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Abstract: Patients with rheumatoid arthritis (RA) show autoantibodies against post-translational 

protein modifications (PTMs), such as anti-citrullinated protein antibodies. However, the range of 

recognized PTMs is unknown. Here, we addressed four PTMs: chlorination, non-enzymatic gly-

cation, nitration, and homocysteinylation, identified as targets of atypical RA autoantibodies in 

studies whose protocols we have followed. The modified antigens included collagen type II, an 

extract of synovial proteins and a selection of peptides. We interpreted the results according to the 

optical density (OD) obtained in an enzyme-linked immunosorbent assay ( ELISA) with the modi-

fied antigen and the corrected OD obtained after subtracting the reactivity against the unmodified 

antigen. The results showed evidence of specific antibodies against glycated collagen type II, as the 

corrected ODs were higher in the 182 patients with RA than in the 164 healthy controls (p = 0.0003). 

However, the relevance of these antibodies was doubtful because the magnitude of the specific sig-

nal was small (median OD = 0.072 vs. 0.027, respectively). There were no specific antibodies against 

any of the other three PTMs. Therefore, our results showed that the four PTMs are not inducing a 

significant autoantibody response in patients with RA. These results indicated that the repertoire of 

PTM autoantigens in RA is restricted. 

Keywords: rheumatoid arthritis; autoantibodies; post-translational protein modifications; chlorin-

ation; non-enzymatic glycation; nitration; oxidation; carbonylation; homocysteinylation; citrullina-

tion 

 

1. Introduction 

Rheumatoid arthritis (RA) is a chronic autoimmune disease of complex etiology and 

pathogenesis [1]. It is characterized by inflammation at multiple joints leading to pain, 

morning stiffness, joint swelling, and functional disability. Further, RA has a systemic 

component of inflammation and extra-articular manifestations that may involve the skin, 
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vessels, and lungs or increase the risk of cardiovascular disease, infections, and malignan-

cies. The systemic component is also revealed by the presence of autoantibodies in the 

blood and synovial fluid of the patients that, in many cases, precedes the clinical onset of 

RA [1–3]. 

The autoantigens recognized by the RA antibodies are multiple and still incompletely 

defined [1–3]. All of the known autoantigens have a wide distribution in organs and tis-

sues, and many of them are proteins with post-translational protein modifications (PTMs). 

The best studied examples are the citrullinated, carbamylated, and acetylated proteins 

[3,4]. In addition, well established autoantigens include the malondialdehyde and 

malondialdehyde-acetaldehyde adduct containing proteins, although the antibodies 

against these are less specific for RA [4,5]. All of these PTMs affect many proteins and take 

place in many tissues in a variety of physiological and pathological situations. However, 

it is suspected that PTMs occurring in synovial tissue and favored by inflammation or 

oxidative processes could be more relevant for RA. The identity of the proteins that are 

modified is less important for the binding of the autoantibodies than the PTM itself, mean-

ing that the patient can sera bind multiple different peptides with the same PTM [4,6–8]. 

We still do not know if the range of PTMs recognized as autoantigens in RA is wide, 

or restricted to a few PTMs [3]. Some studies suggest a large range of PTMs by showing a 

large prevalence of antibodies against new PTM [9–14]. The antibodies against them can 

be considered atypical because they are not yet well established as RA autoantibodies. In 

fact, the most well replicated of those analyzed here has only been reported in three non-

independent studies [11,13,14]. The independent validation of atypical anti-PTM antibod-

ies, therefore, will confirm additional targets and mechanisms of RA autoimmunity, and 

contribute to defining their role as biomarkers. These expectations are supported by pre-

vious experience with the anti-citrullinated protein antibodies, which have been critical 

for advances in RA pathogenesis and are the main laboratory biomarkers in RA [1–3]. 

Other well established autoantibodies against PTMs also show potential value as bi-

omarkers. For example, the presence of anti-carbamylated protein antibodies or anti-acet-

ylated peptide antibodies can be used to improve RA disease classification [15,16]. 

In this study, we aimed to explore four atypical anti-PTM antibodies that have been 

described in RA as recognizing the following PTM: protein chlorination by hypochlorous 

acid (anti-HOCl) [11,13], which is one of the reactive oxygen species found in arthritic 

joints; protein non-enzymatic glycation and formation of advanced glycation end prod-

ucts (AGEs) by ribose (anti-NEG) [11,13,14]; the tyrosine nitration of peptides (anti-3-NT) 

or, more broadly, the nitration of proteins (anti-NO2) by peroxynitrite [10,11], which is a 

reactive nitrogen species increased in inflamed joints; and the homocysteinylation (anti-

Hcy) by a metabolite of homocysteine, homocysteine-thiolactone [9,12]. We treat the four 

separately, although the three first PTMs are oxidations, because the reactions used to 

produce them result in complex modifications showing only partial overlap [17–23]. The 

four PTMs are over-represented in arthritic joints and RA patient plasma reflecting the 

increased oxidative stress, formation of AGEs or homocysteinylation processes 

[9,18,22,24,25]. Therefore, confirmation of the specificity of RA autoantibodies against 

them will imply their participation in autoimmunity, tissue damage, and pathology. In 

addition, the anti-HOCl-CII antibodies have been described as extremely sensitive and 

specific for early RA [13], a feature that could be of great interest if confirmed. 

2. Materials and Methods 

2.1. Patients and Samples 

We analyzed serum samples from 325 patients with RA meeting the 1987 ACR or the 

2010 ACR/EULAR classification criteria [26,27], and 197 healthy controls (median age = 69 

years, IQR = 63–75; 60% women) enrolled at the Hospital Clínico Universitario de Santi-

ago. We considered the 182 RA patients with samples taken less than two years after 

symptom onset as an early RA subset (ERA), whereas the remaining 143 RA patients 
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formed an established RA subset. The clinical characteristics of the two RA subsets are 

presented in Table 1. The controls were selected for good general health and the absence 

of known musculoskeletal, inflammatory, or autoimmune diseases. Smoking status was 

defined as never been a smoker or ever smoked (past or current). We also used synovial 

tissue collected during knee joint replacement surgery from three patients with osteoar-

thritis. The study was approved by the Autonomous Research Ethics Committee of Galicia 

(Ref. 2014/387 and 2017/514). All of the participants provided written informed consent. 

In addition, this work was conducted according to the relevant guidelines and regulations 

(Declaration of Helsinki, the Belmont Report, the Spanish Laws of Biomedical Research 

14/2007, and Data Protection 3/2018). 

Table 1. Clinical characteristics of the two subsets of patients included in the present study 1. 

