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Abstract: Diabetic macular edema (DME) is the most common cause of visual impairment among
patients with diabetes mellitus. Anti-vascular endothelial growth factors (Anti-VEGFs) are considered
the first line in its management. The aim of this research has been to develop a deep learning (DL)
model for predicting response to intravitreal anti-VEGF injections among DME patients. The research
included treatment naive DME patients who were treated with anti-VEGF. Patient’s pre-treatment
and post-treatment clinical and macular optical coherence tomography (OCT) were assessed by
retina specialists, who annotated pre-treatment images for five prognostic features. Patients were
also classified based on their response to treatment in their post-treatment OCT into either good
responder, defined as a reduction of thickness by >25% or 50 µm by 3 months, or poor responder.
A novel modified U-net DL model for image segmentation, and another DL EfficientNet-B3 model
for response classification were developed and implemented for predicting response to anti-VEGF
injections among patients with DME. Finally, the classification DL model was compared with different
levels of ophthalmology residents and specialists regarding response classification accuracy. The
segmentation deep learning model resulted in segmentation accuracy of 95.9%, with a specificity
of 98.9%, and a sensitivity of 87.9%. The classification accuracy of classifying patients’ images into
good and poor responders reached 75%. Upon comparing the model’s performance with practicing
ophthalmology residents, ophthalmologists and retina specialists, the model’s accuracy is comparable
to ophthalmologist’s accuracy. The developed DL models can segment and predict response to
anti-VEGF treatment among DME patients with comparable accuracy to general ophthalmologists.
Further training on a larger dataset is nonetheless needed to yield more accurate response predictions.

Keywords: anti-VEGF; artificial intelligence; deep learning; diabetic retinopathy; macular edema

1. Introduction

Diabetic macular edema (DME) is the most common cause of visual impairment among
patients with diabetes mellitus, affecting almost 4% of patients with diabetes [1,2]. Its global
prevalence is expected to increase from almost 18.83 million in 2020 to 28.61 million in 2045
where prevalence and increase are expected to be highest in developing countries with
limited resources [1]. Currently, anti-vascular endothelial growth factors (Anti-VEGFs) are
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considered the first line in managing DME [3]. However, those anti-VEGFs carry high costs
and burden even in high resource settings [4,5]. Considering the higher prevalence of DME
in developing countries, with almost the highest risk among Middle Eastern populations [1],
it is important to develop strategies to mitigate this issue and better allocate resources to
tackle the problem. The importance of allocating resources has been recently investigated
during recent lockdowns, where only a limited number of ophthalmic procedures were
allowed in Jordan [6]. In such situations, healthcare providers need to prioritize patients
who would better respond to treatment and suffer more adverse outcomes if treatment was
delayed. One strategy that has been proposed, but not yet applied sufficiently, is the use
of artificial intelligence (AI) and its machine and deep learning derivatives to aid in the
prediction of the outcome of anti-VEGF [7].

One of the main problems ophthalmologists typically face when treating DME patients
with anti-VEGFs is the unpredictable response to treatment. Most patients respond well to
anti-VEGF agents, whereas some might show a moderate or even poor response [8].

The importance of predicting the outcome of anti-VEGF from baseline data in low-
resource settings might help in triaging the urgency of treatment, providing better patient
counseling, and even in selecting appropriate subjects for clinical trials that investigate
novel therapies for DME. The aim of this work has been to develop a deep learning model
for predicting the response to intravitreal anti-VEGF injections among patients with diabetic
macular edema. Prediction is achieved using two connected deep learning models by first
segmenting then classifying OCT images acquired before intravitreal anti-VEGF injections.
The segmentation model first encodes the local semantic information in the latent space to
capture the hidden information for DME segmentation. Then the classification model uses
the generated segmentation map, alongside the input image, to predict the effectiveness of
anti-VEGF treatment.

2. Methods
2.1. Study Participants

This study was approved by the institutional review board of the Jordan University
Hospital (IRB approval number 10/2021/17769) and was conducted in concordance with
the latest declaration of Helsinki. The study was a collaborative project between The
University of Jordan’s Department of Ophthalmology, and the University of Greenwich’s
School of Computing and Mathematical Sciences.

