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Abstract: Machine learning results based on radiomic analysis are often not transferrable. A potential
reason for this is the variability of radiomic features due to varying human made segmentations.
Therefore, the aim of this study was to provide comprehensive inter-reader reliability analysis
of radiomic features in five clinical image datasets and to assess the association of inter-reader
reliability and survival prediction. In this study, we analyzed 4598 tumor segmentations in both
computed tomography and magnetic resonance imaging data. We used a neural network to generate
100 additional segmentation outlines for each tumor and performed a reliability analysis of radiomic
features. To prove clinical utility, we predicted patient survival based on all features and on the most
reliable features. Survival prediction models for both computed tomography and magnetic resonance
imaging datasets demonstrated less statistical spread and superior survival prediction when based
on the most reliable features. Mean concordance indices were Cmean = 0.58 [most reliable] vs. Cmean =
0.56 [all] (p < 0.001, CT) and Cmean = 0.58 vs. Cmean = 0.57 (p = 0.23, MRI). Thus, preceding reliability
analyses and selection of the most reliable radiomic features improves the underlying model’s ability
to predict patient survival across clinical imaging modalities and tumor entities.

Keywords: radiomic features; overall survival; segmentation variability; inter-rater reliability; neural
network; robustness

1. Introduction

The application of machine-learning methods in clinical radiology has gained signifi-
cant momentum in recent years. One such method that is often used is radiomic analysis.

In the early days of radiomic analyses, hopes were high that the all-embracing ap-
proach of casting as much information as possible into exploitable numeric quantities
would lead to radiomic breakthroughs in disease prognostication, treatment prediction and
tumor grading [1]. However, until now, applications of radiomics in clinical radiology have
fallen short of expectations and results are often neither reproducible nor transferrable.
The reasons are manifold [2]: First, image acquisition and reconstruction parameters, such
as tube currents for CT or reconstruction algorithms, differ between sites, which brings
about variable image characteristics and renders inter-site transferability difficult, let alone
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inter-vendor and inter-platform transferability. Second, software frameworks for the cal-
culation of radiomic features may calculate those features differently depending on their
implementation. These aspects of lacking standardization have received increasing atten-
tion recently [3] and are now being addressed by the image biomarker standardization
initiative [4]. Third, radiomic analyses are always performed on parts of the image—in
most cases tumors—that first have to be outlined by an expert. Correct segmentation of
tumor boundaries is a critical step for subsequent analyses, because inter-reader variability
is inevitable and radiomic signatures are affected by variations in segmentation outlines [5].
Evaluating the interdependence of segmentation precision and radiomic features is labor
intensive and has thus only been studied on small datasets [6,7]. Consequently, comprehen-
sive analyses of radiomic variability brought about by variable segmentations have thus
far been missing.

In this work, we aim to close this gap by (i) providing a full-scale analysis of radiomic
feature reliability in five clinical image datasets of clinical tumor entities across the pertinent
cross-sectional imaging modalities, CT and MRI, and by (ii) systematically assessing the
interrelatedness of radiomic feature reliability and the underlying models’ ability to predict
patient survival based on imaging.

To this end, we hypothesized that (i) the reliability of a large variety of radiomic
features may be assessed across different clinical imaging modalities and tumor enti-
ties and that (ii) preceding reliability analyses and deliberate selection of radiomic fea-
tures render machine-learning algorithms more accurate and reliable by improving their
predictive capabilities.

Our work demonstrates that radiomic features are sensitive to segmentation variability
and that a pre-selection of robust radiomic features might improve the ability of machine
learning models to predict survival of patients.

2. Materials and Methods
2.1. Experimental Design

We conducted this study in three phases. First, we trained a dedicated neural network
to introduce variability in the segmentation outlines by learning and systematically varying
how experts would delineate tumor outlines [8]. Thereby, sets of variable yet realistic
segmentation outlines for each tumor in diverse clinical image datasets were generated.
Second, radiomic features for each segmentation were calculated. Third, we analyzed the
stability of radiomic features on the datasets using the intra-class correlation coefficient
(ICC) and observed the effect of preceding reliability analyses and deliberate radiomic
feature selection on the survival predictions based on the CT and MRI datasets’ clinical
tumor entities, using machine learning. To this end, only those datasets were included
for which additional survival data were available, i.e., the CT datasets of the 421 patients
suffering from non-small cell lung cancer and the MRI datasets of the 335 patients suffering
from brain tumors. Approval to perform machine learning analyses on the available
pseudonymized data were granted by the local Ethical Committee.