 Early RA 2 n = 182 Established RA 2 n = 143 

Age, median (IQR) 3 years 58 (48–71) 61 (50–72) 

Age of diagnosis, median 

(IQR) years 
58 (48–71) 47 (35–56) 

Symptom duration, median 

(IQR) years 
0 (0–1) 11 (5–21) 

Women, n (%) 112 (62) 112 (78) 

Ever smoked, n (%) 54 (30) 23 (18) 

Erosions, n (%) 17 (14) 92 (66) 

RF positive, n (%) 94 (56) 84 (61) 

Anti-CCP positive, n (%) 119 (65) 97 (68) 

Anti-CarP positive, n (%) 63 (41) 48 (34) 

DMARD naïve, n (%) 109 (82) - 

MTX, n (%) 6/133 (5) - 

Other csDMARD, n (%) 10/129 (8) - 

bDMARD, n (%) 8/133 (6) - 

Glucocorticoids, n (%) 115/122 (94) - 

NSAIDs, n (%) 83/113 (73) - 

DAS28, median (IQR) 4.94 (3.53–5.97) - 

IgG [mg/dL], median (IQR) 1195 (1010–1440) - 
1 The healthy controls were 60% women with a median age = 69 years, IQR = 63–75. 2 Information 

was available for <95% early RA patients: erosions = 69%; RF = 92%; and anti-CarP = 85%; treatments 

= 62–73%; DAS28 = 68%; total IgG (mg/dL) = 65%. For <95% established RA patients: smoking = 91%. 
3 Abbreviations: IQR = interquartile range; RF = rheumatoid factor; CCP = Cyclic Citrullinated Pep-

tide; CarP = Carbamylated Proteins; DMARD = Disease Modifying Anti-Rheumatic Drug; MTX = 

methotrexate; other csDMARD = conventional synthetic DMARD different from MTX; bDMARD = 

biologic DMARD; DAS28 = Disease Activity Score 28 joints. 

2.2. In Vitro Production of the Four PTMs 

We have produced the four PTMs using in vitro reactions, as previously described 

[10,11,28] and summarized in Table 2. A corresponding procedure without the modifying 

agent was conducted for each of the four PTMs to produce the unmodified protein con-

trols. 

Table 2. Summary of the four analyzed PTMs. 

PTM Protein Modifying Agent Abbreviation 

chlorination collagen type II hipochlorous acid HOCl-CII 

glycation collagen type II ribose NEG-CII 

nitration synovial proteins sodium peroxinitrite NO2-SynP 

nitration 8 peptides synthesis 3-NT-pep 

homocysteinylation synovial proteins L-homocysteine-thiolactone Hcy-SynP 
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The collagen type II (CII) was obtained from bovine cartilage as a highly purified 

lyophilized powder (#804001, MD Bioproducts, Oakdale, MN, USA). This protein, at 2 

mg/mL in PBS 1X pH 7.4, was used to obtain oxidized CII (HOCl-CII) and glycated CII 

(NEG-CII) [11]. The first of these modified proteins was produced with 1 mM freshly pre-

pared hypochlorous acid (HOCl) at 37 °C for 24 h in sterile conditions protected from the 

light. In turn, the NEG-CII was produced with 2 M ribose at 37 °C for 24 h in sterile con-

ditions protected from the light. Subsequently, the two modified proteins were dialyzed 

in PBS 1X pH 7.4 for 24 h at 4 °C with at least 3 changes of buffer. 

We produced the other two PTMs on a protein extract obtained from synovial tissue 

(SynP). The extract was obtained by homogenizing the tissue samples using a Polytron PT 

1200 E (Kinematica AG) on 3 mL/mg tissue of lysis buffer (sodium orthovanadate 1 mM, 

Triton X-100 1X, Tris-HCl 50 mM, NaCl 250 mM, sodium pyrophosphate 30 mM, EDTA 5 

mM, NaF 100 mM, DTT 1 mM, Protease Inhibitor Cocktail 1X [PIC, P8340, Merck, Ger-

many]). The homogenate was incubated for 30 min on ice and then filtered with Amicon®  

ultrafiltration 3 kDa filters (Millipore, Merck, Germany) at 10,000× g at 4 °C. The superna-

tant containing the synovial proteins (SynP) was collected and stored at −80 °C. For the 

production of the nitrated proteins (NO2-SynP), we used 4 mg/mL SynP in PBS 1X pH 3.5 

that reacted with 10 mM sodium peroxynitrite (NaONO2, Sigma, Merck, Germany) at 37 

°C for 24 h, as previously described [10]. The modified proteins were concentrated by 

ultrafiltration with the 3 kDa Amicon®  filters and a washing step with PBS 1X pH 9 to 

remove unreacted NaONO2 and reaction by-products. The Nε-homocysteinylated SynP 

(Hcy-SynP) were produced by the reaction of the SynP at 10 mg/mL with 1 mM L-homo-

cysteine thiolactone hydrochloride (L-Hcy-thiolactone, Alfa Aesar, Thermo Scientific, 

Waltham, MA, USA) in 0.05 M potassium phosphate buffer pH 7.4, 0.2 mM EDTA [28]. 

The reaction was carried out at 37 °C for 16 h. The resulting Hcy-SynP were concentrated 

through ultrafiltration on 3 kDa Amicon®  filters, as described above, to remove the unre-

acted L-Hcy-thiolactone. 

Additionally, we modified albumin, either bovine (BSA) or human (HSA), or fetal 

bovine serum (FBS) for the set-up of the four post-translational modifications and assess-

ment of the reactions performance [10,11,28]. In addition, Hcy-HSA was used as the anti-

gen in a preliminary assay of the Hcy PTM. The protein concentrations were determined 

using Bradford’s reagent (Bio-Rad, Hercules, CA, USA). Following these reactions, the 

four PTMs were characterized as detailed in Appendix A. All of the proteins were stored 

in single-use aliquots at −20 °C until their use as antigens, except CII that was stored at 4 

°C protected from light. 

2.3. Selection of Ten Nitrated Peptides 

We complemented the exploration of the anti-NO2 antibodies using 10 nitrated pep-

tides taken from relevant proteins in RA with a molecular weight of approximately 80 

kDa corresponding to the main nitrated synovial proteins in patients with RA [1–4,6–8,25]. 

