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Abstract: The aim of the study is to verify the feasibility of a radiomics based approach for the
detection of LV remodeling in patients with arterial hypertension. Cardiac Computed Tomography
(CCT) and clinical data of patients with and without history of arterial hypertension were collected.
In one image per patient, on a 4-chamber view, left ventricle (LV) was segmented using a polygonal
region of interest by two radiologists in consensus. A total of 377 radiomics features per region of
interest were extracted. After dataset splitting (70:30 ratio), eleven classification models were tested
for the discrimination of patients with and without arterial hypertension based on radiomics data. An
Ensemble Machine Learning (EML) score was calculated from models with an accuracy >60%. Boruta
algorithm was used to extract radiomic features discriminating between patients with and without
history of hypertension. Pearson correlation coefficient was used to assess correlation between EML
score and septum width in patients included in the test set. EML showed an accuracy, sensitivity and
specificity of 0.7. Correlation between EML score and LV septum width was 0.53 (p-value < 0.0001).
We considered LV septum width as a surrogate of myocardial remodeling in our population, and this
is the reason why we can consider the EML score as a possible tool to evaluate myocardial remodeling.
A CCT-based radiomic approach for the identification of LV remodeling is possible in patients with
past medical history of arterial hypertension.
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1. Introduction

Radiomics is defined as the quantitative extraction and analysis of data from medical
images, that are translated into a high-dimensional mineable feature space using dedicated
automatized feature extraction algorithm [1]. This process underlies the concept that
advanced quantitative texture analysis (TA) of biomedical images can provide additional
information that is undetectable by the human eye but are already within the digital data
of composed medical images [2]. Furthermore, radiomics allows the extraction of a large
number of features from a digital image to find characteristic features that can be useful for
diagnosis and prognosis of a wide variety of diseases.

Cardiac Computed Tomography (CCT) has proven to be an optimal modality on which
to perform TA. It has a rapid acquisition time with images of suitable quality resolution
and has frequent use in clinical practice resulting in large datasets of readily available
CCT images [3]. Radiomics has already proven to improve CCT performance for detection
of advanced coronary atherosclerotic lesion, characterization of atherosclerotic plaques,
evaluation of coronary stenosis and characterization of the myocardium [4–7].

The most common clinical use of CCT is the assessment of coronary artery disease
(CAD). This is a multi-factorial disease with many patients having multiple co-morbidities
such as hypertension, hypercholesterolemia or metabolic syndrome.

Hypertension is the leading risk factor for cardiovascular complications and com-
monly is associated with adverse structural heart remodeling, leading LV disfunction and
hypertensive cardiomyopathy [8]. Advanced quantitative TA of the myocardium may
provide additional information that cannot be assessed by visual analysis such as fibrosis,
myocyte hypertrophy and scar tissue which may have major prognostic implications [2].

The aim of our research was to test the feasibility of extracting CCT-derived radiomics
features for the detection of LV remodeling in patients with arterial hypertension.

2. Materials and Methods
2.1. Population and Study Design

In this retrospective study, images of patients undergoing CCT between January to
September 2020 at San Carlo di Nancy Hospital (Rome, Italy) were analyzed. For the
purpose of this study, images of patients with and without prior diagnosis of arterial hyper-
tension meeting the inclusion criteria were considered. Arterial hypertension was defined
as per the European Society of Hypertension guidelines [9]. The inclusion criteria included:
age >18 years, absence of coronary stenosis >50%, absence of clinical or imaging criteria
for other types of cardiomyopathies (e.g., dilated, hypertrophic), absence of respiratory or
heart rate related artifacts on CT images.

2.2. Data Collection

Demographic and clinical characteristics (see Table 1) were collected at enrollment
for each patient included in the study and recorded on a dedicated database. Subjects
re-porting a past smoking history were considered as smokers. Co-morbidities including
diabetic patients and of dyslipidemia status was also collected. Prior to imaging both
systolic and diastolic pressure were measured and recorded according to European Society
of Hypertension guidelines.
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Table 1. Baseline clinical features of selected patients. HTN: hypertension; NC: controls.