The study included patients who had diabetic retinopathy along with DME. DME was
defined as central subfield thickness greater than 320 µm for men or 305 µm for women
as measured on OCT [9], treatment-naive diabetic macular edema or more than three
months since last anti-VEGF injection or more than six months since last steroid injection,
and had macular OCT done within 7 days before and 7 days after intravitreal anti-VEGF
injections, which were administered within four months period. Patients who had pars
plana vitrectomy, undergone intraocular surgeries within the injection period, had ocular
diseases or media opacity that affected vision, or patients with poor quality images were
excluded from the study.

The following data were recorded for each patient: data regarding age, gender, severity
of diabetic retinopathy through fundus exam, best corrected visual acuity before and after
intravitreal anti-VEGF injections, central OCT foveal thickness before and after intravitreal
anti-VEGF injections, number of injections given, prior anti-VEGF treatment, phakic status
(phakic vs. pseudo-phakic), glycosylated hemoglobin A1c (any reading during the last
3 months), and any other ocular diseases. Data regarding only one eye were included for
each patient, in order to avoid in between-eye correlation [10].

2.2. OCT Image Acquisition and Preparation

OCT images were extracted from an 8 × 8 mm macular area focused on the fovea
captured using the spectral domain OCT (Nevonx, version 7.2.0, OPTOPOL Technology,
Zawiercie, Poland). The device’s eye-tracking system compensated for eye movements.
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The automatic re-scan function using a reference point was activated to minimize variation
in allocating the acquisition protocols to the follow-up sessions.

A single B-scan centered at the fovea from both the pre-injection and post-injection
OCT images was used. Contrast and brightness were adjusted to ensure optimal demar-
cation of image features, where optimal visualization of the ellipsoid zone was the main
indication for optimal image quality. Care was taken to ensure that both the pre-injection
and post-injection OCT images were overlapping and centered at the fovea. This was done
using the enface scout image provided by the machine’s built-in software. Cross-sectional
images obtained and centered at the center of the foveola were exported.

The Fiji software was used for image processing before image segmentation [11]. The
images were cropped to have 6 mm horizontal and 5.5 mm vertical images with the fovea
being the center. The 6 mm width was obtained by first calibrating the pixel to micro-
meter scale according to the scale provided by the OCT image, followed by the cropping
function. After cropping the OCT section, no machine tags were present on the cropped
image. The 6 mm width will cover the central foveal region, along with the inner and outer
macular area [12–14]. The Computer Vision Annotation Tool (CVAT) platform for image
segmentation [15].

2.3. Image Annotation and Classification

Each pre-injection image annotation was performed by a professor-degree retina
specialist along with two ophthalmologists trained on OCT image interpretation and the
image annotation software. After extensive literature review to determine important OCT
image-based features that were related to response to anti-VEGF and overall prognosis,
as well as the ability to annotate such features on images, we found five main features to
be annotated:

• Inner intra-retinal fluids: Cystic fluid between inner limiting membrane (ILM) and retinal
pigment epithelium (RPE), and within the inner nuclear and plexiform layers [16].

• Outer intra-retinal fluids: Cystic fluid between ILM and RPE, and within the outer
nuclear and plexiform layers [16].

• Sub-retinal fluid: Hypo-reflective area between the RPE line and ellipsoid zone [16].
• Hyper-reflective foci: small discrete, well-circumscribed, dot-shaped lesion, with equal

or greater reflectivity than the RPE band and without back-shadowing [17,18].
• Disruption of ellipsoid zone (EZ), described as the second hyper-reflective line after

RPE [19].

Table 1 details the five main features and their corresponding RGB mask color values
on the annotation software.

Table 1. Annotation classes and corresponding masks RGB values for our dataset.

Classes RGB Colour RGB Value Class Number

Background Black 0,0,0 0
Inner Intraretinal fluid Soft Blue 51,221,255 1

Disrupted ellipsoid zone Strong Blue 53,15,247 2
Sub-retinal fluid Orange 245,147,49 3

Hyper-reflective dot Yellow 250,250,55 4
Outer intra-retinal fluid Red 255,53,94 5

Images were classified based on the change in central OCT foveal thickness before
and after intravitreal anti-VEGF injection, where good response on OCT was defined as
reduction of thickness by >25% or 50 µm by 3 months [20]. Figure 1 shows samples of our
dataset and corresponding segmentation mask.
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Figure 1. Some instances of the dataset, where the input images are shown in the first row and
corresponding annotations are depicted in the second row. The first two samples belong to patients
with good responses while the next two samples show the poor responses to the anti-VEGF treatment.