2.2. Data

Five datasets, for which the respective details and references are given in Table 1,
were used in this prospective exploratory study. These datasets comprised a total of
3158 manual tumor segmentation outlines (n = 2823 [CT datasets]; n = 335 [MRI datasets])
of 1972 patients (n = 1637 [CT datasets]; n = 335 [MRI datasets]): (i) the Non-Small-Cell-
Lung-Cancer (NSCLC) dataset containing 487 outlines of non-small cell lung cancer in the
CT scans of 421 patients; (ii) the Lung Image Database Consortium image collection (LIDC)
dataset containing 1175 outlines of lung cancer in the CT scans of 875 patients; (iii) the
Liver Tumor Segmentation (LiTS) dataset containing 908 outlines of hepatic tumors in the
CT scans of 131 patients; (iv) the Kidney Tumor Segmentation (KiTS) dataset containing
253 outlines of kidney tumors in the CT scans of 210 patients; and (v) the Brain Tumor
Segmentation (BraTS) dataset containing 335 outlines of brain tumors in the MRI scans of
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335 patients. For our analysis, we used the fluid-attenuated inversion recovery (FLAIR)
sequence. Please note that the underlying acquisition protocol of the MR images is different
for each participating institution and representative of actual clinical protocols [9].

Table 1. Characteristics of image datasets used in this study. Data are given where available. NA—not
available. UNK—Unknown. * Given as means ± standard deviation. ** M = Man, W = Woman.

Dataset Tumor
Entity

Patients
[n]

Lesions
[n]

Age *
[Years] Sex ** Cropping

[Pixels] Modality Reference

NSCLC
Non-small
cell lung

carcinoma
421 487 68 ± 10 290M,

131W 128 × 128 CT [1,10,11]

LIDC Lung
cancer 875 1175 NA NA 128 × 128 CT [11–13]

LiTS Liver
tumor 131 908 NA NA 192 × 192 CT [14]

KiTS Kidney
tumor 210 253 58 ± 14 123M, 87W 192 × 192 CT [15]

BraTS

Glioblastoma
and Lower

Grade
Glioma

335 335 61 ± 13
UNK: 19 NA 192 × 128 MRI [9,16,17]

All of these datasets were used in the first two study phases, while datasets (i) and (v)
were used for prediction of survival because additional survival data were only available for
these datasets. Figure 1 details the data flowchart as well as relevant exclusion criteria. All
of the datasets have been previously published [10,12,14,15,17], however a comprehensive
reliability analysis of the complete datasets has not yet been performed.
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2.3. Training of the Segmentation Network

Each dataset contained manually delineated expert tumor outlines. To obtain addi-
tional variable tumor outlines, we used a recently validated neural network designed to
capture and reflect uncertainty in medical image segmentation using probabilistic hierar-
chical segmentation (PHiSeg) [8]. Hyperparameters were selected as in earlier studies [18].
Practically, images with tumor lesions were cropped before training using standard routines
in python. To this end, a rectangular bounding box was placed around the lesions with
the bounding box centered on the lesion. Care was taken to ensure that the lesion outlines
were completely contained in the bounding box. Bounding box sizes were variable and
determined beforehand by systematic analysis of tumor size distributions in the respective
dataset. More specifically, bounding boxes were dimensioned to be larger than the mean
plus two times the standard deviation of the lesions’ maximum diameters. Consequently,
bounding boxes of 128 × 128 pixels (datasets (i) and (ii)) and 192 × 192 pixels (datasets
(iii)–(v)) were generated. Outlier lesions that were too small (i.e., <30 mm3) or too large
(i.e., exceeding bounding boxes), and multiple lesions within the same crop slice were
excluded from further analysis. The pre-trained neural network was subsequently used to
automatically generate 100 additional segmentation outlines. To this end, the segmentation
outlines were varied using a hierarchical probabilistic model. The resulting segmentations
are referred to as automatic-generative segmentation outlines from here.