Within the resulting list, we identified 10 peptides with tyrosine residues likely to be ni-

trated in vivo. These peptides were concordantly selected by two software algorithms: 

iNitro-Tyr predictor with a Δ-value > 0.4 [29], and GPS-YNO2 1.0 with a score > 0.9 at the 

medium threshold [30]. The tyrosine to be nitrated was placed in the middle position of a 

21 mer amino acid sequence (Table 3). This design was chosen because it performs well 

for ELISA antigens [31]. The 10 peptides were synthesized by Schafer-N (Copenhagen, 

Denmark) in a native and a nitrated version, all of them biotinylated at the N-terminus. 

The synthesized peptides were subjected to quality control by Schafer-N that included 

high-performance liquid chromatography (HPLC) followed by mass spectrometry (MS). 

Two nitrated peptides that showed less than 70% purity were discarded. 
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Table 3. The 10 synthetized 3-NT peptides with an indication of their position in the protein se-

quences, the nitrated residues (3-NO2-Y), and the probabilities of in vivo nitration according to two 

algorithms. 

Protein Sequence Δ 1 Score 2 

Enolase 1247–267 AASEFFRSGK(3-NO2-Y)DLDFKSPDDP 0.999 2.881 

Enolase 234–54 AVPSGASTGI(3-NO2-Y)EALELRDNDK 0.584 1.498 

Fibrinogen312–332 GKNYCGLPGE(3-NO2-Y)WLGNDKISQL 0.903 1.611 

Vimentin20–40 TASRPSSSRS(3-NO2-Y)VTTSTRTYSL 0.963 2.693 

14-3-3 η206–226 AELDTLNEDS(3-NO2-Y)KDSTLIMQLL 1.061 1.695 

BiP165–185 3 VTHAVVTVPA(3-NO2-Y)FNDAQRQATK 3.237 2.824 

Tenascin1676–1696 3 DITGLREATE(3-NO2-Y)EIELYGISKG 0.457 0.912 

Histone H332–52 ATGGVKKPHR(3-NO2-Y)RPGTVALREI 1.319 1.679 

Histone H4 163–83 LENVIRDAVT(3-NO2-Y)TEHAKRKTVT 0.731 1.866 

Histone H4 242–62 GGVKRISGLI(3-NO2-Y)YEETRGVLKVF 0.546 1.448 
1 iNitro-Tyr prediction. 2 GPS-YNO2 1.0 prediction. 3 Discarded peptides due to low purity. 

2.4. Determination of Autoantibodies 

The RF-IgM (cut-off 20 units/mL) was determined by nephelometry (IMMAGE Im-

munochemistry System, Beckman Coulter). The anti-CCP antibodies were determined us-

ing the EDIA anti-CCP test kit (Euro-Diagnostica, Malmö, Sweden) with a cut-off of 5 

units/mL and according to the manufacturer’s instructions. The remaining autoantibodies 

were measured using a homemade ELISA. The assays were performed according to the 

specifications of the studies where they had been reported [10–13]. Therefore, we describe 

here the general protocol for all the ELISA, and we signal the details for each autoantibody 

in the next paragraph. The assays began by coating the 96-well ELISA Nunc MarxiSorp 

plates (Thermo Scientific, Waltham, MA, USA) with the antigens (the modified and con-

trol proteins in separate plates) at 5 ug/mL in PBS pH 7.4 (100 μL) overnight at 4 °C. The 

washes (3×) were performed using 200 μL PBS-Tween 0.05% (PBS-T). The blocking rea-

gent was 2% non-fat dry milk in PBS that was incubated for 2 h at RT. The sera (100 μL at 

1:100) were incubated for 2 h at 37 °C. The goat anti-human IgG Fcγ-specific antibody 

conjugated with alkaline phosphatase (AP) (Jackson ImmunoResearch, West Grove, PA, 

USA) was incubated at 1:2000 for 2 h at 37 °C and revealed using the p-nitrophenyl phos-

phate substrate (PNPP) (Gerbu Biotechnik GmbH, Wieblingen, Germany) in diethanola-

mine buffer (Thermo Scientific, Waltham, MA, USA). The optical density (OD) was read 

at 405 nm after 30 min using a Multiskan EX Microplate Reader (Thermo Scientific, Wal-

tham, MA, USA). All of the samples were assayed in duplicate using the same batch of 

modified and control antigens to avoid bias due to antigen preparation. In addition, the 

sera from the patients and healthy subjects were run on each plate to exclude inter-plate 

bias. Each ELISA plate contained positive and negative control sera for assessing assay 

variability. Raw OD and corrected OD values were used in the analyses. The corrected 

OD values were equal to the OD against the modified antigen minus the OD against the 

native antigen. The cut-off for positivity was set at the 98th percentile of the OD found in 

healthy controls. 

The anti-HOCl-CII and anti-NEG-CII ELISA were assayed following the general pro-

tocol. For the anti-NO2-SynP antibodies, the antigens were coated at 2.5 μg/mL (50 μL) in 

0.1 M carbonate buffer pH 9.6; the blocking reagent was 1% BSA + PBS-T; the sera (50 μL 

at 1:100) were incubated for 2 h at RT; and the secondary antibody was the AP-conjugated 

goat anti-human IgG F(ab’)2 (Jackson ImmunoResearch, West Grove, PA, USA) antibody 

(50 μL at 1:10,000) and it was incubated for 1 h at RT before adding the substrate. Regard-

ing the antibodies against the nitrated peptides, the ELISA was done using pools of the 8 

peptides that passed quality control at a concentration of 4 mg/mL each. The two pools 

(3-NT and control) were coated on streptavidin-coated high binding capacity 96-well 

plates (Pierce, Thermo Fisher Scientific, Waltham, MA, USA) at 2.5 μg/mL of each peptide. 
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Other aspects of the ELISA were as described for the NO2-SynP except that the secondary 

antibody was an AP-conjugated goat anti-human IgG (H + L) (Jackson ImmunoResearch, 

West Grove, PA, USA) antibody diluted 1:5000 that was incubated for 2 h at RT. Finally, 

the specific characteristics of the anti-Hcy-SynP ELISA were as follows: the coating was 

prepared at 10 μg/mL (100 µL/well) in 0.1 M carbonate buffer pH 9.6; the blocking reagent 

was 0.5% fish gelatin in PBS and was applied for 6 h at 4 °C; the sera (100 μL at 1:200) were 

incubated overnight at 4 °C; and the secondary antibody was the AP-conjugated goat anti-

human IgG F(ab’)2 (Jackson ImmunoResearch, West Grove, PA, USA) antibody (100 μL 

at 1:20,000), which was incubated for 3.5 h at 4 °C. 