2.4. Data Preparation

Our data preparation stage follows the offline sample-wise normalization and resizing
process. To this end, each sample was resized to 512 × 512 pixels. Then for each sample,
the image mean was subtracted and divided by the standard deviation to reduce the effect
of the intensity range. Furthermore, for the training data, the data augmentation method
with horizontal flip and small intensity shift was randomly performed.

2.5. Segmentation Model

The segmentation model was based on the U-Net structure. The U-Net, a convolutional
network for biomedical image segmentation, is a symmetrical model which is well designed
to capture both semantic and high-resolution information [21]. Even though the U-Net
model can capture local information, the structure is not completely designed for region-
sensitive inference. In other words, to retrieve the diabetic sign from the DME not only the
local representation is important but also the entropy of the area. To model such region-
sensitive representation, squeeze excitation layers were first included into a decoding
path of the model to formulate the region sensitivity then the convolutional blocks were
reformed into an inception module to extract hierarchical semantic information. The
resulted representation can describe regions based on both local variation and semantic
information. The proposed architecture is shown in Figure 2.

To formulate the segmentation model, the sample XH′×W ′×C′ was considered as an
input to the model. Where H and W are the spatial dimensions and C is the number of
channels. The network initially applies the encoder block (parametrized with fθ) to encode
the input image into a low dimensional latent space (FH×W×C).

F = f (X; θ) (1)

In the next subsections, the inception, squeeze and excitation, and attention layers are
discussed.
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Furthermore, the multi-level attention mechanism is utilized to extract multi-scale representation.

2.6. Feature Re-Calibration Module

Although the feature vector generated from the encoder network contains high-level
semantic information, it was unable to encode the interdependencies feature among the
channels. Squeeze-and-Excitation (SE) module introduced a building block for CNNs that
improved channel interdependencies at almost no computational cost [22]. The SE module
at first, calculates the importance of each channel using the global information. Then using
the extracted global information, it learns the scale parameters (parameters W1 and W2) for
each channel based on how informative they are.

GAPC =
1

H ×W

H

∑
i

W

∑
j

FC (i, j) (2)

wc = σ(W2δ(W1GAPc)) (3)

Finally using the scale parameters, the re-calibrated representation F′ was produced.

F′ = Wc F (4)

2.7. Inception Layer

To extract the hierarchical representation, we modified the last convolution layer of the
decoding path with the inception module. The main concept of the inception architecture
was to deploy multiple convolutions layers with different receptive field sizes, in parallel,
to capture multi-scale representation [23]. To do so, the inception module on the output of
SE module was utilized.

F′′ =↓
(

F′
)
± ↓

(
δ
(
K1 ∗ F′

)) ∣∣∣∣↓ (δ
(
K3 ∗ δ

(
K2 ∗ F′

)))
(5)

where ↓ shows the down-sampling operation, ± indicates concatenation operation, and δ
refers to the ReLU activation function. Figure 3 shows the Inception Squeeze Excitation
(ISE) block architecture.
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Figure 3. Our Inception Squeeze Excitation (ISE) block. This module scales the encoded feature F
and then utilizes the inception module to generate transformed feature map.

2.8. Multi-Scale Attention

Describing an object of interest in a multi-scale fashion not only produces a rich
representation but also a set of scale-independent descriptions. To further enhance this
representation, the attention mechanism on top of the multi-scale representation was
included. The objective of the attention layer is to highlight the importance of each activated
feature map with respect to the object of interest [24]. The attention mechanism is visualized
in Figure 2.

2.9. Model Training

The segmentation model was trained using the combination of focal loss and dice
coefficient (loss). The focal loss is an extended version of cross-entropy loss which is
designed to address the class imbalance during training. This loss function automatically
down-weights the contribution of easy examples during training and rapidly focuses the
model on hard examples. Dice Coefficient, on the other hand, is a statistical tool that
measures the similarity between two sets of data. These two losses were combined to
train the segmentation model. It is worthwhile mentioning that for focal loss parameters,
‘gamma = 2’, and ‘alpha = 0.25’ were used and these worked well in the experiments. The
whole network was trained using the RMSprop optimizer with batch-size 2 for 200 epochs.
The RMSprop optimizer avoids both the vanishing and exploding gradient problems. A
learning rate of 1 × 10−4 was used which was reduced by a factor of 0.5 when there is
10 successive non-progress on the validation loss.