2.4. Plausibility of Segmentation Outlines

To assess if the automatic-generative segmentation outlines are representative of the
radiomic features’ natural variability, we performed the following evaluations:

First, plausibility of the automatic-generative segmentation outlines was checked visu-
ally by two experienced clinical radiologists (SN and DT with 5 and 8 years of experience
each) by going through a set of 40 representative lesions in each dataset.

Second, radiomic feature variability was compared between manual and automatic-
generative segmentation outlines [8] for dataset (ii), i.e., the LIDC dataset. For this dataset,
four manual expert segmentation outlines were available for each lesion. The ICC was
calculated for all radiomic features within the group of manual and automatic-generative
segmentation outlines, respectively, by use of the open-source SciPy library [19] imple-
mented in Python (v3.7.4, Python Software Foundation). Of note, we employed the ICC (1)
as defined and recommended by Liljequist et al. [20]. Then, radiomic features were grouped
into four categories according to their ICCs, i.e., highly unstable (25% of least consistent fea-
tures [quartile 4]), moderately unstable (25% to 50% of least consistent features [quartile 3]),
moderately stable (25% to 50% of most consistent features [quartile 2]), and highly stable
(25% of most consistent features [quartile 1]). Correspondingly, ICCs were calculated and
grouped for the automatic-generative segmentation outlines, too.

2.5. Feature Computation

For each tumor segmentation outline, radiomic features were extracted on the 2D
axial image containing the greatest tumor cross-sectional area. We employed the PyRa-
diomics toolkit implemented in Python [21] to extract radiomic features from the follow-
ing feature groups: First-Order, Shape, Gray Level Co-occurrence Matrix, Gray Level
Size Zone, Gray Level Run Length Matrix and Gray Level Dependence Matrix includ-
ing wavelet features. In total, 439 features were extracted for each lesion. Please refer
to https://pyradiomics.readthedocs.io/en/latest/ (accessed on 5 December 2021) for in-
depth documentation on these radiomics feature groups and individual features. In short,
first order parameters describe the histogram of voxel intensities using common metrics
such as mean, median, variance, uniformity, skewness and kurtosis. The gray level matrices
describe the relationship between intensities and their spatial distribution.

https://pyradiomics.readthedocs.io/en/latest/
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2.6. Feature Selection

Radiomic feature reliability was assessed based on the ICC. Radiomic features were
ranked according to their ICC values based on the 100 automatic-generative segmentation
outlines (all datasets) as well as the manual segmentation outlines (dataset (ii)/LIDC). Since
the ICC calculation is based on multiple segmentation outlines for the same lesion, a com-
parison between automatic-generated and manual segmentation outlines was only made
for the LIDC dataset because only this dataset had multiple expert segmentation outlines
(four per lesion) available. Features were then grouped into three categories [20,22,23]:

“high ICC”, containing all features with an ICC value >0.99;
“low ICC”, containing all features with an ICC value <0.75;
“all ICC”, containing all features irrespective of the ICC values.
Of note, we chose a relatively high threshold of 0.99 for the high-ICC group to study

the effects of very stable radiomic features when predicting clinical outcomes. Thereby, the
numbers of features in the high- and low-ICC groups were secondarily balanced. Based on
these sets, three distinct survival models were trained as defined below. Within each of these
models, features were further selected with sequential forward selection. This means that
the first radiomic feature was selected as having the highest univariate concordance index
(C-index), i.e., the highest power in predicting survival. Closely related to the area under
the ROC curve, the C-index is a global estimate of the respective model’s discriminatory
power, i.e., its ability to predict survival times based on the radiomic features. C-indices of
1.0 and 0.5 indicate perfect and random model predictions, respectively.

2.7. Survival Prediction

To predict survival based on the radiomic features, the proportional hazard model
according to Cox [24] was used. The performance of the models was evaluated based on
the C-indices and the radiomic features extracted from the manual expert segmentation
outlines (n = 1) and the additional automatic-generative segmentation outlines (n = 100).

Patients available for datasets (i) (NSCLC dataset, CT) and (v) (BraTS dataset, MRI)
were partitioned into high- and low-risk groups. Thus, each patient underwent individual
image-based risk score quantification and was either allocated to the low-risk group (if the
risk score was below the median) or the high-risk group (if above). Survival data were
evaluated separately for those two groups.

