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Abstract: Accurate differentiation of intermediate/high mitosis-karyorrhexis index (MKI) from low
MKI is vital for the further management of neuroblastoma. The purpose of this research was to
investigate the efficacy of 18F-FDG PET/CT–based radiomics features for the prediction of MKI
status of pediatric neuroblastoma via machine learning. A total of 102 pediatric neuroblastoma
patients were retrospectively enrolled and divided into training (68 patients) and validation sets
(34 patients) in a 2:1 ratio. Clinical characteristics and radiomics features were extracted by XGBoost
algorithm and were used to establish radiomics and clinical models for MKI status prediction. A
combined model was developed, encompassing clinical characteristics and radiomics features and
presented as a radiomics nomogram. The predictive performance of the models was evaluated by
AUC and decision curve analysis. The radiomics model yielded AUC of 0.982 (95% CI: 0.916, 0.999)
and 0.955 (95% CI: 0.823, 0.997) in the training and validation sets, respectively. The clinical model
yielded AUC of 0.746 and 0.670 in the training and validation sets, respectively. The combined model
demonstrated AUC of 0.988 (95% CI: 0.924, 1.000) and 0.951 (95% CI: 0.818, 0.996) in the training
and validation sets, respectively. The radiomics features could non-invasively predict MKI status of
pediatric neuroblastoma with high accuracy.

Keywords: neuroblastoma; mitosis-karyorrhexis index; PET/CT; machine learning; nomogram

1. Introduction

Neuroblastoma, the most common malignancy in infancy, profoundly contributes
to childhood cancer deaths. A heterogeneous tumor has clinical outcomes ranging from
spontaneous regression to extensive systemic metastasis [1]. Clinically, neuroblastoma
progression is associated with local and/or distant metastasis and frequent relapses, with a
rapidly decreasing timeline. For high-risk neuroblastoma children, the long-term survival
rate is less than 40% regardless of intensive treatment [2]. Therefore, risk stratification is
critical for selecting the best treatment for individuals in the era of precision medicine.
According to Children’s Oncology Group (COG), independent prognostic indexes included
age, histologic category, mitosis-karyorrhexis index (MKI) status, and grade. The Inter-
national Neuroblastoma Pathology Classification (INPC) is based on age at diagnosis,
differentiation grade of the neuroblasts, MKI, and the presence or absence of Schwannian
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stromal development [3,4]. Using the INPC system, neuroblastoma INPC classification
is a strong prognostic index: favorable histology neuroblastoma has an overall survival
of 84%, while 45% for unfavorable histology neuroblastoma [5]. The MKI refers to the
total number of cells undergoing karyorrhexis or in mitosis, based on the assessment of
a minimum of 5000 tumor cells. MKI results are then stratified as low (<100/5000 cells
or <2%), intermediate (100 to 200/5000 cells or 2% to 4%), or high (>200/5000 cells or
>4%). Revised Neuroblastoma Risk Classification System (NRCS): a report from the COG
suggested that 5-year event-free survival of patients with intermediate or high MKI was
higher than that of low MKI (78.8% vs 62.4%), and 5-year overall survival of low and
intermediate/high MKI group had significant difference (89.9% vs 65.6%) [6]. Analysis
of morphological parameters demonstrated that the MKI strongly correlated with overall
survival [7]. Therefore, accurate differentiation of patients with intermediate/high MKI
from low MKI is vital for further management.

Traditionally, the assessment of the MKI is based on a manual count of sufficient
microscopic fields to include a minimum of 5000 cells. Depending on the pathologist, the
count may be accomplished more or less strictly and is estimated rather than accurately
calculated. For tumors that are highly mitotic, or at the opposite end of the range, MKI
can be reliably estimated as high or low, respectively. For tumors that are closer to the
cutoff values between intermediate and high or low and intermediate, or inconsistent from
field to field, a more careful evaluation of MKI is essential [5]. Despite the progress in
computer-assisted technology and image analysis, accurate evaluation of MKI status still
faced some challenges. Meanwhile, as an invasive approach, the traditional biopsy may
result in various complications [8], therefore, another non-invasive approach is needed to
efficiently describe the status of MKI.