2.5. Statistical Analysis 

Descriptive statistics of the continuous variables are shown as the mean ± standard 

deviation (SD) or the median with the interquartile range, as indicated in each case. For 

nominal variables, the frequency with the corresponding percentage is provided. The con-

tinuous variables were compared with the Mann–Whitney U test, whereas the Chi-

squared test for 2 × 2 contingency tables was used for the dichotomous ones. p-values 

below 0.05 were considered statistically significant. The data were analyzed using Statis-

tica software (StatSoft, Tulsa, OK, USA), and the figures were made using GraphPad 

Prism v5 (La Jolla, CA, USA). 

3. Results 

We verified that the reactions had successfully produced the four PTMs (Appendix 

A). The checks included the demonstration of comparable proteins to the previously re-

ported HOCl-CII and NEG-CII [11]; and proteins showing the predicted characteristics 

for NO2-SynP and Hcy-SynP. After passing the verification, the modified proteins were 

used as antigens in the assays. 

3.1. Prevalence of the Anti-HOCl-CII and Anti-NEG-CII Antibodies in the Patients with Early 

RA 

The presence of antibodies was evaluated as an uncorrected reactivity against the 

modified CII and as a corrected OD after subtracting the immunoreactivity against un-

modified CII (anti-CTR-CII) (Figure 1, Supplementary Table S1). 

   
(a) (b) (c) 

Figure 1. Reactivity against modified CII in patients with early RA (ERA) and healthy controls (HC). 

(a) Reactivity measured as OD before correction; (b) anti-HOCl-CII; and (c) anti-NEG-CII specific 

reactivities, obtained after subtracting the OD against the CTR-CII. The red line represents the me-

dian OD value in each group. n.s. = non significant.  

The results showed a higher level of reactivity against the CTR-CII in the healthy 

controls than in the RA patients (median OD = 0.174 vs. 0.143, p = 5.0 × 10−9). The increase 

was small but significant. A similar difference was observed with the uncorrected OD of 
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anti-HOCl-CII antibodies: a significantly greater level was seen in the healthy controls 

than in the ERA patients (median OD = 0.160 vs. 0.141, p = 3.1 × 10−5). The corrected OD 

showed no anti-HOCl-CII reactivity larger than zero in either the ERA patients or the 

healthy controls (median OD = −0.004 and −0.002, respectively). Therefore, there was no 

specific reactivity against the HOCl-CII and no difference between the patients and con-

trols. In contrast, the uncorrected OD of the anti-NEG-CII antibodies were not different 

between the ERA patients and the controls (median OD = 0.234 vs. 0.221, p = 0.5), whereas 

the corrected OD were significantly larger in the ERA patients than in the controls (me-

dian OD = 0.072 vs. 0.027, p = 0.0003). However, this increased immunoreactivity should 

be taken with caution due to the small magnitude of the specific signal. 

3.2. Antibodies against NO2-SynP and 3-NT Peptides in RA Patients 

The anti-NO2-SynP and anti-3-NT-pep antibodies were evaluated in the sera of 143 

patients with established RA and 56 healthy controls. Initially, we analyzed the immuno-

reactivity against the NO2-SynP, but the results showed little signal in all of the tested 

conditions (Figure 2a,b, Supplementary Table S1). That is, the levels were barely over zero 

already in the uncorrected OD of the anti-NO2-SynP antibodies (median OD = 0.018 and 

0.011 in the RA patients and the controls, respectively). In addition, the corrected OD of 

the anti-NO2-SynP was negative after subtracting the OD obtained against the CTR-SynP 

(median OD = −0.009 and −0.011 in the RA patients and the controls, respectively). 

  

(a) (b) 

  

(c) (d) 
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Figure 2. Reactivity against nitrated proteins and peptides in RA patients and healthy controls. (a) 

Uncorrected; and (b) corrected OD of the reactivity against NO2-SynP; (c) uncorrected; and (d) cor-

rected OD of the reactivity against a 3-NT-pep. The red line represents the median OD value in each 

group. n.s. = non significant. 

Because of these results, we completed the study by exploring the reactivity against 

eight synthetic nitrated peptides (3-NT-pep). These peptides were selected from relevant 

proteins in RA and for their likelihood of in vivo nitration as described in the Material and 

Methods section and in Table 3; namely: enolase, fibrinogen, vimentin, 14-3-3 η, and his-

tones H3 and H4. The ELISA coated with the peptides showed larger OD in the RA pa-

tients than in the healthy controls against the unmodified peptides (Figure 2c,d). The in-

crease was small but significant (median OR = 0.111, vs. 0.097, p = 0.02). The same differ-

ence was observed in the uncorrected OD against 3-NT-pep. That is, the OD were larger 

in the RA patients than in the controls (median OD = 0.250 vs. 0.209, p = 0.02). This increase 

was accounted for by the immunoreactivity against the unmodified peptides, as shown in 

the corrected OD. In effect, the corrected OD anti-3-NT-pep were not different between 

the RA patients and the healthy controls (median OD = 0.137 vs. 0.113, p = 0.1). Therefore, 

we did not detect specific reactivity against nitration PTM, either on proteins or on pep-

tides, in the serum of RA patients. 

3.3. Prevalence of Anti-Hcy-SynP Antibodies in Patients with RA 

We also analyzed the antibodies against homocysteinylated proteins. In a prelimi-

nary assay with a subset of the samples, we used Hcy-HSA as the antigen following a 

previous report [12], but the low reactivity obtained (Supplementary Table S2) motivated 

us to use the SynP extract as the antigen. The definitive ELISA was done using the sera of 

the 143 patients with established RA and of the 56 healthy controls. We assessed the im-

munoreactivity against the Hcy-SynP, homocysteinylated proteins, and the CTR-SynP, 

unmodified proteins (Figure 3, Supplementary Table S1). The OD against the CTR-SynP 

were larger in the RA patients than in the healthy controls (median OD = 0.211 vs. 0.186, 

p = 0.04). This result does not match that shown in the analysis of the anti-NO2 reactivity 

because the CTR-SynP were processed separately for each PTM: in parallel with homo-

cysteinylation and nitration, respectively; and assayed with the corresponding ELISA pro-

tocols. In turn, the levels of the anti-Hcy-SynP antibodies before correction were also 

higher in the RA patients than in the controls (median OD = 0.160 vs. 0.145, p = 0.0001) 

(Figure 3 and Supplementary Table S1). However, the OD were lower than those obtained 

against the CTR-SynP, a feature that resulted in a negative corrected OD both in the RA 

patients and in the controls (median OD = −0.041 and −0.038, respectively). Therefore, our 

results showed no specific immunoreactivity against protein homocysteinylation. 

