auricles [99]. An increase in total peripheral resistance will
increase the blood pressure immediately. A recent study concluded that the correlation
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between PPG waveform and ABP waveform is very low. Therefore, the ABP cannot be
replaced by the PPG wave for BP measurement.

They used synchronized signals, and a strong correlation indicated that their mor-
phological changes are related and depend on each other; at the same time as the ABP
increases, some different phases between the signals became visible. These changes have
not been studied extensively yet so, although the morphological relationship between the
signals shows a strong correlation with the increase of ABP, the change in correlation needs
to be studied [100].

2.4. Feature Optimization and Selection

To identify the significant features from the available feature list, the feature selection
and optimization algorithm need to be implemented. With the use of only relevant features
the classification or data mining model ends up providing results with better accuracy and
reducing computational complexity. A fundamental problem with any data is to approxi-
mate a relationship between input X = (x1, x2, x3 . . . xN) and output Y = (y1, y2, y3, . . . yN).
Sometimes, output Y cannot be determined by using all features but only a subset of fea-
tures. If all the features including the irrelevant features were used there are a few problems
that might occur. First, the irrelevant features will require more computational cost (some-
times polynomial greater) while doing any prediction. Secondly, the irrelevant features
may produce overfitting which will fail the model when it is tested with any independent
data from which it was trained on. In addition, when the mode is too simple and includes
irrelevant features as well, under fitting occurs. That means it tends to have less variance
in the prediction but more bias towards wrong outcomes [101]. The major advantages of
optimal feature selection are: First, simpler models are simple to interpret. As the number
of variables increases, the model gets more and more difficult to interpret. Second, the
small number of features results in quicker training and prediction time. Third, redundant
information from different features creates a false interpretation of higher accuracy but fails
in the case of testing with data from a different dataset.

The filter-based method relies on feature characteristics and is favorable for the model
which requires quicker selection. The wrapper method uses a machine-learning algorithm
to select the best features in the subset and it is more computationally extensive than the
filter-based method [102]. The embedded method is an iterative approach that extracts
features that contribute most to the training for a particular iteration. In our study, the
filter-based approach was primarily selected based on the following reasons. Unlike the
wrapper-based method, the filter method does not incorporate any machine learning model
to determine the relevancy of any feature. The filter method is much faster compared
to the wrapper method because they do not require any training phase, so with a larger
dataset, the difference in computation becomes quite large. Unlike the wrapper method,
the filter-based method does not depend on a heuristic search algorithm. In the hybrid
approach, the combination of filter and wrapper does not integrate well which may result
in lower classification accuracy [103]. Popular filter-based feature selection methods use
different techniques to differentiate between relevant and irrelevant features. For example:
Euclidean/Manhattan distances between feature variables project dependence or correla-
tion within features as well as between feature and target variable. An example of using
Euclidean distance between features is the relief algorithm [104]. To better understand the
aforementioned “distance” feature, Figure 8 is provided to introduce what is a nearest ‘hit’
or ‘miss’.

For a given target instance, which is shown in Figure 8, when it is compared with
another instance with same class variable it is called a ‘hit’, and the other way around is
called a ‘miss’. For a nearest hit and sample feature, such as A, B, C in Figure 8, when
the values of the feature are different in those cases, the corresponding feature weight is
decreased by 1/(total feature number). Similarly, in the case of a nearest miss for same
scenario, weight for the corresponding feature is increased by same margin. An improved
version of this technique involves calculating the distance function [105] of a specific feature
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(for example B) using the ratio of difference of value of that feature between target instance
(TI) and the nearest hit/miss and the difference between the maximum of B and minimum
of B.

Figure 8. An example of feature weight update procedure based on distance target instance.

The distance function is also used to find the nearest neighbors by calculating distance
between different instances. The total distance is basically the summation of all the distance
gathered from all features. An example of using dependence is Pearson or Chi-squared,
where dependence or independence between two variables is measured [106]. Mutual infor-
mation or information gain where information is shared between features or contributions
of information of a feature are measured to differentiate between features [107].

In this paper, a combination of two feature selection methods is used. The first
method is the fast correlation (FC) where it checks the correlation of each feature and
relevance with the target variable. In 2021, it was discovered that FC has a problem of
sometimes considering relevant features as redundant and ignoring them [108]. So, solely
depending on FC cannot be the optimum choice. That is why the second method which
is a ReliefF-based algorithm has been added in this work. It uses Manhattan distance
instead of Euclidean distance in the Relief algorithm to differentiate between the same or
different types of feature classes. ReliefF considers conditional dependencies or interactions
between features which usually get ignored by the FC algorithm [109]. In both, the method
of symmetric uncertainty was used as a measure of goodness for the features which
is entropy-based correlation while correcting the bias of information gain. The reason
behind choosing this over Pearson’s coefficient is the option to encompass the non-linear
relationships between features since most physiological measurements are nonlinear [110].
In addition, the Pearson algorithm has very little robustness against outliers [111].