Radiomics analysis using multiparametric imaging can be utilized to produce high-
throughput computation feature extraction, including tumor feature extraction, size, shape,
feature intensity, which can subsequently be investigated to build radiomics models that
can predict tumor pathology and prognosis. One of the most obvious values of radiomics
study was to optimize patient-specific therapy paradigms [9]. The application of 18F-
FDG PET/CT in neuroblastoma has been reported previously and has been confirmed
its value in staging and prognosis prediction [10–12]. Radiomics analysis of 18F-FDG
PET/CT can predict the status of TERTp-mutation status of high-grade gliomas [13],
EGFR mutation in lung adenocarcinoma [14], hormone receptor distribution, proliferation
rate, lymph node and distant metastasis of breast carcinoma [15]. The application of
machine learning methodologies on histopathological images is a blossoming field with
significant potential for clinical impact [16]. There have been no studies to date, however,
which utilize radiomics based on 18F-FDG PET/CT to predict the MKI status in pediatric
neuroblastoma. Therefore, the purpose of the present research was to investigate the
efficacy of 18F-FDG PET/CT–based radiomics features for the prediction of MKI status of
pediatric neuroblastoma via machine learning.

2. Materials and Methods
2.1. Patients

All of the included neuroblastoma patients underwent pre-therapy 18F-FDG PET/CT
scans between March 2018 and November 2019 in our department. The inclusion crite-
ria were as follows: (1) neuroblastoma confirmed by pathology; (2) age ≤ 18 years old
at the time of diagnosis; (3) available PET/CT scan data; (4) available clinical informa-
tion including demographic and clinical characteristics, routine lab indexes of neuroblas-
toma; (5) no tumor-related treatment before PET/CT; (6) available MKI results. The exclu-
sion criteria included: (1) patients accepted chemotherapy before 18F-FDG PET/CT scan;
(2) patients underwent 18F-FDG PET/CT after primary tumor excision.

According to the inclusion and exclusion criteria, 102 neuroblastoma patients were
included for the MKI status prediction study (47 males and 55 females, mean age: 33.5 months,
range: 17.0–52.3 months, 58 patients with low MKI, and 44 with intermediate/high MKI). All
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of the enrolled cases were randomly divided into a training set and a validation set according
to the ratio of 2:1 (68 cases for training, 34 cases for validation). This retrospective study was
performed according to the requirements of the Declaration of Helsinki and approved by the
Institutional Review Board of Beijing Friendship Hospital, Capital Medical University (Ref.
No. 2020-P2-091-02). Moreover, the requirement of written informed consent was waived.

2.2. Evaluation of the MKI

An MKI evaluation was performed on well-spread H&E-stained smears and their corre-
sponding cell blocks. At least 5000 cells were assessed with a 40× objective in nonoverlapping
areas, and the number of mitoses and karyorrhectic nuclei in the appointed areas was ana-
lyzed by two pathologists. Caution should be taken to avoid counting apoptotic nuclei. The
final MKI results were expressed as a percentage, including low (<100/5000 cells or <2%),
intermediate (100 to 200/5000 cells or 2% to 4%), or high (>200/5000 cells or >4%) [17].

2.3. Image Acquisition

All of the patients underwent PET/CT (Biograph mCT-64 PET/CT; Siemens, Knoxville,
TN, USA) examinations following European Association of Nuclear Medicine guidelines for
tumor imaging [18,19]. They were instructed to fast for at least 6 h and decrease intense exercises
for at least 24 h, and 0.10–0.15MBq/kg of 18F-FDG was intravenously injected 40–60 min before
the PET/CT scan. A low-dose CT scan (CT scanning characteristics: tube voltage 120 keV,
resolution 0.586 × 0.586 mm, thickness 2 mm, matrix size 512 × 512) for viewing anatomic
reference and attenuation correction was performed firstly, followed by PET scan. PET scan
was performed with 3-dimension image mode and 2 min per bed position immediately after
CT. The ordered subsets-expectation maximization algorithm in a time-of-flight based iterative
reconstruction method was used for PET images reconstruction. All corrections, including
detector efficiency, normalization, dead time, random counts, scatter, attenuation, were applied
during reconstruction. A Gaussian smooth filter of 5 mm in full width at half-maximum was
applied to the PET image.