  

(a) (b) 
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Figure 3. Reactivity against homocysteinylated SynP in RA patients and healthy controls. (a) Reac-

tivity measured as OD before subtracting the OD against CTR-SynP; (b) specific reactivity against 

Hcy-SynP after correction. The red line represents the median OD value in each group. 

4. Discussion 

Our main results are the absence of specific antibodies against chlorinated-CII 

(HOCl-CII), nitrated synovial proteins (NO2-SynP), nitrated peptides (3-NT-pep), and ho-

mocysteinylated synovial proteins (Hcy-SynP) and the lack of a meaningful level of anti-

ribose glycated CII (NEG-CII) antibodies. These results question the significance of the 

reactivity against the four PTMs in patients with RA. These results are interpretable be-

cause we used relevant antigens and followed quality control procedures, including our 

efforts to validate the PTMs (Appendix A). In addition, these negative findings contrast 

with our experience with other anti-PTM antibodies that are not routinely seen in clinic, 

but that we confirmed in patients with RA. These include anti-carbamylated protein anti-

bodies [15,32], anti-acetylated peptide antibodies [16], anti-MAA, and anti-MDA (Rodri-

guez–Martinez in preparation). Therefore, we conclude that the four atypical anti-PTMs 

participation are not significant components of RA autoimmunity. This information is 

noteworthy because it limits the range of recognized autoantigens and sets boundaries for 

the distinctive features of RA autoimmunity. 

We do not know the cause of the disparity between our study and previous ones 

reporting on the four atypical PTM autoantibodies [9–14]. However, the irreproducibility 

of the unstandardized assays is the prime suspect. The source of irreproducibility could 

be in the antigens or in the analysis of the ELISA. However, it is also possible that differ-

ences between the RA patients played a role. To discuss these issues, we will start by ad-

dressing the antecedents, followed by the proteins and peptides used as antigens, the 

characteristics of the PTMs, the ELISA interpretation, and the patient features. 

Previously, three studies have reported the presence of anti-NEG-CII antibodies in 

RA [11,13,14]. The first study, by Nissim et al. did not include healthy controls but showed 

a specific reactivity of a magnitude comparable to the one we observed: mean OD = 0.29 

vs. 0.20 against NEG-CII and unmodified CII, respectively [11]. The other two studies re-

ported frequencies of anti-NEG-CII antibodies of 64.7% in ERA patients [13], and 32% and 

44.4% in established RA patients [13,14]. These frequencies reflect a significant reactivity, 

whereas Nissim et al. and our low levels of specific anti-NEG-CII antibodies seem incon-

sequential. Overlapping antecedents apply to the anti-HOCl-CII antibodies because they 

have been described in two of the same studies [11,13]. The reported frequencies of anti-

HOCl-CII antibodies were 92.9% in ERA patients and 32% in established RA patients [13]. 

The contrast between the absence of specific antibodies in our ERA patients and the re-

ported frequencies is striking. There are two antecedents for the anti-NO2 antibodies 

[10,11]. In the first study, Nissim et al. found low significant reactivity against nitrated CII 

in patients with RA: mean OD = 0.35 vs. 0.20 against nitrated-CII and unmodified CII, 

respectively [11]. In the second, Khan et al. reported the presence of antibodies against a 

nitrated poly-L-tyrosine peptide in all the RA patients analyzed [10]. This study showed 

some limitations: it was small, and all of the patients, including those with OA and Sys-

temic Lupus Erythematosus (SLE), showed anti-nitrated poly-L-tyrosine antibodies at 

higher levels than all of the healthy controls. The 100% sensitivity and lack of specificity 

of the antibodies in this study are remarkable. In turn, the anti-Hcy antibodies have also 

been reported in two RA studies [9,12]. The first reported anti-Hcy-albumin and anti-Hcy-

hemoglobin antibodies [12]. They showed a 21 and 22% increase (mean OD difference = 

0.094 and 0.117) for anti-Hcy-albumin and anti-Hcy-hemoglobin, respectively, relative to 

the healthy controls. The findings of this study, which were uncorrected OD, are compa-

rable to our uncorrected results showing an increase in the OD against Hcy-SynP. The 

second study reported the prevalence of anti-Hcy-alpha-1-antitrypsin antibodies sepa-

rately in seronegative RA patients, 75.7%, and seropositive patients, 87.1% [9]. The two 

subsets of patients differed in their reactivity against native alpha-1-antitrypsin: 1.8% vs. 
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54.5%, respectively. However, the reactivity against native and modified alpha-1-antitryp-

sin was analyzed with different protocols, as we will detail below in the ELISA comments. 

Therefore, some previous reports show results that are comparable to our findings but 

with less stringent interpretations, whereas others are notably discordant. 

The proteins and peptides used as antigens are the first factors that could contribute 

to the discrepant results. We have used CII from bovine cartilage, the same protein as the 

previous studies addressing antibodies against the PTMs on CII [11,13,14]. However, CII 

is a possible source of irreproducibility [33,34]. This large and complex protein suffers 

changes during purification that could result in the loss of fragments. In addition, it easily 

carries contaminants, consisting mainly of the molecules that are tightly attached to it [34–

36]. Some of them, as the proteoglycans, escape detection in the Western blots that are 

commonly used for purity checks [36]. These properties have led to a wide heterogeneity 

in the reported frequencies of antibodies against native CII [13,14,33,34,37]. Therefore, we 

think the variation in CII is a likely factor in our discrepancy with previous results. In 

addition, there are grounds to suspect the antigens as contributing factors for the differ-

ences with the remaining studies. In effect, we used an extract of synovial proteins, SynP, 

as the base of the nitration and homocysteinylation PTMs. This approach was original. 

Previously, the anti-NO2 antibodies were explored with a NO2-CII and a 3-NT-poly-L-ty-

rosine peptide [10,11], whereas the anti-Hcy antibodies were analyzed using three homo-

cysteinylated serum proteins: albumin, hemoglobin, and alpha-1-antitrypsin [9,12]. How-

ever, our preliminary analysis of anti-Hcy-HSA showed low reactivity against this antigen 

(Supplementary Table S2). In any case, we chose to use SynP, instead, because they are 

more relevant for RA pathogenesis than serum proteins and more likely to reveal anti-

bodies specific to RA [1–3]. In addition, we preferred peptides that are potentially more 

relevant for RA than the poly-L-tyrosine peptide. Therefore, the choice of different mole-

cules could also be a factor of discrepancy in the anti-nitration and anti-homocysteinyla-

tion assays. 