2.4.1. Symmetric Uncertainty

To measure the feature effectiveness for classification, the feature has to be relevant
to the class and at the same time not be redundant to any other relevant features. In this
work, correlation is used as the criteria to select features. When the correlation between two
features is small, but correlation with the target variable is higher than a certain threshold
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compared to another relevant feature, such a feature is selected as effective for that specific
classification task. The linear correlation coefficient is as follows:

r = ∑i(xi − avg(xi))(yi − avg(yi))√
∑i(xi − avg(xi))2

√
∑i(yi − avg(yi))

2
(1)

The mean r lies between −1 and 1 and represents the full correlation range between
X and Y. When they are fully independent then the value of r will be zero. Correlation
analysis removes the features which have a near-zero linear correlation with the class at
the same time it reduces the redundancy between features considered linearly correlated.
The limitation of linear correlation analysis is the assumption of linearity between features,
which is not true for all features. In addition, all the features must only be in the numeric
form to be considered for correlation analysis. The linear correlation coefficient assumes
a linear relationship between variables even in cases where the relationship is quite non-
linear, so just by getting a low or near-zero Pearson’s correlation coefficient it is difficult to
correctly conclude that they are independent of each other.

To solve these shortcomings, a potential solution is to choose a correlation measure
based on entropy and use mutual information (MI), which is the reduction in uncertainty
of one variable while observing the other variable. If we compare how the joint distribution
of the variables differs from the multiplication of their marginal distribution, it can be
concluded that they have dependence whether they are linear or nonlinear [112]. A discrete
random variable X with values {x1, . . . . . . xk}. The entropy for the variable X is H which
measures the uncertainty of the prediction of X [113]. So, the entropy is defined as:

H(X) = −∑i P(xi)log2(P(xi)) (2)

For xi, the prior probability is p(xi), and the entropy H(X). H(X|Y) can be expressed as
follows [114]:

H(X|Y) = −∑j[ P(xi)]∑i P
(
xi
∣∣yj
)
log2(P

(
xi
∣∣yj
)
) (3)

Now the mutual information can be introduced which measures the reduction in the
uncertainty of X.

MI(X|Y) = H(X)− H (4)

In case of X and Y, they are independent of each other, H(X,Y) = H(X) + H(Y),
M(X|Y) = 0 and H(Y|X) = H(Y). In contrast, when X and Y are fully correlated, the joint
entropy H(X|Y) = 0 and mutual information M(X|Y) = H(X). Although symmetry is a
desirable property when we want to consider it to be an effective measure for features, MI
or information gain (IG) are biased towards high cardinality features. So, MI or IG needs to
be normalized using the entropies of the features H(X) and H(Y) to compensate for such
bias. The resultant correlation measure is called symmetrical uncertainty (SU) [115], and it
is given by

SU(X, Y) = 2 ∗ Mutual in f ormation
H(X) + H(Y)

(5)

The range of SU is between 0 and 1, where the value 0 indicates that X and Y are
independent. Even with SU, there exists a limitation of computing more than two variables.
So, an extension is necessary for the multivariable cases to detect interactions among
different sets of variables.

Before moving towards multivariable symmetric uncertainty (MSU), let us first discuss
the concept of total correlation [116]. For a given vector of variables X, the joint entropy for
n number of variables is H(X1:n), given by [114]

H(X1:n) = −∑x1
. . . ∑xn

P(x1, . . . , xn)log2[P(x1 . . . , xn)] (6)
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For n number of variables, the mutual information can be expressed as a reduction of
the uncertainty among one or more variables by knowing another. It is a comprehensive
measure of independence, which means when the variables are independent then joint
entropy equals the sum of their marginal entropies. When it is not equal then some sort
of dependency is present. That is why it is better to consider the linear and nonlinear
dependencies compared to linear correlation [117]. For n number of variables, the total
correlation is shown in Equation (7). Here, total correlation does not indicate only linear
correlation but linear and nonlinear dependencies, thus giving total mutual information:

C(X1:n) = ∑n
i=1 H(Xi)− H(Xi:n) (7)

If we use n = 2, then the total correlation will turn into information gain or mutual
information between the two variables.