HTN (n = 83) NC (n = 75) p-Value

Sex (F) (%) 35 (42.17%) 45 (60%) 0.038
Age 65.63 ± 10.23 55.59 ± 12.42 <0.001

Dyslipidemia 18 (21.7%) 10 (13.3%) 0.24
BMI (kg/m2) 28.4 ± 6.1 25.5 ± 4.9 <0.001
Diabetes (%) 18 (21.7%) 4 (5.12%) 0.006

LV Septum Width (mm) 10.01 ± 2.7 8.15 ± 1.66 <0.001
Systolic blood pressure (mmHg) 131.6 ± 14.2 124 ± 11.8 0.06
Diastolic blood pressure (mmHg) 77.6 ± 8.18 75.8 ± 10.1 0.3

2.3. Image Acquisition and Analysis

CCT images were obtained using a 512-slice scanner (Revolution CT, General Electric,
Chicago, IL, USA), with prospective gating, setting the slice thickness at 0.625 mm, 120 kV,
automatic mA, rotation time of 0.28 s, DFOV: 25 cm, Detector Coverage: 160 mm. All
patients were subjected to administration of contrast material (Omnipaque 350 mg/mL, GE
Healthcare, Chicago, IL, USA) at a rate of 5 mL/s followed by a saline chaser. The image
acquisition was triggered after a threshold of 80 HU was reached in a region of interest
placed in the left ventricle (bolus-tracking technique).

In one image per patient, on a 4-chamber view and at 75% of R-R interval, LV was
segmented using a polygonal region of interest (ROI) by two radiologists in consensus.
Care was taken to not include blood in LV cavity, epicardial fat, myocardial trabeculations
or major coronary arteries in the ROI (Figure 1).
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old, BMI = 24.7 kg/m2, history of diabetes, dyslipidemia and hypertension, septum width: 14 mm. 
Clinical data of NC patient were: female, 61 years old, BMI = 18.9 kg/m2, smoker, familiarity with 
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Gray-level normalization was performed by rescaling the histogram data within μ-
gray-level mean ±3 σ (σ-gray-level standard deviation) to reduce contrast and brightness 
variations that might impair texture feature quantification [10]. 

Figure 1. Images and segmentation examples of cardiac CTs of patient with history of hypertension
(HTN, (A–C)) and without history of hypertension (NC, (B–D)). On a 4-chamber view, LV was
segmented using a polygonal region of interest (ROI). Care was taken in not including blood in LV
cavity, epicardial fat or major coronary arteries. Clinical data of HTN patient were: male, 73 years
old, BMI = 24.7 kg/m2, history of diabetes, dyslipidemia and hypertension, septum width: 14 mm.
Clinical data of NC patient were: female, 61 years old, BMI = 18.9 kg/m2, smoker, familiarity with
cardiovascular disease, no history of diabetes, dyslipidemia and hypertension, septum width: 8 mm.
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Gray-level normalization was performed by rescaling the histogram data within
µ-gray-level mean ±3 σ (σ-gray-level standard deviation) to reduce contrast and brightness
variations that might impair texture feature quantification [10].

A total of 377 features per ROI were extracted using MaZDa ver. 4.6 software (Institute
of Electronics, Technical University of Lodz, Lodz, Poland) [11]. Texture features were cal-
culated from geometry, the gray-level histogram analysis, co-occurrence matrix calculated
in five distances, run-length matrix calculated in four directions, auto-regressive model,
and Wavelet transform. The detailed description of the radiomic features is freely available
on the online MaZda 4.6 manual.

2.4. Statistical Analysis

Clinical data distribution was analyzed using the D’Agostino–Pearson test. Student’s
t-test was used to determine the p-value assessing the significance of the difference between
the investigated classes (α-value < 0.05). p-value was corrected according to the false
discovery rate (FDR) using the Benjamini–Hochberg procedure. Categorical variables
were compared using the χ2-test. Radiomics data were scaled by an autoscaling process
(mean-centered and divided by standard deviation of each variable). Pearson correlation
coefficient was used to assess correlation between continuous variables.