2.4. Region of Interest Segmentation and Radiomics Features Extraction

The regions of interest (ROI) segmentation of the primary tumor were manually drawn
by 3D Slicer (version 4.10.1). With PET images as a reference, ROIs were delineated along
the edge of neuroblastoma lesions on CT images, including metastatic lesions with the
unclear demarcation between the primary lesion and its surrounding metastatic lesions.
The ROIs of all 102 patients were drawn by 2 different nuclear medicine physicians. Our
study flow diagram is shown in Figure 1.

Figure 1. Workflow of the steps in our study.
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Radiomics features were extracted from both masked CT and PET images using
Pyradiomics in Python (version 3.7.0). PET and CT images were discretized by equal width
bins with standard uptake values of 0.3 and 25 CT values (Hu), respectively.

2.5. Machine Learning and Radiomics Features Selection

In this research, an extreme Gradient Boosting (XGBoost) algorithm was used to
construct a robust machine learning based classification. The classifier was built using
XGBoost (version 0.81) in Python. XGBoost algorithm is a scalable end-to-end tree boosting
method that is widely applied by data researchers to acquire state-of-the-art results on
many machine learning difficulties [20]. XGBoost belongs to assembly algorithms that form
and combine a set of individually weak classifiers to yield a robust estimator. Matching
with the XGBoost algorithm, a model-based features selection method was applied for
tree learning algorithms. The features were ordered based on the importance across all
of the decision trees within the model. The importance is evaluated for a single decision
tree by the amount that each attribute split point enhances the performance, weighted by
the number of observations [21]. The average importance of the subsets, which split from
the training set randomly, was calculated as the selected reference. All of the features that
contributed to the classification were selected to build the model. The radiomics features of
each case were acquired from the score of the machine learning classification algorithm.

2.6. Model Construction and Evaluating Performance of the Models

A radiomics score (Rad-score) was counted for each patient from a linear combination
of selected and weighted features by their correspondent coefficients, and the radiomics
model was constructed by logistic regression based on Rad-score. XGBoost algorithm
was also used to screen clinical characteristics for use in building clinical model. Finally,
radiomics features and clinical characteristics were fitted to build the combined model and
presented as a radiomics nomogram. The performance of each model was evaluated by
the area under the receiver operator characteristic (ROC) curve (AUC). The calibration
of the combined model was evaluated with calibration curves. Decision curve analysis
(DCA) was used to estimate the clinical utility of the combined model, radiomics model,
and clinical model in the training set.

2.7. Statistical Analysis

IBM SPSS Statistics (version 26.0) was used for statistical analysis in this study. Cate-
gorical variables are expressed as frequencies and percentages; continuous variables are
expressed as median with interquartile range. The differences of patients’ characteristics
between the training and validation set as well as between the low and intermediate/high
MKI group were compared using two independent samples t-test or Mann Whitney U test.
The Delong test was performed for evaluating differences in AUCs in various models. A
2-sided p < 0.05 indicated statistical significance.

3. Results
3.1. Patient Characteristics

The clinical characteristics of the training and validation sets are summarized in Table 1.
No significant differences emerged in all of these clinical characteristics between training
and validation sets. All of these clinical characteristics were compared between the low and
intermediate/high groups in training and validation sets, respectively. Furthermore, there
were no differences between the low and intermediate/high MKI groups in the training
and validation sets (Table 2).
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Table 1. Characteristic of patients with neuroblastoma in the training set and validation set.