C(X1:2) = C(X1, X2)
= ∑2

i=1 H(X1)− H(X1:2) = H(X1) + H(X2)− H(X1, X2)
= H(X2)− H(X2|X1)= H(X1)− H(X1|X2)

(8)

= H(X1, X2)− H(X2|X1)− H(X1|X2)

= −∑X1,X2
P(X1, X2)log(X1, X2) + ∑X1,X2

P(X1, X2)log P(X1,X2)
P(X1)

+ ∑X1,X2
P(X1, X2)log P(X1,X2)

P(X2)

= ∑X1,X2
P(X1, X2)log P(X1,X2)

P(X1)P(X2)
= I(X1, X2)

(9)

Zero or close to zero value of C(X) means that all the variables are independent of each other.
To transfer the concept of total correlations into multivariable symmetric uncertainty (MSU)
keep the total correlation or total mutual information C between 0 and 1 and recognize that
a higher value of MSU should indicate a higher correlation among variables. Equation (4)
is the mutual information between two variables and for several n variables according
to Equation (7), the total mutual information can be expressed as: ∑n

i=1 H(Xi)− H(Xi:n).
By definition, the symmetric uncertainty is the normalized mutual information, so the
denominator of Equation (5) becomes the summation of entropy of all variables which
is equal to: ∑n

i=1 H(Xi). The symmetric uncertainty of two variables from Equation (5)
becomes the following equation as the general formula for MSU where value 2 in the case
of two variables is expressed as a normalization multiplier in the case of MSU:

MSU(X1:n) = normalization multiplier(m) ∗ ∑n
i=1 H(Xi)−H(Xi:n)

∑n
i=1 H(Xi)

= m ∗ [1− H(Xi:n)
∑n

i=1 H(Xi)

(10)

To prove Equation (10), using the chain rule [118],

H(Xi:n) = ∑n
i=1 H(Xi|X1,..., Xi−1) = ∑1

i=1 H(Xi|X1,..., Xi−1) + ∑n
i=2 H(Xi|X1,..., Xi−1)

= H(X1) + ∑n
i=2 H(Xi|X1,..., Xi−1)

This proves that H(Xi:n) ≥ H(X1) or in general H(Xi:n) ≥ H(Xi).
So, (a) n ∗ H(Xi:n) ≥ ∑n

i=1 H(Xi).
In addition, similarly, H(Xi|X1,......, Xi−1) ≤ H(Xi).
This result: H(X1) + H(X2) + · · ·+ H(Xn) ≥ H(Xi:n).
Or (b) ∑n

i=1 H(Xi) ≥ H(Xi:n).
Using the inequality of (a) and (b),

1
n
≤ H(Xi:n)

∑n
i=1 H(Xi)

≤ 1
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Since the MSU in Equation (10) goes from 0 to 1, using the above right-side limit of
H(Xi:n)

∑n
i=1 H(Xi)

and definition of MSU,

MSU(X1:n) = m ∗
[

1− H(Xi:n)

∑n
i=1 H(Xi)

]
= m ∗ n− 1

n
= 1,

So, m = n−1
n MSU can be reduced to:

MSU(X1:n) =

(
n

n− 1

)
∗
[

1− H(Xi:n)

∑n
i=1 H(Xi)

]
(11)

Here the nm represents the normalization multiplier; from [119] the nm was be defined
as n/(n − 1). In the case of two variables, the value of nm was 2. To prove that SU and
MSU are the same measures, it can be derived that when n = 2 the MSU will become SU.

MSU(X1:2) =
( 2

2−1
)
∗
[

1− H(Xi:2)

∑2
i=1 H(Xi)

]
= 2 H(X1)+H(X2)−[H(X1)+H(X2|X1)]

H(X1)+H(X2)

= 2 H(X2)−H(X2|X1)
H(X1)+H(X2)

= SU(X2, X1) = SU(X1, X2)

(12)

2.4.2. Fast Correlation Algorithm Using MSU

In this research, the fast correlation method which was introduced in 2004 is combined
with MSU to perform the calculation of feature selection. The algorithm works in two steps.
In the first step, the features are sorted using MSU, and a threshold setting is used to remove
less correlated features. In the second step, the comparisons among the features were done
to remove the redundant features using MSU. So, this algorithm uses the accelerated pace
advantage of filter and achieves higher efficiency of calculation at the same time.

Here the two steps of the algorithm are shown in two separate flowcharts. The first
flowchart in Figure 9 shows how the relevance of features is measured, and in the second
flowchart in Figure 10, the process of removing redundant features is shown.

Here in Figure 9, the diagram of step 1 of the algorithm has been depicted. The
majority of step 1 involves calculating SU values between features and class variables to
make a ranking list. Based on the predefined high threshold, the selected features are put
into a set called S1 as a collection of strong relevant features with class variables. Although
the S1 set includes features that show a strong relation with the class variable at the same
time, it does not confirm whether there are any redundant features present or not in set S1.
For that purpose, step 2 of the algorithm is depicted in Figure 10. The main objective of
step 2 is to remove redundant features from S1 and only keep the predominant features.
When a feature that is ranked high in set S1 has a higher SU with the next feature in set
S1 than the SU between the next feature and class variable, we can safely confirm the
next feature as redundant. Using this principle, all the features in S1 are used in the same
calculation pattern and marked as either redundant or not. While making the comparison
using SU, a constant p is included to have a final list with a varied number of features.