2.8. Statistical Analysis

Python and its scikit-survival package [25], which is a library for time-to-event analy-
ses, were used and data were split into training- and test-sets in five-fold stratified cross-
validation, i.e., 80% and 20%, respectively. Survival times were stratified in one-year inter-
vals, i.e., ≤1 year, 1–2 years, 2–3 years, and ≥3 years. Further stratification was introduced
by determining whether the event, i.e., death, was observed or censored. In a comprehen-
sively commented format, the code is made publicly available in a GitHub repository under
https://github.com/mueller-franzes/ReliableRadiomics (accessed on 5 December 2021).

Friedman’s test was used as an a-priori test to assess the differences between the
C-indices of the three groups (high ICC, all features and low ICC). To assess differences
between pairs of groups, Wilcoxon’s signed rank test was used. As a side note, we employed
Wilcoxon’s test instead of a paired t-test as D’Agostino’s test for normality failed.

Bartlett’s test was used to compare the variance in C-indices. Due to this study’s
exploratory design and because for each modality, two comparisons were performed, the
Bonferroni-corrected level of significance was set to 0.05/2.

3. Results
3.1. Lesion Segmentation by the Neural Network

Manual and automatic-generative segmentation outlines are given for representa-
tive tumor lesions of datasets (i) to (v) (Figure 2). Two experienced radiologists assessed
whether the network’s delineation of tumor boundaries represents human-like segmen-

https://github.com/mueller-franzes/ReliableRadiomics
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tation performance. In their subjective evaluation of 40 tumor lesions of each dataset, it
was found that in all areas where the human readers’ delineation of tumor boundaries
would be challenging (e.g., due to fuzzy tumor boundaries), the neural network (NN)-
based automatic-generative segmentation outlines demonstrated higher variability, while
tumor delineation that was less challenging for experts (due to clear tumor boundaries
against the background parenchyma) the NN based segmentation demonstrated consistent
tumor boundaries.
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Figure 2. Manual expert and automatic-generative neural network-based segmentation outlines of
representative lesions of the NSCLC (Non-Small Cell Lung Cancer) (A), LIDC (Lung Image Database
Consortium) (B), LITS (Liver Tumor Segmentation) (C), KITS (Kidney Tumor Segmentation) (D),
and BRATS (Brain Tumor Segmentation) (E) datasets. The rightmost column shows an overlay of all
available segmentation outlines. Only the LIDC dataset provides four different manual segmentation
outlines (by experts) per lesion whose overlay is shown as the additional column titled “Mean
Expert”. Overall, neural network-based predictions produce realistic and robust segmentation
outlines. Variability in automatic-generative segmentation outlines is increased in tumor regions
where delineation is inherently difficult.
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Overall, in this subjective evaluation, the NN was capable of representing the vari-
ability in radiomic features caused by differences in the segmentation outlines. For both
manual and automatic-generative segmentation outlines in the LIDC dataset, ICCs were
similar by trend, while the NN introduced statistically larger variability for the least stable
features (Figure 3).
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Figure 3. ICCs of radiomic features when calculated based on manual segmentations of lung lesions
by four experts (blue) and 100 automatic-generative segmentation outlines generated by the pre-
trained neural network PHiSeg (orange). Features were grouped into quartiles based on manual
expert segmentations and Q1 indicates the 25% most stable features, Q2 the 25–50% most stable
features, Q3 the 25–50% least stable features, and Q4 the 25% least stable features. Overall, ICCs were
largely similar, even though the NN introduced more variability. ns: not significant, ***: p < 0.001.

3.2. Reliability of Features

Using ICCs to quantify reliability of features, we found that shape features were most
reliable for radiomic features extracted from CTs with a median ICC of 0.986 [Q1 = 0.921,
Q4 = 0.999]. First-order and gray-level-matrix features had median ICCs of 0.960 [Q1 =
0.897, Q4 = 0.985] and 0.953 [Q1 = 0.888, Q4 = 0.985], respectively. For MRI, first-order
features were most stable with a median ICC of 0.994 [Q1 = 0.940, Q4 = 0.997]. Gray-
level matrix and shape features had median ICCs of 0.988 [Q1 = 0.931, Q4 = 0.997] and
0.983 [Q1 = 0.964, Q4 = 0.995], respectively. Overall, no clear feature group- or imaging
modality-related trends could be established for the feature classes (Figure 4).