Characteristics All Patients (n = 102) Training Set (n = 68) Validation Set (n = 34) p Value

Age at diagnosis (months) 33.5 (17.0–52.3) 34.5 (16.3–51.8) 33.5 (19.8–64.5) 0.817

Sex 0.888

Female 55 (53.9) 37 (54.4) 18 (52.9)

Male 47 (46.1) 31 (45.6) 16 (47.1)

Long tumor diameter (cm) 9.4 (6.5–12.0) 10.2 (7.0–12.0) 7.6 (5.1–12.1) 0.094

INPC group 0.287

favorable 31 (30.4) 23 (33.8) 8 (23.5)

unfavorable 71 (69.6) 45 (66.2) 26 (76.5)

MYCN status 0.553

Amplified 15 (14.7) 9 (13.2) 6 (17.6)

Not amplified 87 (85.3) 59 (86.8) 28 (82.4)

INRG stage 0.447

L1, L2, MS 31 19 (27.9) 12 (35.3)

M 71 49 (72.1) 22 (64.7)

COG risk group 0.923

low 14 (13.7) 7 (10.3) 7 (20.6)

intermediate 21 (20.6) 17 (25.0) 4 (11.8)

high 67 (65.7) 44 (64.7) 23 (67.6)

Mitosis-karyorrhexis index 0.572

Low 58 (56.9) 40 (58.8) 18 (52.9)

Intermediate and high 44 (43.1) 28 (41.2) 16 (47.1)

PET/CT findings

SUVmax 4.8 (3.9–6.1) 4.7 (4.0–6.2) 4.9 (2.9–6.0) 0.580

SUVmean 2.0 (1.6–2.5) 2.0 (1.6–2.6) 1.9 (1.4–2.5) 0.482

MTV (mL) 167.7 (72.9–397.5) 192.9 (92.8–389.4) 126.9 (35.8–473.6) 0.194

TLG 348.5 (141.4–848.6) 391.8 (160.7–776.6) 206.3 (68.9–1028.8) 0.191

Initial laboratory findings

NSE (ng/mL) 219.1 (65.4–626.3) 192.3 (69.3–531.1) 282.8 (47.9–686.6) 0.683

LDH (IU/L) 553.5 (341.8–1018.3) 495.0 (348.8–1046.8) 591.5 (339.3–998.3) 0.790

Ferritin (ng/mL) 118.3 (59.2–318.4) 117.2 (48.4–300.9) 150.9 (69.8–503.5) 0.407

HVA (µmol/L) 35.6 (11.0–107.2) 37.4 (13.8–111.9) 23.2 (3.9–103.4) 0.233

VMA (µmol/L) 149.5 (31.1–537.0) 188.1 (41.8–544.8) 106.8 (27.3–464.7) 0.268

INPC: International Neuroblastoma Pathology Classification; INRG: International Neuroblastoma Risk Group;
COG: Children’s Oncology Group; NSE: Neuron specific enolase; LDH: Lactate dehydrogenase; HVA: Homovanil-
lic acid; VMA: Vanillylmandelic acid.



Diagnostics 2022, 12, 262 6 of 13

Table 2. Characteristics of patients with neuroblastoma with low MKI and intermediate/high MKI.

Characteristics
Training Set Validation Set

Low
(n = 40)

Intermediate/High
(n = 28) p Value Low

(n = 18)
Intermediate/High

(n = 16) p Value

Age at diagnosis (months) 39.5
(16.3–52.8)

30
(16.3–47.8) 0.537 41

(20.8–69.0)
26.5

(16.0–38.5) 0.164

Sex 0.541 1.000
Female 23 (57.5) 14 (50.0) 10 (55.6) 8 (50.0)
Male 17 (42.5) 14 (50.0) 8 (44.4) 8 (50.0)

Long tumor diameter (cm) 8.5
(6.5–11.9)

10.6
(9.0–12.2) 0.079 6.7

(4.6–12.6) 9.9 (5.8–11.9) 0.325

INPC group 0.198 0.693
favorable 16 (40.0) 7 (25.0) 5 (27.8) 3 (18.8)
unfavorable 24 (60.0) 21 (75.0) 13 (72.2) 13 (81.3)