Other potential factors are the PTMs themselves because the NEG with ribose, the 

chlorination with HOCl, and the nitration with peroxynitrite are complex processes that, 

as detailed in Appendix A, involve multiple reactions [17–21,23]. The three agents induce 

shared oxidation reactions and other changes specific to each of them. Many modifications 

are produced in different degrees of abundance, depending on numerous factors. Some 

of these factors depend on the amino acids upon which they act, including their accessi-

bility and molecular context. As mentioned in Appendix A, we have verified the three 

PTMs with procedures that included the ones described by Nissim et al. [11]. These anal-

yses showed the presence of the intended PTM and the overall impact of the in vitro re-

actions. However, the available information for comparison is limited to Nissim et al. [11], 

is only qualitative, and it only covers a small subset of all the potential changes. Therefore, 

a certain degree of irreproducibility between the experiments is unavoidable, and it can-

not be assessed using the available verification data. In contrast, the nitration in our syn-

thesized peptides is a well-defined 3-NT modification as it was incorporated during syn-

thesis and verified by HPLC and MS. Finally, the in vitro reaction of L-Hcy-thiolactone 

with proteins produces only N-homocysteinylation [22], a well-defined modification at 

lysine residues that we verified (Appendix A). 

Another putative factor contributing to the discordant results is the analysis of the 

ELISA because the specific reactivity was determined differently. In the previous studies 

analyzing anti-modified CII antibodies [11,13,14], the authors subtracted the OD against 

modified-BSA from the OD against the corresponding modified-CII; i.e., the reported OD 

of anti-HOCl-CII was the OD obtained against HOCl-CII minus the OD against HOCl-

BSA. In our study, we did not correct the results in this way. In its place, we subtracted 

the OD against unmodified CII, which seems a necessary control in the design of the assay. 

Accordingly, this correction is the common procedure in the study of the anti-PTM anti-

bodies that is only omitted when the level of reactivity against the unmodified antigens is 

consistently negligible [4–8,15,32]. The previous studies on modified-CII dealt with the 
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reactivity against the CII backbone by showing that the OD or the frequency of anti-un-

modified CII antibodies was lower than that of anti-modified-CII [11,13,14]. It is evident 

that if the correction for the unmodified-CII had been applied, the previously reported 

reactivities against the modified CII would have been diminished. In turn, the study by 

Colasanti et al. compared the reactivity against Hcy-alpha-1-antitrypsin and unmodified 

alpha-1-antitrypsin [9]. The latter was very notable in the controls and the seropositive 

RA patients but less marked in the seronegative RA patients. However, this comparison 

cannot be taken at face value because the ELISA protocols were different. The ELISA for 

unmodified alpha-1-antitrypsin included two changes that reduce sensitivity relative to 

the Hcy-alpha-1-antitrypsin ELISA: a higher dilution of serum (1/100 in place of 1/50) and 

a shorter incubation time of the enzymes’ substrate (5 in place of 20 min). Therefore, an 

ELISA without these two changes would show very little or no specific reactivity against 

Hcy-alpha-1-antitrypsin. The other two reports did not analyze unmodified antigens, and 

they did not correct to establish specificity [10,12]. Therefore, our correction for specificity 

could be a contributing factor for the discrepant results with all the previous studies. 

Finally, our patients might differ from previous patients in the characteristics associ-

ated with the atypical antibodies. However, we did not find evidence of this factor. On 

one side, only two studies identified patient characteristics associated with the antibodies 

[9,12]. The two studies addressed the anti-Hcy antibodies, but the associated features were 

different in the two studies and did not replicate in our patients. In one of the studies, the 

anti-Hcy-albumin or anti-Hcy-hemoglobin antibodies were associated with erosive and 

active RA but not with the presence of RF or anti-CCP antibodies [12]. On the other, the 

anti-Hcy-alpha-1-antitrypsin antibodies were more specific for seronegative RA patients 

[9]. In our study, neither the patients with erosive RA (p = 0.1), nor the seronegative RA 

patients (p = 0.7) differ in anti-Hcy-SynP reactivity. On another side, we studied anti-NEG-

CII and anti-HOCl-CII antibodies in ERA patients, the group with the reported higher 

frequencies [13]. As a piece of further evidence, we found that our ERA patients did not 

show any significant correlation between the anti-HOCl-CII or anti-NEG-CII antibody 

levels and disease activity as assessed with the DAS28, or the IgG total levels; they also 

showed similar anti-HOCl-CII and anti-NEG-CII antibody levels in all of the strata made 

by comparing treatment with the absence of treatment with GC, NSAID, MTX, other 

csDMARD, bDMARD or anyDMARD. Despite the lack of evidence on the patients’ role, 

it is worth commenting on the lower frequency of smokers among our patients in com-

parison with the patients in Xie et al. (30% vs. 62% [14]; frequency not reported by other 

studies) because smoking predisposes to autoantibody production in RA [38,39]. Finally, 

although there was little information on the patient characteristics in the nitrated poly-L-

tyrosine study [10], no particular feature is expected because 100% of the RA, OA, and 

SLE patients were antibody positive. 

Our study has tried to replicate previous findings to gain knowledge on RA. There-

fore, we chose relevant antigens and used reliable protocols to produce and verify the 

PTM and to run and interpret the ELISA. For example, we assessed the glycation and 

chlorination PTM following the protocols described by Nissim et al. [11], which were also 

followed by Strollo et al. and Xie et al. [13,14]. In addition, we used the same commercial 

source of high purity CII as Xie et al. [14] and we included the verification steps described 

by Nissim et al. [11]. However, we changed the correction for specificity because it was 

necessary according to the experience with the best established RA anti-PTM antibodies 

[4–8,15,32]. Therefore, we propose that the four atypical antibodies are either unspecific 

of the PTM or present at low levels of uncertain meaning. We hope other researchers will 

test the reactivity against these four PTMs to confirm our results. 

5. Conclusions 

Our study has found that the antibodies targeting four PTMs: chlorination with 

HOCl, NEG with ribose, nitration with peroxynitrite, and homocysteinylation with L-

Hcy-thiolactone, are absent or inconsequential in patients with RA. This outcome implies 
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that the range of PTMs able to trigger autoimmunity in RA patients is restricted and calls 

for experiments to understand their defining features. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/diagnostics12020352/s1, Table S1: OD obtained in the ELISA for the 

four anti-PTM antibodies in the patients with RA and the controls. Table S2: OD obtained in the 

preliminary ELISA for the Hcy PTM using anti-Hcy-HSA antigen. 
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Appendix A 

Appendix A.1. Nature of the PTM Induced by HOCl, Ribose and Peroxynitrite 

The production of the three PTMs: chlorination with HOCl, NEG with ribose, and 

nitration with peroxynitrite, has several aspects in common [17–20,38,39]. The incubation 

of the proteins with the three reagents, (1) induces complex reactions that modify a variety 

of amino acid residues and lead to a range of derivatives; (2) a shared component of oxi-

dation reactions; (3) many derivatives are reactive intermediates that induce new protein 

modifications; (4) the final effect includes protein structural changes; and (5) the three 

PTMs are present at increased levels in the RA patients [9,17,22,26]. 

