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Abstract: Brown adipose tissue (BAT) participates in the regulation of whole-body metabolism by
producing a variety of adipokines. This study investigates into the BAT pattern and the clinical
aspects of overweight and obese (OOB) vs. non-obese (NO) hyperparathyroidism (HPT) patients
with the aim of assessing the impact of BAT and obesity on HPT. Parathyroid scans performed on
441 HPT patients between 2015 and 2020 were retrospectively analyzed in order to select the images
with active BAT. Based on their BMI, the patients with active BAT were divided into OOB vs. NO.
The results showed that BAT was present in cervical and supraclavicular regions, with a single
localization especially among NO vs. multiple sites among OOB. The (total counts/pixels)BAT/(total
counts/pixels)non-BAT ratio in the right cervical localization showed a significant difference between
the groups with higher values in OOB. BMI, PTH, FT4, vitamin D, magnesium, creatinine, and urea
had significant correlations with BAT ratios. The predictive values showed that right cervical ratios
higher than 1.52 and right supraclavicular ratios lower than 1.15 indicated an increased probability of
being OOB. The significant correlations between BAT activation in OOB vs. NO and HPT clinical
parameters could be useful for developing potential treatments based on this tissue.

Keywords: brown adipose tissue; obesity; hyperparathyroidism; parathyroid scan

1. Introduction

HPT is a disorder that occurs when one or more parathyroid glands (PGs) overproduce
parathyroid hormone (PTH) [1].

In 80% of cases, primary hyperparathyroidism (PHPT) is characterized by a single PG
overgrowing, however, in 15–20% of cases there are several PG disorders [2].

In contrast with PHPT, the hormonal imbalances in secondary and tertiary HPT are
brought about by an outside stimulus. One of the main causes of secondary HPT (SHPT)
can be considered end-stage renal disease (ESRD), which has a worldwide prevalence of
0.1% [3,4]. It was reported that 12–54% of ESRD patients had HPT with PTH levels above
32 pmol/L [4].

PTH levels beyond the normal value (PTH > 55 pg/mL) are present in more than 80%
of patients with a glomerular filtration rate (GFR) of less than 20 mL/min/1.73 m2 [4,5].

Obesity and PHPT appear to be related, albeit the exact mechanism of this asso-
ciation is still unknown [6]. This connection was first reported in studies looking into
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postmenopausal women with PHPT [6,7]. Subsequent research into the field unveiled that
patients with severe obesity-related PHPT have bigger PGs and higher PTH levels. Some
experts believe obesity to be directly linked with PHPT due to its significant prevalence in
people with PHPT [6].

As the prevalence of obesity has reached epidemic/pandemic proportions worldwide,
new strategies which aim to offer solutions against this disease have been considered, based,
for example, on generating endogenous energy. Thus, BAT, which promotes weight loss by
rising energy consumption, has the potential to be a key element in targeting obesity [8–13].

BAT is predominantly activated in infants and small hibernating mammals, represent-
ing up to 5% of body weight in neonates; however, it physiologically decreases by apopto-
sis [14] in adulthood with a possible persistence or reactivation in some adults [15,16].

By the metabolism of its abundant mitochondria, BAT generates heat and delivers it
through vascularization to produce non-shivering thermogenesis, then participates in the
body’s thermoregulation [15,17–19].

Current studies on genetic animal models demonstrate that, by producing a variety
of adipokines, BAT also operates as an endocrine organ that participates in the regulation
of the whole body’s metabolism. This tissue might contribute, for example, to glucose
homeostasis and insulin sensitivity, representing a potential strategy to treat Type 2 Diabetes
Mellitus [20–23].

In non-invasively-localized preoperative/recurrent postoperative parathyroid ade-
nomas in patients with HPT, dual-phase 99mTc-isonitriles (either 99mTc-sestamibi or 99mTc-
tetrofosmin) scintigraphy is frequently used [24–26]. 99mTc-sestamibi crosses the cell mem-
brane by a simple diffusion mechanism driven by the electrochemical gradient of the
negatively charged molecule. It is then captured intracellularly in the mitochondria by a
similar mechanism [27–29] (Figure 1).
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Figure 1. Schematic representation of 99mTc-sestamibi uptake mechanism (A) which appears to be
similar in active BAT and parathyroid adenoma (visible in cervical and supraclavicular localization
in the PS (B) and cervical regions in (C)) and parathyroid adenoma (detected in PS (C)).

The abundant vascularization and the high number of mitochondria could define an
increased 99mTc-sestamibi uptake in hyperfunctional parathyroid glands and adenomas.
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Moreover, it provides important information about active BAT blood flow and its energy
metabolism [30,31].