MYCN status 0.192 0.387
Amplified 3 (7.5) 6 (21.4) 2 (11.1) 4 (25.0)
Not amplified 37 (92.5) 22 (78.6) 16 (88.9) 12 (75.0)

INRG stage 0.651 0.729
L1, L2, MS 12 (30.0) 7 (25.0) 7 (38.9) 5 (31.3)
M 28 (70.0) 21 (75.0) 11 (61.1) 11 (68.8)

COG risk group 0.707 0.443
low 4 (10.0) 3 (10.7) 5 (27.8) 2 (12.5)
intermediate 11 (27.5) 6 (21.4) 2 (11.1) 2 (12.5)
high 25 (62.5) 19 (67.9) 11 (61.1) 12 (75.0)

PET/CT findings
SUVmax 4.4 (4.0–5.8) 5.0 (4.1–6.7) 0.174 4.3 (2.4–5.9) 5.5 (4.1–6.2) 0.102
SUVmean 1.9 (1.6–2.4) 2.2 (1.7–2.7) 0.148 1.7 (1.3–2.3) 2.3 (1.6–2.9) 0.050

MTV (mL) 185.9
(80.8–389.4)

218.3
(127.8–396.1) 0.360 68.5

(8.6–257.4)
239.7

(80.8–565.9) 0.088

TLG 369.9
(141.2–644.7)

567.1
(211.9–1054.1) 0.204 138.6

(12.0–640.8)
593.9

(157.3–1463.4) 0.039

Initial laboratory findings

NSE (ng/mL) 177.7
(60.7–340.6)

260.2
(91.3–747.9) 0.195 143.1

(28.3–552.3)
459.0

(141.7–736.9) 0.164

LDH (IU/L) 485
(357.3–738.8)

762
(329.0–1418.5) 0.189 545.0

(285.0–896.5)
659.0

(358.0–1019.0) 0.246

Ferritin (ng/mL) 111.8
(42.8–269.1)

138.1
(65.2–358.5) 0.294 302.3

(42.1–687.9)
117.1

(90.3–210.2) 0.297

HVA (µmol/L) 39.5
(22.3–101.9)

31.6
(8.7–152.6) 0.451 63.8

(3.4–153.8)
20.5

(4.0–47.5) 0.589

VMA (µmol/L) 255.3
(79.3–587.3)

59.2
(23.9–375.7) 0.052 195.2

(27.2–614.0)
48.1

(27.7–290.0) 0.650

MKI: Mitosis-karyorrhexis index; INPC: International Neuroblastoma Pathology Classification; INRG: Interna-
tional Neuroblastoma Risk Group; COG: Children’s Oncology Group; NSE: Neuron specific enolase; LDH: Lactate
dehydrogenase; HVA: Homovanillic acid; VMA: Vanillylmandelic acid.
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3.2. Radiomics Features Selection and Radiomics Model Construction

A total of 3384 radiomics features were extracted based on PET/CT images for each
patient. Then XGBoost algorithm was conducted to identify the final 13 optimal features,
and the coefficients of the corresponding features were calculated (Figure 2). Finally, the
Rad-score (Figure 3) was calculated to build the radiomics model.

Figure 2. Radiomics features identified as important for the performance of XGboost.

Figure 3. Rad-score of each patient. (A) Training set; (B) Validation set.
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3.3. Clinical Model and Radiomics Nomogram Construction

The XGBoost algorithm was used to finalize the five best clinical characteristics (age
at diagnosis, serum lactate dehydrogenase (LDH), urine homovanillic acid (HVA) and
vanillylmandelic acid (VMA), and long tumor diameter) for building the clinical model.
The above five clinical characteristics and Rad-score were utilized for combined model
construction, which was visualized by radiomics nomogram. And the radiomics nomogram
(Figure 4) was created based on the training set.

Figure 4. Radiomics nomogram of logistics regression for the combined model.