2.4.1. Classification Models

The auto-scaled dataset containing the texture analysis results, was first divided in
two parts (70:30 ratio), one used to train the classification models and one to test them
and to evaluate the model performances. In each dataset, the classes were quite evenly
represented. Eleven classification models were trained and included: Partial Least Square
Discriminant Analysis (PLS-DA), Naïve Bayes (NB), Generalized Linear Model (GLM),
Logistic Regression (LR), Fast Large Margin (FML), Deep Learning (DL), Decision Tree
(DT), Random Forest (RF), Gradient Boosted Trees (GBT), artificial Neural Network (aNN)
and Support Vector Machine (SVM). Hyperparameter tuning was also applied searching
the setting able to maximize each model’s accuracy. Overfittings were evaluated using a
cross-validation procedure based on training dataset. Furthermore, models were trained
using many features subsets. Features were first screened using 3 criteria: (a) correlation
(features that too closely, or not at all, mirror the image labels) (correlation < 0.001% or
>95%, (b) stability (features with almost all identical values) (>90% identical values), (c)
missing (features with missing values). Features that did not fulfil the screening criteria
were deemed unsuitable and removed from the dataset to avoid overfitting and maximize
the model’s accuracy.

2.4.2. Ensemble Machine Learning Score (EML Score)

Models showing an accuracy higher of 60% were selected and ensembled using a
voting scheme assuming both cross-validation accuracy and confidence (i.e., distance
from classification margin) as a vote weight. Ensembling was performed according to
Cavallo et al. [12]. Briefly, for the images classified as derived from subjects with Hyper-
tension (HTN), the scores (the products of model accuracy and classification confidences)
were left as is, while for each Controls (NC) classification the scores were multiplied by −1.
Finally, an Ensemble Machine Learning (EML) score was calculated for each sample by
summing all the single model classification scores. Additional information on EML score is
available in Supplementary Materials File S1.

Receiver operating characteristic (ROC) curves, sensitivity, specificity, positive and
negative predictive values, positive and negative likelihood ratios, and accuracy were mea-
sured to assess the ability of the EML score to correctly classify the images. A cut-off point
was evaluated as the score maximizing the Youden’s Index (sensitivity + specificity − 1).
DeLong non-parametric approach was used to compare the area under the curve receiver
operating characteristic (AUCROC).
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The overall diagnostic performance of the proposed score was investigated using a
confusion matrix to summarize the results obtained using samples in the test set.

Statistical analyses were performed using Rapid Miner Studio v9.8.001 (RapidMiner
GmbH, Boston, MA, USA), and R v4.0.4 (R. R Development CORE TEAM, R: A language
and environment for statistical computing, R Foundation for Statistical Computing Vienna,
Austria, 2008).

2.5. Relevant Features Selection
2.5.1. Smile Plot

Radiomic features were investigated by means of smile plot obtained by plotting for
each feature the negative log of the p-value on the y axis and the log of the fold change (FC)
on the x axis. This resulted in data points with low p-values (highly significant) appearing
towards the higher end of the plot and data points with higher FC at the plot margins. The
log of the FC was used so that any change appeared equidistant from the center in both
directions. By plotting the data in such a manner two regions of interest in the plot were
delineated: at the higher end of the plot and at the left- or right margins of the plot. Any
point in both locations on the plot represented values that displayed large magnitude FCs
(located at the left or right plot margins) as well as high statistical significance (hence being
toward the higher end of the plot).

2.5.2. Boruta Algorithm (BA)

Boruta algorithm was also used to evaluate the relevance of each radiomics feature.
From the radiomics’ dataset (DSet) a new dataset (shadow dataset ShDSet) was created
randomly shuffling each feature. ShDSet was attached to DSet to obtain a new dataset
(Boruta dataset BaDSet), which has twice the number of columns of DSet.