2.10. Classification Model

In the classification stage, several well-known classification models pre-trained on
image-net weights were used. To this end, a series of EfficientNet networks [25], VGG [26],
ResNet [27], and DenseNet models were used [28]. The inputs for the classification network
were both, the original OCT image of the patient and the segmented image from the
segmentation part (Figure 4). This will enable the network to focus on important areas and
ignore the parts related to the background image. The classification network was trained
for 200 epochs using the Adam optimization with learning rate 1 × 10−4 and batch-size 2.
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Figure 4. Classification Model Architecture. The classification model receives the predicted mask
alongside the input image to perform initial attention mechanism.

2.11. Performance Measures

To perform the evaluation of the proposed method on the test set, several well-known
metrics were utilized. The terminologies used to describe how metrics are calculated are
given below.

True-Positive (TP) refers to the predicted label that is correctly predicted as a diabetic class.
False-Positive (FP) refers to the predicted label that is falsely predicted as a diabetic class.
True-Negative (TN) refers to the predicted label that is truly labelled as background pixel.
True-Negative (TN) refers to the predicted label that is falsely labelled as background pixel.
Area Under the Curve (AUC) represents the degree of separability, which is useful

when the objective is to demonstrate the effectiveness of the model for separating TP and
FP rate.

Accuracy shows the percentage of correct prediction,

ACC =
TP + TN

TP + TN + FP + FN
(6)

Specificity measures the proportion of FP that are correctly identified by model,

Speci f icity =
TN

TN + FP
(7)

Sensitivity measures the proportion of predicted TP that are correctly identified by
model,

Sensitivity(Recall) =
TP

TP + FN
(8)

Precision measures the proportion of TP against all T predictions,

Precision =
TP

TP + FP
(9)

F1 score, also known as balanced F-score or F-measure, is a weighted average of the
precision and recall,

F1 =
2 ∗ (Precision ∗ Recall)

Precisio + Recall
(10)

2.12. Real World Testing

To compare the model’s response prediction accuracy with practicing general ophthal-
mologists, pre-treatment macular OCTs for five patients who satisfied the inclusion criteria
specified above were collected but were treated after the development of the model (i.e.,
not previously included in the model training stage). The proposed model was evaluated
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on these images as well to find the number of correctly classified images (i.e., accuracy). A
Google form-based survey containing the same five pre-treatment macular OCTs was then
distributed to ophthalmologists and trainees to compare their classification accuracy with
the developed model. We targeted junior and senior residents, general ophthalmologists,
and retina specialists from ophthalmology departments at The University of Jordan, Royal
Medical Services, ministry of health, and private sector. Heads of ophthalmology depart-
ments and centers were contacted to distribute the survey. The form started by defining the
nature of the study and the definition of good and poor responses, followed by a consent
to participate, the level of experience, and finally the five macular OCTs with choices being
“Good response, “Poor response”, and “Don’t know”. The outcome of this comparison is
discussed in the Results section.

2.13. Implementation Settings and Statistical Analysis

The proposed models were implemented using PyTorch version 1.8.0 [29], with
NVIDIA CUDA version 10.0 (Santa Clara, CA, USA), Single GPU NVIDIA TITAN X
and 64 GB RAM. For our algorithm approximately 6 GB should be enough depending
on the batch size. The models were trained and evaluated on Linux (Ubuntu) operating
system (also compatible with Windows) and were coded in Python 3.9. The performance
measurement and statistical analysis were performed using the publicly available libraries
including Scikit-learn version 0.20.3.

3. Results

A total of 101 patients eventually met the inclusion criteria set out, and their pre-
treatment images were annotated, then their class was determined by the clinical team
(i.e., general ophthalmologists and retina specialist). None of the included images were
excluded by the computer science team after inclusion by the clinical team. The mean
age was 63.34 (10.11) years, and 63 (62.4%) were men and 38 (37.6%) were women. Of
the 101 patients, 60 patients were labeled as good responders to treatment (i.e., positive to
treatment), and 41 patients were labelled as poor responders to treatment (i.e., negative to
treatment). Table 2 details the characteristics of the included sample.