3.4. Performance of Prediction Models

The AUC of different models is presented in Table 3. Figure 5 shows the ROC curves
of all of the models in both training and validation sets. The performance of the radiomics
model (AUC, training set = 0.982, validation set = 0.955) is similar to the combined model
(AUC, training set = 0.988, validation set = 0.951). Both the radiomics and combined models
had better predictive performance for MKI status than the clinical model (AUC, training
set = 0.746, validation set = 0.670).

Table 3. Predictive performance of three models in the training and validation sets.

Model Training Set Validation Set

AUC (95%CI) p AUC (95%CI) p

radiomics model 0.982
(0.916–0.999)

0.955
(0.823–0.997)

clinical model 0.746
(0.625–0.843)

0.670
(0.488–0.821)

combined model 0.988
(0.924–1.000)

0.951
(0.818–0.996)

radiomics model vs clinical model 0.0001 0.0086
radiomics model vs combined model 0.2625 0.8807

clinical model vs combined model <0.0001 0.0046
AUC: Area under the curve; CI: Confidence interval.

The calibration curves of the combined model are depicted in Figure 6. It demonstrated
that the combined model has a good agreement in predicting the MKI status in both the
training and validation sets. The DCA results for the combined model, radiomics model
and clinical model in the training and validation sets are shown in Figure 7. DCA shows
that both the radiomics and combined models were added more net benefits than the
clinical model in predicting the MKI status in neuroblastoma.
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Figure 5. ROC curves for the combined model, clinical model and radiomics model in the (A) training
and (B)validation sets.

Figure 6. Calibration curves of the combined model in the (A) training and (B) validation sets.

Figure 7. DCA for the combined model, clinical model and radiomics model in the training set.
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4. Discussion

MKI has been used to indirectly reflect the MYCN amplification [22], and it is inde-
pendently prognostic in neuroblastoma [23]. Given the proven value of MKI status in
the treatment and follow-up of neuroblastoma, MKI status is critical for risk stratification
and prognostic prediction of neuroblastoma. Traditional MKI status analysis is invasive
and may be hindered by factors such as potential tumor necrosis, patient refusal to suf-
fer invasive testing, difficulties in the biopsy, and spatial and temporal heterogeneity of
tumors, especially after chemotherapy. In addition, conventional MKI status is described
by the number of mitotic and nucleated cells in multiple representative microscopic fields.
This method has some limitations, such as the obvious difference between mitotic nuclei
and karyorrhectic nuclei are sometimes obscure; the karyorrhectic cells, especially in the
intermediate/high MKI cases, almost always exceed the mitotic cells in the same tumor
tissues; the activities often vary greatly from area to area in intermediate MKI neuroblas-
toma [24]. However, the radiomics analysis of 18F-FDG PET/CT is expected to work out
the above problems of MKI status in clinical practice. In this study, clinical characteristics
and radiomics features were selected using a novel machine learning algorithm for the
development of predictive models for the MKI status in pediatric neuroblastoma.

Radiomics can translate the spatial information of imaging voxels and changes in
signal strength into higher dimensional information to quantify tumor heterogeneity and
extract additional quantitative data that cannot be assessed by human eyes. In recent years,
radiomics focuses on establishing the correlation between radiomics features and molecular
biomarkers, is expected to supply an alternative, non-invasive, and inexpensive method
for predicting various genetic tests for neuroblastoma.

Previous studies have reported radiomics potential role to predict molecular biomark-
ers in neuroblastoma, including MYCN in neuroblastoma by CT-based radiomics signa-
ture [8,25], tumor-associated macrophages by contrast-enhanced CT [26]. Moreover, some
studies demonstrated that combining radiomics features with clinical characteristics can
provide incremental predictive value for gene mutant status and expression. For example,
it can be applied in the prediction of the epidermal growth factor receptor mutation sta-
tus in lung adenocarcinoma [27] and MYCN amplification in neuroblastoma [28]. These
previous radiomics researches on the prediction of gene mutations are based on single CT
images only [29,30]. Compared with CT, 18F-FDG PET/CT can provide both anatomical
and metabolic information in a single scan. Therefore, we built a novel radiomics model
based on 13 radiomics features extracted from pre-therapy 18F-FDG PET/CT images via
XGboost for predicting the MKI status. Among the 13 selected radiomics features in the
present study, it demonstrated that features extracted from wavelet transformed images
play an important role in prediction models. The wavelet transform can decompose the
image into low-frequency elements and/or high-frequency components at different scales,
and the texture features obtained from the wavelet decomposition of the original data
can signify different frequency ranges within the tumor volume [31]. Some studies have
demonstrated that wavelet-based features are important in radiomics studies and can show
promising capabilities in terms of tumor classification and prognosis [32,33]. Our study
also indicates the value of wavelet features in predicting MKI status.