Based on the MSU of the feature list in S’ after each round, the value of p will be
reassigned (decreased by 0.1 p until p = 1) to make the feature number in S’ smaller. Finally,
after achieving a specific near-zero value of MSU, this points to an S’ which consists of only
predominant features.
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Figure 9. Step 1: Flowchart of fast correlation using SU value to find the relevant feature set.
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Figure 10. Step 2: Flowchart of fast correlation using SU and MSU to remove redundant features.

2.4.3. Relief Algorithm

Most of the feature selection algorithms assume the conditional independence of
features (dependent on target variable but not on each other), these algorithms are not
appropriate for solving a problem where there are many feature interactions. Relief algo-
rithms do not assume so the quality of attributes can still be extracted with high interaction
among them. The main idea is how their contribution and separation patterns behave when
they are close to each other in different instances [105]. Depending on whether the random
instance XI and H result in different values for the F feature then F identifies them as
belonging to the same class, but this scenario is not desirable, so the weight of F is reduced.
On the other hand, XI and M result in different values for the F feature, then F identifies
them as the same class, but this scenario is desirable, so the weight of F is incremented. Let
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us assume the whole instance list is Y1, Y2, Y3, . . . Ya which are used to describe a set F
of attributes F = 1, 2, 3, . . . n, where n is the number of features. So, the function can be
expressed as below for nominal features [120]:

di f f (F, Y1, Y2) =

{
0 , when value (F, Y1) = (F, Y1)

1, otherwise
(13)

For numeric features the difference function becomes as below [120]:

di f f (F, Y1, Y2) =
|value(F, Y1)− value(F, Y2)|

Max(F)−min(F)
(14)

Regarding limitations, research in a Relief-based algorithm has been limited to two-
way interactions only [120]. It has been proved in several types of research that empirically
the core performance of the Relief algorithm deteriorates as the number of irrelevant fea-
tures increases, so before using the feature through a Relief-based algorithm it is beneficial
to pass them through another process to decrease the number of irrelevant ones [121]. In
addition, the Relief algorithm cannot work with multiclass endpoints. So, there must be
an improved algorithm that can provide the advantage of Relief and solve the limitations
mentioned before.

2.4.4. ReliefF with MSU

ReliefF is the best-known Relief-based algorithm [104] which is the fixed algorithm
variation (A to F). There are four key aspects to the improvement in the ReliefF algorithm.
First, ReliefF uses the user-defined K number of neighbors and updates in the Relief
algorithm [122]. Second, in ReliefD (which is also incorporated in ReliefF) the best solution
to encounter missing data was proposed by equating diff function to probability that for a
given feature two instances do not show the same value [123]. Third, ReliefF proposes an
approach to handling multi-class target points where ReliefF calculates the prior probability
from class while finding k nearest misses. Fourth, the reliability of weight estimation
becomes credible as m becomes close to n [105].

The most important step in the ReliefF algorithm is after calculating the diff function,
the estimation of weight for each feature, which is [124]

W[F]W[F]−
∑k

j=1 di f f
(

F, Yi, Yj
)

n.k
+ ∑C 6= class (Yi)

p(C)
1− p(class(Yi))

∗
∑k

j=1 di f f
(

F, Yi, Yj(C)
)

n.k
(15)

Yi is a randomly picked sample at time ti; the nearest number of neighbors of Yi is k.
Although the Relief algorithm has advantages such as being non-myopic, its ability to
estimate the quality of features requires less time than the exhaustive search approach.
Its main limitation is the inability to consider feature interactions for more than two
features [125].

The ReliefF algorithm proposes a correlation between the calculation pattern and each
fault category. The objective is to find K nearest neighbor samples from the sample set. The
other way around is called near hits. In this paper, the MSU is used to create a ranking of
features based on symmetric uncertainty and use the ranking for the next steps. This will
reduce the computational complexity at the feature weight measurement step compared to
the use of every feature in that step.