A Random Forest algorithm was trained using BaDSet, and the information gain was
evaluated for all features. A threshold level was defined as the higher information gain
among the features derived from ShDSet. All the features with a lower information gain
were excluded. The whole process was repeated 2000 times.

3. Results

CCT images from 158 patients, 83 with history of arterial hypertension (mean age
65.63 ± 10.23 years, Females = 42.17%) and 75 without (mean age = 55.59 ± 12.42 years,
Females = 60%) were used to perform image analysis.

Age, BMI, history of diabetes and LV septum thickness were higher in HTN patients,
as was male sex (Table 1). The difference between other clinical investigated variables were
not statistically significant.

Exploratory analysis of the 377 radiomic features showed that 43 (11.4%), showed a
fold change higher of ±2 and an FDR corrected p-value in patients with HTN (Figure 2).
There were 23 features selected with the Boruta algorithm (Table 2).

Classification performances evaluated on test set are reported in Table 3. Naïve Bayes,
Logistic Regression, Deep Learning, Decision Tree, artificial Neural Network and Support
Vector Machine resulted in an accuracy less than 60% (data not shown) and were not further
used to train the EML.
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Table 2. Radiomics’ features selected with Boruta algorithm. HTN: patients with history of hy-
pertension; NC: controls; Geo: Geometry features; DifEntrp: Difference Entropy; RLNonUni: Run
Length Non-Uniformity; GrNonZeros: Percentage of Pixels with Nonzero Gradient; WavEnLH:
Wavelet Energy.

HTN NC p-Value

GeoF 3495 ± 1246.18 2514.85 ± 735.74 <0.001
GeoSxL 18,978.13 ± 4315.37 18,074.65 ± 8676.49 0.005
GeoW3 1143.16 ± 329.01 1362.56 ± 357.21 <0.001

GeoW5b 0.023 ± 0.01 0.019 ± 0.005 <0.001
GeoW12 0.47 ± 0.16 0.37 ± 0.12 <0.001

GeoEl 2.17 ± 0.82 1.55 ± 0.48 <0.001
S(1,0)DifEntrp 1.2 ± 0.04 1.19 ± 0.05 0.6

S(1,−1)DifEntrp 1.31 ± 0.04 1.3 ± 0.04 0.7
S(2,0)DifEntrp 1.4 ± 0.04 1.38 ± 0.05 0.07
S(0,2)DifEntrp 1.39 ± 0.04 1.38 ± 0.05 0.77
S(2,2)DifEntrp 1.44 ± 0.04 1.43 ± 0.05 0.2

S(2,−2)DifEntrp 1.44 ± 0.04 1.43 ± 0.04 0.3
S(3,0)DifEntrp 1.45 ± 0.04 1.44 ± 0.04 0.2
S(3,3)DifEntrp 1.45 ± 0.04 1.44 ± 0.04 0.1
S(4,0)DifEntrp 1.46 ± 0.04 1.45 ± 0.04 0.5
S(5,0)DifEntrp 1.45 ± 0.03 1.45 ± 0.04 0.6

S(5,−5)DifEntrp 1.46 ± 0.03 1.44 ± 0.04 0.04
Horzl_RLNonUni 2939.47 ± 1051.8 2090.89 ± 646.64 <0.001
Vertl_RLNonUni 2904.91 ± 1033.5 2078.15 ± 637.73 <0.001
45dgr_RLNonUni 3045.01 ± 1080.71 2171.12 ± 664.71 <0.001
135dr_RLNonUni 3083.88 ± 1106.38 2202.61 ± 665.95 <0.001

GrNonZeros 0.98 ± 0.01 0.98 ± 0.01 0.8
WavEnLH_s-4 424.46 ± 111.54 465.10 ± 116.70 0.027
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Table 3. Diagnostic performance of each classification model and of the ensemble. Results are
expressed as value ± standard error.