Here, we describe the shared component of oxidation reactions and, in the following 

paragraphs, the differential component of reactions in each of the three PTMs [17–

20,38,39]. The amino acids that are particularly susceptible to oxidation are cysteine, me-

thionine, tryptophan, and tyrosine. Oxidation of the cysteine thiol leads to many modifi-

cations, depending on their accessibility in the protein and the oxidant: cysteine sulfenic, 

sulfinic, and sulfonic acid derivatives, in addition to the formation of inter- or intra-mo-

lecular disulfide bonds with another free thiol. Further, the series of oxidation derivatives 

of tryptophan is notable. In turn, several oxidants induce the tyrosyl radical that easily 

forms stable inter- or intra-molecular cross-links through di-tyrosine with another tyrosyl 

radical. Another common modification that arises via multiple mechanisms is protein car-

bonylation. This modification can result from a direct oxidative attack on proline, argi-

nine, lysine, and threonine. Alternatively, carbonyls arise via the secondary reaction of 

lysine, cysteine, and histidine with reactive carbonyls, including those derived from NEG. 

Finally, structural damage to the proteins can lead to their fragmentation and the for-

mation of aggregates. The aggregates result from the already mentioned disulfide bridges, 
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tyrosine cross-links, and other mechanisms. The shared changes vary in abundance de-

pending on the modifying agent and other parameters. 

In the case of chlorination, HOCl produces a wide array of the shared oxidation re-

actions plus some specific derivatives. For example, HOCl modifies cysteine to sulfenyl 

chloride, a distinctive modification, in addition to the shared ones: sulfenic, sulfinic, and 

sulfonic acids, and disulfide. In addition, HOCl reacts with tyrosine to yield 3-chloro-ty-

rosine and 3,5-dichloro-tyrosine. Another specific modification is the formation of chlora-

mines on lysine, histidine, and arginine, and chloramides on glutamine and asparagine, 

respectively. Chloramines and chloramides are reactive intermediates that extend protein 

modifications. 

Similarly, glycation induces a wide range of molecular changes, many of them gly-

coxidations. The NEG with ribose (or other sugars) gives rise to a highly heterogeneous 

class of stable adducts, the AGEs. Glycation is a three-stage process: (1) the reversible con-

densation of the sugar aldehyde with a protein amino group to form a Schiff base; (2) the 

Schiff base rearrangement and condensation to yield an Amadori intermediate; (3) the 

intermediate cycles of condensation to produce AGEs. The Schiff bases and some Amadori 

intermediates participate in glycoxidation. In addition, one of the outcomes of glycoxida-

tion is protein carbonylation, as when the α-carbonyls (Amadori intermediates) modify 

the basic residues of lysine and arginine. Further, two of the predominant AGEs, carbox-

ymethyl lysine (CML) and pentosidine, are formed via glycoxidation. 

In addition, the treatment of proteins with peroxynitrite induces an array of modifi-

cations that include the shared oxidations and the specific nitration of tyrosine residues. 

Some of the oxidation reactions are abundant as are the oxidation of cysteine, tryptophan, 

and methionine and the production of carbonyls. The nitration of tyrosine readily yields 

3-nitrotyrosine (3-NT), which has become a biomarker of the effect of peroxynitrite. Tyro-

sine nitration can also produce 3,3′-di-tyrosine that favors the cross-linked protein aggre-

gates. Another remarkable characteristic of protein tyrosine nitration is that it occurs only 

in a few tyrosine residues, typically one or two, per protein, and not in all the proteins. 

Appendix A.2. Verification of the PTM Induced by HOCl and Ribose 

We used three techniques to verify the changes induced in HOCl-CII and NEG-CII: 

sodium-dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence 

analysis, and quantification of the carbonyls (Table A1). 

Table A1. Techniques used for verification of the four PTMs. 

Antigen Assay Information 

HOCl-CII & NEG-CII SDS-PAGE Integrity, apparent MW, aggregates 

 Fluorescence Tryptophan, PLP, other AGE 

 DNPH Carbonyls 

NO2-SynP Absorbance 3-NT (low specificity) 

 ELISA 3-NT (high specificity) 

 Fluorescence Tyrosine (unmodified) 

Hcy-SynP Competitive ELISA Total homocysteine 

3-NT-pep 1 HPLC Purity, elution time 

 MS Purity and peptide mass 
1 These procedures were performed by the peptide provider and are not described here. 

We assessed the integrity, apparent molecular weight (MW), and presence of aggre-

gates using SDS-PAGE (Figure A1). The unmodified CII showed a principal band at ≈130 

kDa and some bands of higher MW. The ≈130 kDa band corresponds to the α-chain of 

bovine CII, which has an apparent MW greater than its real MW (95 kDa) due to its fibril-

lar structure. Chlorination with HOCl produced only minor changes: some large aggre-

gates that remained in the loading well and a mild increase in the intensity of the ≈65 kDa 



Diagnostics 2022, 12, 352 14 of 18 
 

 

bands that could represent CII fragmentation. Nissim et al. reported the same changes 

[11]. However, the HOCl-BSA used as the control showed more marked alterations. In 

turn, the NEG modification of CII with ribose leads to a shift in all of the bands towards a 

higher apparent MW. This change in mobility is due to the glycation process. There was 

also a general decrease in the intensity of the < 200 kDa bands and increase in the > 200 

kDa bands that could represent the formation of aggregates. The control NEG-BSA 

showed a similar shift and band intensity changes. Nissim et al. also reported a NEG-CII 

shift to a higher MW, but these authors found new CII fragmentation bands that were 

absent in our preparation [11]. 

 

Figure A1. SDS-PAGE analysis of the HOCl-CII and NEG-CII compared with the unmodified CII 

and the control changes in BSA. The numbers on the left indicate the marker MW (kDa). 