2.5. Regularized Regression with a Penalty Factor

In this section, the necessity of regularization in regression technique will be discussed
along with the lasso, ridge, and combined effect of those two regression techniques. Since
the result of the techniques discussed in the previous subsection was to optimize the
number of features, this subsection will discuss the regularized regression technique which
will be implemented using those features to get a cuffless measurement method of blood
pressure. The basic linear regression model predicts n observations of target variable
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Y using the linear combination of m predictor variable X. If the error term is normally
distributed with variation σ2:

Y = Xβ + ε (16)

In the ordinary least square (OLS) approach, the β is estimated in such a way that
the sum of squares of residuals is as small as possible. So, the objective is the minimizing
loss function:

minimize {SSE = ∑n
i=1 [yi − yi(mean)]2 = ||y− Xβest||2} (17)

In statistics, two major components to measure the characteristics of estimators or
predictors are bias and variance. The bias is the difference between the estimated target
variable and true output variable and bias mainly measures the accuracy of the predic-
tion. On the other hand, variance calculates the variation or spread or uncertainty of the
predictions and the unknown error variance which can be expressed as below [126]:

error variance =
(y− Xβest)(y− Xβ)

n−m
(18)

The expectation of OLS is low bias and variance since large values indicate poor
performance of the OLS approach. The total error from the model can be categorized into
three segments as follow [126]:

Model error = error f rom bias + error f rom variance + unexplained error
(

σ2
)

(19)

Based on whether the value for bias or variance is high or low there can be four
different situations. The high value for variance and bias provides the worst prediction
and, on the other hand, low value of variance and bias provides the best performance.
The OLS generally provides a solution where it is unbiased, but the variance is high, so
for this specific situation three problems need to be solved. They are multicollinearity,
interpretability, and insufficient solution. Finally, the third issue is the balance between
variance and bias (interpretability). If the model complexity and error terms are plotted,
as the model complexity (number of features) increases three things happen: first, error
due to bias decreases sharply; second, error due to variance increases. The total error
starts high with a low number of features; it comes down to the lowest value for a certain
number of features and then grows large with more features in the model. So, keeping
increasing the feature number is not the solution, but the objective should be to find the
optimized situation with the right balance between bias and variance. A solution for all
these constraints is adding a regularization term or penalty term with OLS which will
lower the variance at the cost of some bias to find the optimum solution.

When there are many predicting variables with small effects from each of them which
are correlated among each other, ridge-type regression can prevent the linear regression
model from showing poor performance (high variance) [127]. In ridge regression, not only
does the OLS loss function get minimized, but also the size of parameter estimates gets
penalized too as shown in Equation (20) [127].

minimize {SSE + lambda ∑p
j=1 β2

j } (20)

The lambda (λ) is the regularization penalty. The lasso regression technique is used
for large datasets. The change from ridge regression to lasso is the penalty term as follows:

minimize {SSE + lambda ∑p
j=1

∣∣β j
∣∣} (21)

The major shortcoming of the lasso technique is oracle property and instability with
high-dimension data [128]. Although both techniques use correlated predictors, they solve
the multicollinearity differently. In ridge regression, the coefficients of correlated predictors
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are reduced but remain like each other, and in lasso regression, the correlated predictors
end up with a large value of coefficient while the rest of the predictors are zeroed. Since it
is not possible to determine true optimized parameter values, there has to be a way to use
the penalty term in a way to optimize the coefficient values.

To take advantage of both the ridge and lasso methods, a hybrid approach can be to
use a combination of them as follows:

minimize {SSE + lambda2 ∗ α ∗∑p
j=1

∣∣β j
∣∣+ lambda1 ∗

1− α

2
∗∑p

j=1 β2
j } (22)

Here, the value for α makes the choice between ridge and lasso technique, where
α = 0 means ridge regression and α = 1 means lasso regression. There is an extra quadratic
term that results in a convex loss function. The inclusion of a little bias while reducing the
variation is the appropriate solution. In lasso, it is a possibility that some of the features
will be pushed towards zero and even totally zero, so ridge regression is more effective
since it does not drastically reduce the feature number but rather takes a systemic approach
of reducing feature weight. The following Figure shows the change in number and value
of coefficients lambda and alpha in different situations for a sample scenario.

When alpha is equal to one, the elastic net becomes lasso regression, and the number
of coefficients becomes smaller while the value of lambda gets larger. On the other hand,
when the value of alpha is equal to zero, the elastic net becomes ridge regression, and the
number of coefficients remains the same for different values of lambda indicating that ridge
does not reduce the number of a predictor. So, when the value of alpha is between zero
and one the pattern in which the value of coefficient and number of coefficient changes
differs from ridge and lasso. To get the optimum number of features the implementation
of cross-validation needs to be used. From the mean square error versus lambda plot, the
number of the coefficient which will keep the MSE smallest for a certain value of lambda
can be achieved.

3. Data Analysis

In this section, the dataset which has been used in this paper is introduced and later
the data analysis process will be described.