Supplementary Table S1 gives a detailed account of the reliability of every single
radiomic feature and every dataset. Please note that the data are also provided in machine-
readable format (.csv) for use by fellow research groups to build upon our findings and
include reliability analyses of radiomic features into their studies.
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3.3. Survival Analysis Employing Feature Reliability

To test whether feature reliability analysis can help in building more consistent
machine-learning models, we used radiomic feature analyses to predict survival in patients
suffering from non-small cell lung cancer based on CT datasets (dataset (i)) and in patients
suffering from brain tumors based on MRI datasets (dataset (v)).

If radiomic survival analysis was based on the high-ICC features (n = 77) only, the
C-indices were more stable than when all radiomic features (n = 439) were taken into
account. Significant differences in the C-index standard deviations (CSD) were found for the
MRI dataset: dataset (v), CSD = 0.025 [high ICCs] vs. CSD = 0.030 [all ICCs], p < 0.001. For
the CT dataset, these differences only tended towards significance: dataset (i), CSD = 0.024
[high ICCs] vs. CSD = 0.026 [all ICCs], p = 0.06.

In both datasets, the mean C-indices (Cmean) were also higher if only high-ICC features
were used to train the underlying models, yet significant differences were only found for
the CT dataset: dataset (i), Cmean = 0.58 [high ICCs] vs. Cmean = 0.56 [all ICCs], p < 0.001;
dataset (v), Cmean = 0.58 [high ICCs] vs. Cmean = 0.57 [all ICCs], p = 0.23.

When the models were trained on only the low ICC features (n = 25), the C-indices
were both significantly lower (dataset (i), Cmean = 0.54, p < 0.001; dataset (v): Cmean = 0.52,
p < 0.001) and more spread out (dataset (i), CSD = 0.042, p < 0.001; dataset (v), CSD = 0.046,
p < 0.001) when compared to all features. For both datasets, Figure 5 details the C-indices
as a function of the ICC signature.
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predictive model’s discriminatory power as a function of ICC signature. Left: NSCLC (Non-Small
Cell Lung Cancer, CT) dataset, right: BraTS (Brain Tumor Segmentation, MRI) dataset. C-indices
were determined based on one manual expert and 100 automatic-generative segmentation outlines in
five-fold cross-validation using a pretrained neural network (NN). The survival analysis based on
only the most reliable radiomic features (as indicated by high ICCs) exhibited consistently higher
mean C-indices (p < 0.001 for NSCLC and p = 0.23 for MRI) and lower variability (p = 0.06 for CT
and p < 0.001 for MRI) as compared to all radiomic features or the least reliable radiomic features
(p < 0.001 for NSCLC and p < 0.001 for MRI for the comparison of C-indices and p < 0.001 for NSCLC
and p < 0.001 for MRI for the comparison of variability).

4. Discussion

This work focused on reliability analyses of radiomic features and their applicability
for machine-learning algorithms using clinical CT and MRI datasets. We used a recently
developed neural network architecture to generate 100 variable automatic-generative
segmentation outlines for various tumor lesions in CT and MRI datasets to calculate
radiomic features.

Automatic-generative segmentation outlines were visually compared with manual
expert segmentation outlines by radiologists, and exemplary segmentation outlines are
given in Figure 2. In agreement with previous research [8], we found that the automatic
segmentation outlines are highly similar to the manual segmentation outlines. This is
also reflected by the respective ICC scores (Figure 3). In particular, the most stable 50% of
features revealed no significant differences between automatic and manual segmentations.
However, an increased discrepancy was found for the less stable features. Most likely,
due to the inherently increased susceptibility to inter-reader variation, less stable features
are characterized by lower and more variable ICC scores. As machine learning models
performed similarly nonetheless (Figure 5), this limitation was still considered acceptable.
Beyond this, the variability in segmentation outlines might be better captured by one
hundred automatic segmentation outlines than by four manual segmentation outlines per
lesion (as the latter are inherently prone to sampling errors), thus leading to the observed
wider spread of ICC scores in the automatic segmentation outlines. Additionally, four
manual segmentation outlines (as generated by four human raters) may not be enough to
accurately estimate the reliability of features which also carries the risk of overestimating
the stability of (in fact) unstable features. Hence, automatic methods capable of generat-
ing larger numbers of segmentation outlines may be better suited to assess reliability of
radiomic features, both in radiology and beyond.
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Based upon this comprehensive multimodality database, we produced an extensive
analysis of inter-reader reliability in terms of ICC for each radiomic feature. Reliability
analysis indicated that radiomic features were most reliably assessed individually, rather
than in association with a feature group. To our knowledge, this is the first study to provide
such a large-scale analysis on various tumor entities across both clinical CT and MRI
datasets. Other groups have worked on smaller datasets and reported comparable results
on subsets of the data when using smaller numbers of segmentation outlines [18,26,27].
For the NSCLC dataset, Kadoya et al. found a C-index of 0.625 for a multivariate radiomic
feature model [28]. In contrast, Fu et al. reported a C-Index of 0.67 when applying
neural networks on the BRATS dataset [29], thereby indicating that deep learning-based
approaches may achieve higher C-indices. This finding is plausible as such approaches
achieve better results given enough data [30], yet disallow comparisons with radiomic
analyses as performed in the present study.