Table 2. Clinical characteristics of included sample.

Mean Standard Deviation Count Column N %

Age (years) 63.34 10.11

Gender
Female 38 37.6%
Male 63 62.4%

Eye laterality Left 44 43.6%
Right 57 56.4%

Severity of DR

Mild non-proliferative diabetic retinopathy 12 11.90%
Moderate non-proliferative diabetic retinopathy 28 27.70%

Severe non-proliferative diabetic retinopathy 19 18.80%
Proliferative diabetic retinopathy 42 41.60%

Central macular thickness pre-treatment (µm) 475 146
Central macular thickness post-treatment (µm) 382 149

Best corrected visual acuity pre-treatment 0.258 0.205
Best corrected visual acuity post-treatment 0.334 0.211

Functional outcome
Worsened 7

Stable 57
Improved 37

Prior history of argon
laser

No 58
Yes 43

Prior history of
anti-VEGF

No 38
Yes 63

Prior steroid injections 4

Phakic status
Phakic 69 68.3%

Pseudo-phakic 32 31.7%

The described segmentation deep learning method resulted in segmentation accuracy
of 95.9%, an AUC of 93.4%, a specificity of 98.9%, a sensitivity of 87.9%, a precision of 80.7%,
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an F1 score of 83.9%, and a dice score also of 83.9%. To further scrutinize the effect of each
module added to the baseline U-net model, the performance of the model was analyzed
after each additional layer was added starting from the baseline model (U-Net). Table 3
details the overall result of the segmentation network from baseline U-net model to our
proposed model, along with each layer addition in between, and shows how our proposed
method outperformed all other methods.

Table 3. Performance comparison on DME dataset for different approaches.

Methods AUC Accuracy Specificity Sensitivity Precision F1 Score Dice Score

Baseline (U-Net) 0.904 0.925 0.973 0.836 0.772 0.802 0.802

U-Net + SE 0.912 0.937 0.981 0.844 0.786 0.812 0.812

U-Net + ISE 0.921 0.951 0.985 0.846 0.788 0.817 0.817

Proposed
Method (U-Net+
ISE+Attention)

0.934 0.959 0.989 0.879 0.807 0.839 0.839

In Figure 5, samples of the segmentation results are provided and show how the model
accurately segmented DME regions.
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Regarding classifying patients’ images into good and poor responders, we found that
the best performing network was the EfficientNet-B3 network, with classification accuracy
reaching 75%. Using this network, we evaluated two different settings where in the first
setting we used only the image itself as an input while in the second strategy we included
the predicted mask as an extra channel to the input image. The results show that including
the predicted mask in the input layer not only performs as an initial attention mechanism
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but also improves the generalization performance. In Table 4, the comparison results
are detailed.

Table 4. Classification performance of different models for predicting the effectiveness of anti-
VEGF treatment.

Methods Accuracy % Precision % F1 Score % AUC Sensitivity Specificity

VGG 65 60 70 70.93 70.77 76

ResNet 70 65 75 76 75.82 78

DenseNet 70 65 75 76.01 75.82 78

EfficientNet-B3
(image) 70 65 75 76.03 75.84 78

EfficientNet-B3
(image + mask) 75 70 80 81.07 80.88 84

On real world testing of the developed model on newly collected macular OCTs, the
model was able to correctly classify three out of five images into good or poor responders
(60% accuracy). In regard to surveyed ophthalmologists and trainees, a total of 34 partici-
pants completed the survey. They were seven junior ophthalmology residents, nine senior
ophthalmology residents, 13 general ophthalmologists, and 5 retina specialists. Figure 6
shows classification accuracy of the proposed deep learning model compared to different
levels of ophthalmology trainees and specialists. The deep learning model achieved an
accuracy higher than junior (34%) and senior (43.6%) ophthalmology residents, comparable
to general ophthalmologists (58.3%), but still lower than retina specialists (86.3%).
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4. Discussion