To better understand how the correlation between BAT and body weight could in-
terfere with the personalized diagnosis in HPT patients, we studied BAT patterns in a
group of patients with parathyroid pathologies (PP) using non-invasive nuclear imaging.
Taking into account that the spread of its activation among the population and its metabolic
mechanisms are still not clarified [32], we also tried to elucidate potential correlations
between BAT’s biodistribution and patients’ clinical parameters in order to reach a new
possible personalized treatment approach based on the activation of this tissue.

2. Materials and Methods

• Patients

The study included 441 patients with various types of HPT referred by the Endocrinol-
ogy Department of “St. Spiridon” County Emergency University Hospital to the Nuclear
Medicine Laboratory, between 2015 and 2020, for dual-phase 99mTc-sestamibi Parathyroid
Scans (PS) to identify potential parathyroid adenomas or hyperfunctional PGs. The diag-
nosis of HPT was based on the clinical features in medical records as well as laboratory
findings (PTH > 55 pg/mL). In patients with active BAT, standard clinical criteria and
comorbidities such as renal pathologies, hypertension, diabetes, osteoporosis, and thyroid
pathologies were listed in an Excel table together with biochemical and blood analysis
findings, in particular PTH, TSH, FT4, calcium, vitamin D, phosphorus, magnesium, urea,
and creatinine.

BMI was determined as the weight (in kg) divided by the height square (in m2).
Patients were divided into two groups based on their BMI: group I, NO, with BMI less than
25 kg/m2; group II, OOB, with BMI greater than 25 kg/m2.

The patients remained in our laboratory at an ambient temperature (19–23 ◦C), for the
necessary time to take the anamnesis, to prepare the radiotracer and for the substance to
bind correctly to its target tissue. Therefore, the outside temperature did not have a real
impact on BAT expression.

All the examination procedures followed the institutional guidelines. Our Nuclear
Medicine Laboratory is part of a university hospital and, before every examination, the
patient gives his informed consent for the possible use of their medical records for research
purposes. Special ethical approval was not required since the study was retrospective
and anonymous.

• 99mTc-sestamibi Parathyroid Scanning Protocol

A combined 2-days protocol was performed, with the 99mTc-pertechnetate (99mTcO4-)
thyroid scintigraphy on the first day, in addition to early (10 min) and delayed (2 h) 99mTc-
sestamibi parathyroid images on the second day.

Following the standard method, 99mTc-sestamibi was properly labelled using a 10 min
boiling period in a boiling water bath to attain an efficiency exceeding 90% [32]. Labelling
efficiency was evaluated by the recommended radiochromatography (radio-TLC), and
quality control checks were conducted in accordance with the manufacturer’s guidelines.
Following the European Association of Nuclear Medicine (EANM) practice guidelines for
parathyroid imaging, the patients received a mean IV dose of 505,79 MBq—99mTc-sestamibi
(dose interval: 296–666 MBq) [25].

Anterior planar dual-phase imaging was achieved with standard parameters
(128 × 128 matrix, with a 20% window centered around the 140-keV photopeak, using
a low-energy, high-resolution parallel collimator), early 10 min and delayed 2 h, using
a Siemens e.cam nuclear gamma camera (Siemens Medical Systems). Scans of the neck
and chest areas were accomplished in the supine position, with the neck extended. Single-
photon emission computed tomography (SPECT) images were made when more fields of
view were needed for precise localization.

• Image processing and interpretation (Figure 1)
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After analyzing a total number of 986 scans (493 for both early and delayed scans some
patients underwent more than one PS during this period), two nuclear medicine physicians
reported the presence or absence of BAT in the nuchal, supraclavicular, and mediastinal
regions by taking into consideration this tissue’s characteristic distribution and the main
reported areas of physiological 99mTc-sestamibi uptake (in salivary glands, thyroid, heart,
gastrointestinal tract, and muscles). A third nuclear medicine physician was consulted to
resolve a possible disagreement.

In the process of analyzing the included scans with active BAT, we studied this tissue’s
pattern through measuring the total counts and pixels (given by the software of the Gamma
Camera), by drawing a Region Of Interest (ROI) (mean value (mv) of 337.03 ± 67.23 mm2)
in every BAT localization. Each ROIBAT was reported to an equal ROI in a non-BAT
reference area (right hemithorax) in which the presence of BAT has never been mentioned
in the literature.

The (total counts/pixels)BAT/(total counts/pixels)non-BAT ratio was used in order to
identify potential correlations between BAT biodistribution and patients’ clinical parameters.