S Sp PPV NPV PLR NLR Accuracy

GLM 0.70 ± 0.10 0.64 ± 0.10 1.91 0.48 0.67 ± 0.10 0.67 ± 0.10 0.667
FLM 0.54 ± 0.10 0.76 ± 0.09 2.28 0.60 0.72 ± 0.11 0.59 ± 0.0.9 0.664
RF 0.87 ± 0.07 0.45 ± 0.11 1.59 0.29 0.63 ± 0.09 0.77 ± 0.12 0.667

GBT 0.78 ± 0.09 0.55 ± 0.11 1.72 0.40 0.64 ± 0.09 0.71 ± 0.11 0.667
PLS-DA 0.83 ± 0.08 0.77 ± 0.09 3.63 0.23 0.79 ± 0.08 0.81 ± 0.09 0.800

Ensemble 0.70 ± 0.08 0.70 ± 0.08 2.32 0.43 0.72 ± 0.08 0.68 ± 0.08 0.7

Abbreviation: S = Sensitivity; Sp: Specificity; PPV: Positive Prognostic Value; NPV: Negative Prognostic
Value; PLR: Positive Likelihood Ratio; NLR: Negative Likelihood Ratio; GLM: Generalized Linear Model;
FLM: Fast Large Margin; RF: Random Forest; GBT: Gradient Boosted Trees; PLS-DA: Partial Least Square
Discriminant Analysis.

Accuracy of the selected models (GLM, FLM, RF, GBT and PLS-DA) ranged from 66.4%
to 80.0%. Ensemble models showed 70.0% accuracy. Sensitivity and specificity resulted
balanced for all models, ranging between 54–87% and 45–77%, respectively (Table 3).
Youden’s evaluations of the best cut-off were performed for the EML resulting in 31.98. The
area under the receiver operating characteristic curve (AUCROC) resulted in 0.731 ± 0.064
for the EML score (p-value < 0.001) (Figure 3A). Moreover, Figure 3B shows the EML
score distribution among the HTN and NC patients which means that values resulted
82.0 ± 155.9 and −49.1 ± 152.7, respectively (p-value < 0.001). Moreover, the EML score
was well correlated with the LV septum width (R2 = 0.5292, p-value < 0.0001) (Figure 3C).
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Figure 3. (A) Area under the receiver operating characteristic curve of the EML score (0.731 ± 0.064)
(p-value < 0.001; (B) EML-score distribution among the HTN and NC patients; means values resulted
82.0 ± 155.9 and −49.1 ± 152.7, respectively (p-value < 0.001); (C) Correlation among LV septum
width (mm) and Ensemble Machine Learning Score (R2 = 0.5292, p-value < 0.0001).

The EML score was also evaluated in diabetic and non-diabetic enrolled subjects as
well as in the subjects with less of 50, 50–60, 61–70 and more than 70 years. The EML score
was lower in the youngest cohort (<50 years) only (p = 0.006). Moreover, BMI did not
affect the EML score, with no difference (p > 0.05) among normal weight (BMI < 25 kg/m2),
overweight (25 < BMI < 30) and obese (BMI > 30 kg/m2) subjects (Figure 4).
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4. Discussion

Our results suggest multiple alterations in the radiomic features in the myocardium
of patients with history of HTN undergoing a CCT for routine coronary angiography.
These findings might suggest structural alterations in the myocardium of these patients.
In our analysis, multiple Entropy and Gray Level non-Uniformity (RLN) feature parame-
ters, which are a measure of intrinsic randomness/variability in neighborhood intensity
value differences were selected by the Boruta algorithm. The Boruta algorithm ruled out
four different RLN features (Horizontal, Vertical, 135 degree and 45 degree), that also
showed a statistically significant difference between groups. RLN is a measure of the
similarity of run lengths throughout the image. The lower the RLN value, the more ho-
mogeneity among run lengths in the image is present. Patients with arterial hypertension
showed higher RLN values compared to patients without arterial HTN (Table 2), indicating
a more homogeneous distribution of gray levels among LV pixels. This may reflect a
higher myocardial architectural distortion in the LV of patients with arterial hyperten-
sion, which is consistent with our hypothesis. There was also a significant difference in
the complex geometry features of the LV, reflecting a different LV shape associated to
hypertensive remodeling.