3.1. Dataset

A dataset called “MIMIC II” used in this research is available on the physionet web-
site [129]. From intensive care patients at the hospital, several vital signs were measured
synchronously for a specific time frame, the vital signs which were recorded are ECG,
arterial blood pressure, and fingertip pulse photoplethysmography. Between 2001 and
2008, a total of 26,870 patients were admitted in ICU. The dataset can be divided into two
sections, the first one is clinical data and the second one is the physiological waveform of
the measured vital signs. The waveform was collected as a raw dump file where there is
some separate file for each patient and at the same time some files contain more than one
patient due to the machine not being reset between patients. Those cases were separated
by manually checking for the exceptional long intervals between readings. Although the
initial recording of ECG was done in 12-bit precision and a higher sampling rate, later
for the ease of calculation it was reduced to 7–10 bits. Later “peak picking” techniques
were used to scale down the sampling rate to 125 by choosing every one peak from four
consecutive ones.

Although the data originally was from the physionet website, it was sampled at 125 Hz
and stored as MATLAB files in the UCI repository [23]. The total dump file is divided
into three separate MATLAB data files, each containing 3000 admission scenarios with
ECG, PPG, and ABP data in separate rows. So, in this research, the first 1000 samples were
considered to make it homogeneous. In Figure 11, the distribution of blood pressure over a
total population of 12,000 is shown.
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Figure 11. The range of blood pressure over all populations.

Also in Figure 12, an example of raw data representation from a patient of three vital
signs is shown.

Figure 12. Example of a raw data from a patient with first 1000 samples.

3.2. Data Analysis

The raw signals from the dataset contain the three attributes but along with the signals,
there were also some unwanted artifacts present.
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Before removing unwanted noises, the dataset was manually checked for missing,
outlier, or unusually different data points due to possible anomalies in the measurement
system. From the 12,000-admission dataset of three attributes, the selected number of data
was 3295. In the previously mentioned steps in the pre-processing subsection, the section
was used to get rid of the noises and prepare the signal data ready for the data extraction
phase. Since the FIR filter is linear but ECG is a non-linear signal, there is a possibility
that there would be some delay involved as a result [130]. There were delays observed
due to the use of the FIR filter. Using Fs and filter order, the delay comes as 0.196 s. If
we had decided to increase the order of the filter, the time delay would have increased,
which is a disadvantage of the FIR filter. Although this time delay did not hamper the
calculation of heart rate or R peak detection but considering any other heart condition other
than heart rate variability, we had to fix the delay. So, using the FIR filter, the delay does
not distort the signal waveform, and it is possible to compensate for the delay simply by
shifting the filtered signal by a specific sample to match the filtered version of the original
signal waveform.

In the feature extraction phase, importance was given to the feature’s biological
significance regarding a change in blood pressure. The initial list of features to be extracted
mostly consisted of different time intervals and amplitudes of specific wave sections of
ECG and PPG waves. In Table 1, the detailed lists of features were given. The goal of
the feature selection method was to use linearly and nonlinearly correlated features to be
prioritized. Initially, the ranking using Pearson’s linear correlation coefficient is shown in
Table 2. In addition, in Figure 13 some of the distributions of the extracted features against
their respective SBP and DBP values are depicted.

Figure 13. The distribution of SBP and DBP against some of the extracted features.
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Table 1. The initial feature list from the feature extraction phase.

Name of Feature Detail of Feature

HR Rate of heartbeat per minute

PPGMX & PPGMN Maximum—Minimum amplitude of the peak value of the PPG wave

AC_amp and PPGIR The magnitude of the AC part and ratio of Maximum—Minimum value of PPG

PTT The time gap between corresponding ECG and PPG signal

S_T and DT Systolic and diastolic time

Dias, D_S, D/S of_1_10 DT with one-tenth—maximum value, DT +ST with one-tenth—maximum value, Ratio of DT- ST with
one-tenth of maximum value

Dias, D_S, D/S of_1_4 DT with one-fourth—maximum value, DT +ST with one-fourth—maximum value, Ratio of DT- ST with
one-fourth of maximum value

Dias, D_S, D/S of_1_3 DT with one-third—maximum value, DT +ST with one-third—maximum value k, Ratio of DT- ST with
one-third of maximum value

Dias, D_S, D/S of_1_2 DT with half of maximum value, DT +ST with half of maximum value, Ratio of DT- ST with half of
maximum value

D_S__2_3 and 3_4 DT + ST with 2/3 and 3/4 of maximum value

ECG time interval and amplitude QRS, P, T wave intervals and peak amplitudes

Table 2. The ranking based on Pearson’s correlation coefficient.