In addition to radiomics analysis, we also evaluated the clinical characteristics. Finally,
the age at diagnosis, serum LDH, urine HVA and VMA, and long tumor diameter were
selected by XGboost to build the clinical model. The prognostic effects of MKI used in the
INPC are age-dependent [23]. VMA and HVA levels in urine, the levels of serum LDH are
considered characteristic tumor markers of neuroblastoma. These parameters are helpful at
the initial diagnosis, response assessment, and monitoring recurrence of neuroblastoma [34].
A maximum primary tumor diameter greater than 13.20 cm is an independent risk factor
for tumor rupture within high-risk neuroblastoma [35]. So, it was considered that MKI may
be related to the above clinical characteristics, but in this study, when utilizing univariate
analysis, there were no statistical differences in these clinical characteristics between the
intermediate/high MKI group and the low MKI group, considering that this may be due to
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the small sample size. Moreover, the clinical model built with these clinical characteristics
had an AUC of only 0.746 (training set) and 0.670 (validation set) in predicting MKI status.

In addition, we built a radiomics nomogram combining clinical characteristics and Rad-
score for predicting the MKI status. Radiomics nomogram is an intuitive scoring system
that can optimize the prediction efficacy of individuals by combining different variables.
Our study demonstrated that the nomogram had a good performance in predicting the MKI
status in pediatric neuroblastoma. Furthermore, the radiomics model showed a similar
performance with radiomics nomogram. The study by Zhang et al. [36] also confirmed
that both radiomics features and nomogram showed consistent predictive efficacy. Our
results showed that both nomogram and radiomics models were better than the clinical
model. The present study confirmed the potential value of radiomics based on 18F-FDG
PET/CT in predicting the MKI status in pediatric neuroblastoma. This is one of the few
radiomics-based studies focusing on MKI status in pediatric neuroblastoma.

The potential clinical value of our research is twofold: (1) it provides a relatively
accurate, convenient, and noninvasive method for predicting MKI status in pediatric
neuroblastoma patients; (2) the changes in radiomics features by PET and CT allow for a
dynamic observation of MKI status before and after therapy.

Our study has several limitations. Firstly, the present study was a single-center design
and included a relatively small sample size, which may influence the generalization ability
of these models and affect their diagnostic efficacy. Moreover, this is a machine learning
based study, and the small sample size may affect the robustness of the machine learning
results, further amplifying the limitations of the sample size. Therefore, it is necessary
to conduct multicenter studies in future studies to increase the sample size. Due to the
small sample size, we lacked external validation in this research, However, a DCA was
applied to assess the clinical usefulness of the combined, radiomics, and clinical models,
demonstrating the great potential of the clinical utility of the radiomics for predicting
MKI status. Secondly, all of the images were manually demarcated, which may lead
to inconsistent and subjective tumor segmentation and degrade the performance of the
model, so that further studies are needed to develop a uniform standard for multicenter
studies and to establish and test multicenter imaging data by radiomics studies to make
sure better robustness of the model. Furthermore, MKI status was divided into low and
intermediate/high groups. In the future, MKI status was divided into three subgroups,
low, intermediate, and high groups that may be more useful for clinical practice.

5. Conclusions

This study provides new comprehension into MKI status prediction in pediatric
neuroblastoma. The above results suggest that the radiomics features can non-invasively
predict the MKI status of pediatric neuroblastoma with high accuracy. It is a very effective
tool for guiding the long-term management of pediatric neuroblastoma.
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