Our results encourage an approach where a set of distinct radiomic features may be
used to train an ensemble machine learning model with an overall accuracy of 70%, and
relatively good sensitivity, specificity, positive and negative predictive values.

The practical application of such an approach may lie in its ability to discriminate
patients with LV remodeling from hypertension even without a past medical history of arte-
rial hypertension using CT instead of cardiac MRI (CMR), which is currently the method of
choice for assessing myocardial fibrosis through measures such as myocardial extracellular
volume fraction (ECV) which quantifies the interstitial space. The latter is, however, an
indirect measure that relies on the extravasation of gadolinium, a pure extravascular con-
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trast agent, into the interstitial space and measurements of T1 relaxation before and after
contrast administration. In the absence of myocardial edema or amyloidosis, ECV is an
adequate measurement of diffuse myocardial fibrosis [13]. CCT could be useful in the near
future to provide additional prognostic information by detecting myocardial fibrosis in
several cardiovascular pathologies that are already primarily diagnosed with CCT imaging
such as CAD, cardiomyopathies, coronary artery anatomy and valvopathies.

Recent advances suggest that LV fibrosis is the end-stage of a number of myocardial
processes including obesity, diabetes mellitus, sex, age, environmental exposures and
genetic factors which collectively, through pathways of inflammatory stress, may eventually
lead to fibrosis and LV dysfunction and hypertensive cardiomyopathy [14,15]. Indeed,
fibrosis is thought to precede left ventricular hypertrophy. This theory may explain why
many patients with high blood pressures do not present with clinically detectable LV
hypertrophy. The process of fibrosis in recent years has been shown to be powerfully
driven by the interplay of cardiomyocytes, resident cells of the myocardium (i.e., fibroblasts,
endothelial cells, pericytes) and immune cells. The latter may be recruited from the
circulation (e.g., immune and inflammatory cells and progenitor cells) in response to
a variety of stimuli [16].

Our analysis showed a significant correlation between EML score and septum width
(R2 = 0.53, p-value < 0.0001), independent of diabetes, BMI and age in those above the age
of 50 years old. The significantly low EML score in the diabetic vs. non-diabetic cohort
suggests that either cardiac remodeling by arterial hypertension is a long-term disease
process or that the effect of diabetes on the myocardium is more significant in younger
patients. This finding adds additional information on the potential role of machine learning
and texture analysis in detecting myocardial modifications in CCT images.

This study has several important limitations that must be acknowledged: (1) the
absence of a reference standard (CMR) for the quantification of LV remodeling and fibrosis;
(2) retrospective nature of analysis; (3) patients with hypertension were on antihypertensive
medication for a variable period of time (ranging from 1 to >20 years) which may affect
cardiac remodeling; (4) the possibility of systematic differences related to the size of
segmented volumes must be considered, especially for higher order features; (5) blood
pressure control, type of antihypertensive medications, as well as control of comorbidities,
were not assessed; (6) Clinical data of HTN and NC patients showed some statistically
significant difference that might affect outcomes; for the EML we’ve taken into account
only radiomics data in order to minimize possible biases.

In summary, our study has identified a possible radiomic-based approach for the iden-
tification of LV remodeling in patients with arterial hypertension and potential radiomic
features associated with LV remodeling in patients with this disease.

We considered LV septum width as a surrogate of myocardial remodeling in our
population, and this is the reason why we can consider the EML score as a possible tool to
evaluate myocardial remodeling.

Further confirmation of our findings will be needed also for other conditions associated
with LV fibrosis, and in comparison with imaging modalities such as echocardiography
and cardiac MRI.
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