SL SBP DBP

T
he

linear
correlation

reduces→

1 PPGIR Heart rate

2 Dias_1_10 PPGMN

3 S_T PPGIR

4 D_S_1_10 PPGMX

5 Dias_1_4 Dias_1_10

6 AC_amp D_S_1_10

7 Dias_1_3 PTT

8 D_S_1_4 D/S_1_10

9 Dias_1_2 AC_amp

10 PPGMN Dias_1_4

11 D_S_1_3 Dias_1_2

12 D_S__1_2 D_S_1_4

The implementation of fast correlation using MSU and ReliefF-MSU algorithms was
done using python language. The top 12 features were finalized based on the combined
ranking of feature selection algorithms which were implemented based on the main rule of
maximizing the relevance with the target variable but reducing the number of redundant
features at the same time. It was found that using the proposed technique reducing the
feature number to less than 12 produced results where the accuracy was less than the
intended margin. In Figure 14, the heat map for the finalized feature for SBP and DBP
is shown. Although the heat map only considers the linearly correlated coefficient and
does not represent the correlation in terms of nonlinearly correlated features, it is evident
from the heat map that even from the linear perspective the correlations among finalized
features are quite small.
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Figure 14. The Pearson’s coefficient value among finalized features using a heat map.

In this paper, the regularized techniques were applied because they keep the variance
in control and bring a balance between bias–variance convex relationships. In addition,
by nature regularization favors simpler models by addressing issues like variance-bias
trade-off, multicollinearity, sparse data handling, and partly feature selection. Comparing
popular models such as lasso and ridge where lasso assigns a penalty to reduce the number
of variables and ridge assigns a penalty to reduce the impact of overemphasized variables,
lasso showed some inconsistency due to the presence of multicollinearity even in smaller
degree and ridge showed some inconsistency due to the lack of ability to reduce any
variable to zero even when the situation required it. So, there must be a trade-off between
the penalties coming from both lasso and ridge regression to make it balanced. The result of
the processes which are coefficients or weights of estimates is shown in Figures 15 and 16.

Figure 15. The value of coefficient for penalty-based regression for SBP.
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Figure 16. The value of the coefficient for penalty-based regression for DBP.

Using the features in Table 1 as the initial set, the optimization algorithms produced
a result with the features listed in Table 2. The features in Table 2 encompass both linear
and nonlinear relationships and using only those features the regression analysis was
conducted. So, Figures 15 and 16 contain the features which not only have shown linear
dependence but also from the aspects of both linear and nonlinear relationships.

In Figure 17, the coefficient values for features from the proposed method and Pear-
son’s method are shown. Few features were found common in both methods. However,
more than half of the numbers of features are different. This variation in the selection of
features proves the fact that using the linear relationship will only result in missing some
more relevant features. For example, although in many studies the linear relationship
between pulse transit time (PTT) and blood pressure was assumed, recently it has been
proven that they are nonlinearly related [131]. In this study for SBP, the coefficient value is
zero for the PPT feature when we use Pearson’s method. However, in the proposed method,
the PTT coefficient is relatively significant confirming the findings. Similar conclusions can
be drawn regarding DBP, as shown in Figure 18.

Figure 17. Coefficient values found for SBP using features from proposed method and
Pearson’s method.
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Figure 18. Coefficient values found for DBP using features from proposed method and Pearson’s
method.

4. Result and Performance Evaluation

Using the coefficient values from the combination of ridge and lasso regression, the
final relation between finalized features and SBP or DBP is defined. The regularized
BP models were tested using data from the dataset resulting in the diagrams shown in
Figures 19 and 20. From the Figures, there is evidence that the predicted SBD and DBP
closely follow the test value in most cases.

Figure 19. Predicted value against actual value for SBP.

Figure 20. Predicted value against actual value for DBP.

The error varies within (+/−) 15 mmHg in a worst-case scenario, for more than half
of the test points the error remains within (+/−) 5 mmHg. The size of the dataset was large
and although some parts of the dataset were ignored due to lack of records or inconsistent
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values, the performance shown by regularized regression using an optimized feature list
was still promising. Since each of the feature selection algorithms works from different
aspects, the outcome of the algorithms provides an optimized feature list. In addition, since
the objective of this study is to bring forth a generalized relation and not a person-specific
one, it was expected that there would be some discrepancies between the predicted value
and test value.

The summary of the study in terms of root mean square error (RMSE) and mean
absolute error (MAE) and the comparison with similar studies, where feature optimization
and regression relations were used, are depicted in Table 3. Using the proposed technique,
the performance indices MAE and RMSE improved significantly compared to the Pearson-
based method. This performance improvement is the result of the inclusion of both linear
and nonlinear relationships in the feature selection algorithm and the use of a penalty-
based regression algorithm. The MAE and RSME for SBP were better than those of DBP
for the proposed method. The main reason behind this difference is that nonlinearity of
peripheral arterial compliance affects the dependency of PTT and SBP more than DBP [132].
In addition, by measuring hemodynamic parameters such as stroke volume and total
peripheral resistance another study proved that the linear correlation is higher for DBP
compared to SBP with pulse wave velocity and arterial stiffness parameters [133]. So, since
the proposed method took linear and nonlinear relationships into account, the amount of
improvement happened more for SBP than DBP. The number of features replaced from
Pearson’s method to the proposed method also confirmed that for SBP there was a higher
number of features needed to be replaced than DBP.