With the rise of machine and deep learning methods and their rapid advancement,
there has been recent interest regarding predicting response to anti-VEGF from baseline
OCT among diabetic patients with DME. To our knowledge, only two previous works tried
to use deep learning to predict response to anti-VEGF from baseline OCT among patients
with DME. The first is the work by Rasti et al. where they developed a deep learning
model using CADNet as a baseline model, followed by adding certain convolutional layers
to improve model accuracy [30]. They performed their experiment using baseline OCT
images of 127 patients. They showed that using relatively small sample size, the model
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was able to predict and classify patients with high accuracy. The other similar work is
by Cao et al. where they used separate deep learning models to be trained on different
features, including hyper-reflective foci, intra-retinal, and subretinal fluid, which might
lead to higher computational demand than feature extraction using one model [31]. After
that, they developed a machine learning model to predict treatment outcomes, an approach
that is considered inferior and less sophisticated compared to deep learning [32]. Despite
the limitations in Cao et al. study, their strength was including relatively large sample size.
Regarding model accuracy, it is difficult to compare models that were not tested on similar
data, which is the case for the mentioned studies and ours. While there are plenty of openly
accessible datasets of medical and ophthalmic imaging, they are usually cross-sectionally
collected data [33]. In the case of predicting response to treatment, longitudinal openly
accessible data with strict inclusion and exclusion criteria need to be considered, which is
not currently available.

There are several important advantages of developing a model that can predict re-
sponse to anti-VEGF before starting treatment. A recent review article proposed that
AI-based tools could be applied to generate patient-customized prognostic data and predict
individual treatment needs, reducing the time needed to optimize a patient’s treatment reg-
imen [34]. This is especially important for low-resource settings, where patients themselves
may not be able to afford treatment, and for counseling where a prediction about their good
or poor potential response may aid in their decision making, considering the burden and
cost of anti-VEGF treatment [35]. Moreover, the recent 2019 Coronavirus pandemic, which
led to enormous pressure on health systems also showed the importance of such a model
in triaging patients toward the limited number of available resources [6].

There are several novelties in the work presented here. Including five different features
of DME on OCT and accurately segmenting them has not been previously performed.
Moreover, the approach of having two deep learning models, where the output of the
first was used as an input to the second has not also been done before for DME treatment
response prediction using OCT. In our design, a cascaded structure was followed. In the first
step, the segmentation model to generate the segmentation map for the input image was
applied. Then in the second step, the classification phase on the input image was performed
by considering the predicted mask. More precisely, the predicted mask was included in
the input layer of the classification model to perform the initial attention. This supervisory
signal not only helps the model to focus on the more informative area but also diminishes
the effect of background on the inference process. Another advantage of the current study
is that it was based on data from Jordan, with patients from Middle Eastern ethnicity.
Developing models on a wide variety of populations is essential to develop highly accurate
models from small datasets using transfer learning [17,36]. Another point to consider here
is that the accuracy of predicting response to treatment did not improve upon including
patients’ characteristics, including age, gender, and other comorbidities. The reason behind
this finding can be explained by previous deep learning projects on ocular imaging, which
showed that deep learning models can already predict such characteristics from ocular
imaging [37,38].

Several limitations still need to be considered upon interpreting the results of the
current study. The main limitation is the small sample size that was used to train the
models, which was extracted from a single OCT machine type. To have a more reliable
model that can be utilized in a real-life setting, a larger sample size from different machines
needs to be considered. Another aspect to be considered is the use of an anatomical outcome
to determine the response to anti-VEGF, an approach commonly followed and advocated
by several previous landmark trials [39–42]. However, the use of a functional outcome
(e.g., visual acuity) to assess the response to anti-VEGF might result in a more patient
preferable result.
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5. Conclusions

A DL model was developed to segment macular OCT for DME patients, and its output
was then fed into another DL model that classifies the patients based on their pre-treatment
macular OCT into good or poor responders to anti-VEGF treatment. The model showed a
high accurate segmentation and an acceptable accuracy for classification, despite the small
number of training data. This is the first deep learning project that can predict response
to anti-VEGF based solely on pre-treatment OCT. Despite that, there is still a long way
to go before implementing such a model in clinical practice, a model that is expected to
improve resource allocation, triaging and counseling patients who would benefit most from
treatment and have adverse outcomes if treatment was delayed. It would also improve
choosing different patients in clinical trials, where poor responder patients might be further
investigated for better understanding.
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