The second technique consisted of the fluorescence 2D analysis after excitation at 

three wavelengths (Figure A2) [40–42]. The three excitation wavelengths were: 295 nm to 

estimate tryptophan with a small contribution from tyrosine and phenylalanine; 335 nm 

for pentosidine-like products (PLP); and 370 nm for other AGEs. We recorded the emis-

sion spectra using an F-2500 FL spectrofluorometer (Hitachi, UK) in the range of 230–600 

nm. The maximum fluorescence intensity was taken as relative fluorescence units and 

corrected for the protein mass (RFU/mg). 

 

Figure A2. Fluorescence intensity of HOCl-CII and NEG-CII at wavelengths to detect tryptophan, 

PLP and AGEs compared with unmodified CII and the control changes in BSA. The bars represent 

the mean and standard error of the mean (SEM) of at least 3 independent experiments. 
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These analyses showed a significant level of PLP already present in the unmodified 

CII that did not increase with chlorination or NEG (Figure A2). However, PLP were nota-

bly increased in BSA after the two transformations. In addition, the chlorination with 

HOCl almost did not decrease the level of tryptophan in CII, but increased 1.4 times the 

level of fluorescence in the wavelength of AGEs (maximum emission at 425 nm). These 

mild changes do not indicate ineffective HOCl, because it produced marked alterations in 

BSA. In addition, they are similar to the almost absence of changes reported by Nissim et 

al. [11]. The NEG with ribose, in contrast, markedly decreased the tryptophan signal to 

about half the initial level (Figure A2). This decrease is similar to that observed on the 

BSA. In turn, the NEG also increased 2.3 times the fluorescence of AGE at 425 nm. The 

fluorescence of AGE on the BSA reaction was also increased but with an emission maxi-

mum at 440 nm indicating a different set of adducts. 

Finally, the carbonyl content of HOCl-CII and NEG-CII was quantified using the 2,4-

dinitrophenylhydrazine (DNPH) assay (Figure A3) [43,44]. Briefly, 250 µg of the antigens 

were precipitated in 10% trichloroacetic acid (TCA), dissolved in 50 µL of 5% SDS and 

incubated with 200 µL of 10 mM DNPH in 2.5 M HCl and 0.5 M H3PO4 for 1 h in the dark 

with stirring. The reaction was terminated by TCA precipitation, washed with ethanol-

ethyl acetate to remove free DNPH, and dissolved in 6 M guanidine-HCl pH 2.5. Light 

absorbance of the supernatant was measured at 370 nm and quantified using the molar 

extinction coefficient of the protein-hydrazone complex (22.000 M−1cm−1). The carbonyl 

content increased from 12.6 nmol/mg protein in the unmodified CII to 40.5 nmol/mg in 

HOCl-CII and 121.6 nmol/mg in NEG-CII. Similarly, the carbonyl content of BSA in-

creased from 3.0 to 21.1 and 35.6 nmol/mg, respectively. 

 

Figure A3. Carbonyl concentration in HOCl-CII and NEG-CII compared with the unmodified CII 

and the control changes in BSA. The bars represent the mean and SEM of at least 4 independent 

experiments. 

Appendix A.3. Verification of the Nitration of Proteins with Peroxynitrite 

For verification of the NO2-SynP, we used three techniques (Table A1). First, we used 

light absorbance at 420 nm, the absorbance maximum of 3-NT at pH 9.0, as unmodified 

tyrosine does not absorb in these conditions [10]. We used a calibration curve made with 

commercial 3-NT (Merck, Germany). We tested four concentrations of peroxynitrite on 

FBS in our preliminary experiments. The maximum formation of 3-NT, 13 µg 3-NT/mg 

FBS, was obtained with 10 mM peroxynitrite, when the basal level was 1 µg 3-NT/mg in 

the unmodified FBS. We used this concentration to produce NO2-SynP, which showed an 

increase from 5.5 µg 3-NT/mg in the unmodified SynP to 17.0 µg 3-NT/mg in NO2-SynP 

(Figure A4a). As we suspected, the absorbance obtained with the unmodified SynP could 

be due to other substances in the protein extract; we used a more specific test. It consisted 

of quantification with an ELISA kit that includes an antibody specific for 3-NT (#ab116691, 
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Abcam, UK). This determination showed a larger difference between NO2-SynP and un-

modified SynP, 22.0 vs. 1.9 µg 3-NT/mg protein, respectively (Figure A4). Finally, we used 

fluorescence to assess the tyrosines that remained after nitration because 3-NT does not 

emit fluorescence in the assay conditions [45]. We performed the analysis at pH 9 on a 

quartz cuvette excited at 275 nm, recording the maximum emission in the 360–450 nm 

range. NO2-SynP showed a significant decrease in fluorescence, but there was still some 

emission over the level of the blank, suggesting that there were unmodified tyrosines or 

other fluorescent substances (Figure A4b). The FBS showed a notably higher fluorescence 

level in the unmodified status that was also significantly decreased by nitration. 

  

(a) (b) 

Figure A4. Assessment of NO2-SynP in comparison with unmodified SynP and control FBS by (a) 

absorbance and ELISA to detect 3-NT; and (b) fluorescence to detect unaltered tyrosine. Th bars 

represent the mean and SEM of at least 2 independent experiments except for the absorbance meas-

urement that was performed once. 

Appendix A.4. Nature and Verification of Homocysteinylation 

The interest in the homocysteinylation of proteins comes from cardiovascular dis-

eases, where high homocysteinemia has been considered a risk factor [21]. The two reports 

of antibodies to anti-homocysteinylated proteins in RA used protein antigens that were 

modified by a reaction with L-Hcy-thiolactone [9,12]. We followed the same procedure. 

This precision is necessary because other homocysteinylation reactions lead to differen-

tially modified proteins [21]. The L-Hcy-thiolactone reaction is a non-enzymatic process 

that involves the acylation of the ε-amino group of lysine residues. However, this modifi-

cation is restricted to a few lysine residues in each protein for unknown reasons. This 

selectivity likely makes the anti-Hcy reactivity sensitive to the protocol and protein used. 

We evaluated the amount of Hcy incorporated into SynP with a clinically validated 

competitive immunoassay that quantifies total Hcy (IMMULITE®  2000 Homocysteine, Sie-

mens). This assay uses a monoclonal antibody specific for S-adenosyl-L-Hcy (SAH), an 

enzymatically reduced form of Hcy. We tested four reaction conditions combining con-

centrations of L-Hcy-thiolactone and times of incubation. The maximum level of Hcy in-

corporation without protein damage was obtained at 1 mM for 16 h leading to 2.26 nmol 

Hcy/mg of protein. The unmodified SynP showed no detectable Hcy. We used these prep-

arations in our ELISA. 
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