The value of MAE from the proposed method resulted slightly higher than the values
from studies [134,135]. The experimental model of [136] was prepared using factors such
as viscosity of arterial wall and pulse wave reflection but their number of subjects and age
range were extremely small. They have used only 16 subjects with an age range of 19 to 25
only which lessened the probability of variation in both SBP and DBP. Replication of their
technique was done using data used in this paper and the MAE was found as 9.8 mmHg for
SBP and 9.3 mmHg for DBP. This experiment proves the necessity of a dataset with large
variation in participants’ age and many records. The Framingham heart study [137], which
followed blood pressure for more than 30 years, agreed that although SBP continuously
increases as age goes from 30 to 84 and over, DBP slowly decreases after 50 and onward. In
the study [138], out of all the participants, 17 were hypertensive and 12 were hypotensive.
According to the Framingham study, the selection of age group from the participant will
result in lower variation in DBP compared to SBP which explains the small value of MAE
in DBP for [138]. Compared to those, the dataset used in this paper consisted of a much
wider age range (20–100) as well as a higher number of patients [134]. In addition, in [138]
the training and testing include measurement from the same 85 participants, which means
the model has already “seen” those data before and might result in significant overfitting.

Table 3. Comparing the performance from different contemporary methods of BP measurement.

Method
MAE (mmHg)

Year
SBP DBP

Using PTT [23] 6.85 6.35 2015

Peripheral PTT [136] 6.72 4.53 2016

Heart rate, pulse arrival time [135] 11.6 5.34 2017

PPT and IPG sensor [139] 8.55 5.07 2018

Feature from photoplethysmography wave [140] 9.42 6.87 2019

Using gradient boosting 1. and graph-theoretic algorithms [141] 8.09 5.49 2020

Regression using Pearson’s coefficients 9.50 10.10 2021

Proposed technique 4.27 (RMSE 5.28) 5.01 (RMSE 5.98) 2022
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In addition, another significant criterion that was maintained while populating Table 4
is techniques or studies which used a large dataset with sufficient variations in data rather
than the use of the selective and smaller dataset. In addition, using grading criteria
proposed by BHS, the cumulative percentage and mean absolute error were measured with
intervals as 5, 10, 15 mmHg. The minimum standard achieved by our proposed technique
is grade B as shown in Table 4.

Table 4. Proposed method’s performance according to BHS.

BHS

CP—5 mmHg CP—10 mmHg CP—15 mmHg

BHS
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Result from this study SBP 65.29% 91.74% 99.87%
DBP 58.37% 89.11% 99.63%

5. Conclusions and Discussion

The objective of this study was to propose and analyze the performance of a novel
blood pressure measurement technique using an MSU-based optimized feature selection
method combined with penalty-based regression. Researchers have been studying all
relevant biomedical signals, such as ECG, PPG, PCG, BCG, etc., to extract necessary infor-
mation and trying to come up with relations with change in blood pressure, but acceptable
accuracy and consistency remain difficult to achieve. This paper proposed to improve accu-
racy and consistency by using a hybrid feature selection algorithm based on MSU so only
relevant but nonredundant features from biomedical signals were used, this would make
the input for the learning system optimized and reduce the chance of overfitting. The whole
process initiates with biologically significant features from ECG and PPG signals which
were extracted after necessary pre-processing steps. Using the advantage of both nonlinear
and linear relations from multivariate symmetric uncertainty with the fast correlation and
ReliefF algorithms, the optimized feature list was generated. Later, the finalized feature list
was used for a penalty-based regularized regression to produce a general relation between
the features and systolic/diastolic blood pressure. The regularized regression provides a
balance between bias and variance to optimize the error or difference between the actual
and predicted result.

In this study, the features were chosen based on their morphological features and
their respective significance. To include statistical or spectral features there must be suf-
ficient available information regarding how those features impact the change in blood
pressure. Using the MIMIC II dataset, the regression model was trained and tested. The
results showed improved performance in terms of RMSE and MAE compared to contem-
porary studies.

One significant limitation of this study is the assumption related to the arterial stiffness
from the PPG wave pattern. Although this is not the ideal way, the assumptions were made
to consider the effect the arterial stiffness without using additional sensors or invasive
methods to measure arterial dimensions. Due to the assumptions, measurement accuracy
was affected to some extent. The selection of features was done to compensate for that
effect by choosing features specifically related to arterial stiffness. So, compared to other
studies the effect of the assumptions was much lower in this study. It is a trade-off between
assumptions and invasive sensors to get precise arterial information. Personal calibration
with sufficient data should be an alternative solution for this trade-off.

Future work will use the developed measurement model and tune it using patient
data for further calibration.
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