To study whether reliability analyses as performed in this study can improve the clini-
cal utility of machine-learning algorithms, we trained a machine-learning model to predict
survival times based on the radiomic features for two datasets: a CT dataset comprising
patients with non-small-cell lung cancer and an MRI dataset comprising patients with brain
tumors. For both datasets, we demonstrated that using only the most reliable features (as
selected based on the very highest and close-to-perfect ICCs) improves predictive power in
terms of higher correspondence and less variability as indicated by higher mean C-indices
and lower standard deviations. Consequently, preceding radiomic feature analysis and
appropriate preselection renders such models more reliable. Fellow research groups [31–33]
have found similar C-indices ranging from 0.58 to 0.62 when training machine-learning
algorithms on the same CT datasets albeit with much greater variability.

Our work has limitations: First, our analysis is based on 2D segmentations due to
limited hardware capacity. Dedicated graphics processing units are necessary to com-
prise full 3D volumes during training of the segmentation network. Implementing 3D
analysis might be a potential future research direction once sufficient computing power
becomes available. Second, even though we visually assessed the automatic-generative
segmentation outlines, the agreement between these and the manual expert segmentation
outlines could only be quantified for one of the datasets for which multiple manual expert
segmentations were available. Visual assessment confirmed that the neural network-based
automatic-generative segmentation outlines were considered realistic and largely reflective
of the segmentation outlines generated by expert human readers. Future research should
focus on the extension to three-dimensional segmentations—as increasingly used with
the advent of greater processing power—and on the evaluation of our results on other
modalities, e.g., positron emission tomography. To foster such research endeavors, we have
appended our results—in particular the database containing the ICCs for each radiomic fea-
ture and for each of the employed datasets—in machine-readable format as Supplementary
Material to this manuscript. Third, the radiomic expression profile not only depends on the
segmentation outlines as examined in this study, but also on the underlying image acqui-
sition and post-processing parameters that are, in turn, dependent on the manufacturer
and device type. In addition, patient motion, resampling and discretization of voxel values
and other factors are relevant, too, as previously reported by others [3,22,34–37]. These
effects have only been studied in isolation so that future research should also examine
their respective interplay. These effects have so far only been studied in isolation and
future research should also examine their respective interplay. The question of whether
radiomic feature stability varies between tumor types remains unanswered as yet. In this
work, we have concentrated on radiomic feature stability with a focus on CT and MRI.
ICC scores (as based on both manual and automatic segmentation outlines) may be prone
to overestimation as they may be lower. For example, the BRATS dataset comprises both
low-grade gliomas and glioblastomas and variance between different tumor lesions may
be greater than among similar lesion types. However, this type of bias affects both manual
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and automatic segmentation outlines and future research should thus focus on ICCs when
using strictly consistent tumor lesions and imaging modalities.

5. Conclusions

In conclusion, preceding reliability analyses and selection of the most reliable radiomic
features improve the underlying model’s ability to predict patient survival across clinical
imaging modalities and various tumor entities. Thereby, this study suggests a feasible
and effective approach to further reduce the variability in reported capabilities of machine-
learning algorithms and complements previous work aimed at improving image biomarker
standardization [4].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics12020247/s1, Table S1: ICC values of all 439 radiomic features for the five datasets
used in our study.
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