• Statistical Analysis

The statistical data analysis was performed using STATA 16 software (StataCorp
LLC, 4905 Lakeway Drive, College Station, Texas 77845-4512, USA) and SPSS 26 (IBM
Corporation, New Orchard Road Armonk, New York 10504-1722, USA). The continuous
variables were presented as mean (deviation standard) or median (interquartile range) and
the categorical variables were presented as numbers (frequencies). The comparison tests
applied for the continuous numerical variables were selected based on the distribution
of the series values and the number of cases included in the analysis. For the continuous
numerical variables, the Wald-Wolfowitz Runs Test and Levene Test of Homogeneity of
Variances were applied. The Kolmogorov–Smirnov test was applied to verify the normal
distribution of the variables. The categorical variables were analyzed using the Pearson
Chi-square test. The predictive power was evaluated based on the receiver operating
characteristic (ROC) curve, taking into account the area under the curve (AUC). p-values of
less than 0.05 were considered for statistical significance.

3. Results

The accumulation of 99mTc-sestamibi in active BAT mitochondria was visualized in
56 delayed scans (5.68% of total images, 11.36% of delayed scans) of 56 patients with a
mean age of 53.18 years (group I: NO; 48.3 ± 18.3 years vs. group II: OOB; 58.4 ± 9.3 years).
The demographic/clinical characteristics of these patients are listed in Table 1.

Table 1. The demographic/clinical characteristics of patients with active BAT.

Clinical Characteristics
Total

Patients
n = 56

Nonobese
Patients

(BMI < 25 kg/m2)
n = 29

Overweight and
Obese Patients

(BMI > 25 kg/m2)
n = 27

p-Value

Age, median (IQR), year 58 (45–64) 52 (33–65) 60 (55–62) 0.062 *
Age, mean (SD), year 58.4 (15.4) 48.3 (18.3) 58.4 (9.3)

Gender, female/male, n (%) 49/7 (87.5/12.5) 23/6 (79.3/20.7) 26/1 (96.3/3.7) 0.043 ˆ

Season, n (%)
spring 19 (33.9) 15 (51.7) 4 (14.8) 0.014 ˆ

summer 14 (25) 5 (17.2) 9 (33.3)
autumn 12 (21.4) 3 (10.4) 9 (33.3)
winter 11 (19.6) 6 (20.7) 5 (18.6)

Scintigraphy, n (%)
parathyroid adenomas 46 (82.1) 23 (79.3) 23 (85.2) 0.564 ˆ

hyperfunctional parathyroid glands 10 (17.9) 6 (20.7) 4 (14.8)

Body weight, median (IQR), kg 67.5 (58–75.5) 60 (53–64) 75 (70–86) <0.001 *
Body weight, mean (SD), kg 67.5 (14.7) 58.1 (10.5) 77.8 (11.2)
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Table 1. Cont.

Clinical Characteristics
Total

Patients
n = 56

Nonobese
Patients

(BMI < 25 kg/m2)
n = 29

Overweight and
Obese Patients

(BMI > 25 kg/m2)
n = 27

p-Value

BMI, median (IQR), kg/m2 24.6 (21.9–27.3) 22.1 (19.6–23.8) 27.9 (25.9–31.9) <0.001 *
BMI, mean (SD), kg/m2 25.3 (4.9) 21.7 (2.6) 29.1 (3.67)

Comorbidities, n (%) 55 (98.2) 28 (96.5) 27 (100) 0.330 ˆ

Diabetes 6 (10.7) 2 (6.9) 4 (14.8) 0.335 ˆ

Renal pathologies 17 (30.4) 9 (31.1) 8 (29.6) 0.909 ˆ

Hypertension 19 (33.9) 8 (27.6) 11 (40.7) 0.298 ˆ

Osteoporosis 28 (50) 13 (44.8) 15 (55.6) 0.421 ˆ

PTH, mean (SD), pg/mL 456.7 (792.4) 719.5 (1034.3) 174.5 (128.9) 0.031 *
TSH, mean (SD), µUI/mL 1.86 (1.37) 2.03 (1.62) 1.62 (0.94) 0.254 *
FT4, mean (SD), ng/dL 1.04 (0.24) 1.05 (0.27) 1.03 (0.21) 0.524 *
Ca, mean (SD), mg/dL 10.21 (1.23) 10.01 (1.05) 10.42 (1.37) 0.275 *
Vitamin D, mean (SD), ng/mL 24.68 (12.84) 28.79 (13.94) 21.15 (11.12) 0.975 *

Phosphorus, mean (SD), mg/dL 3.35 (1.18) 3.73 (1.25) 2.87 (0.91) 0.625 *
Magnesium, mean (SD), mg/dL 2.13 (0.33) 2.19 (0.39) 2.04 (0.18) 0.360 *
Urea, mean (SD), mg/dL 46.65 (35.54) 54.62 (43.71) 36.57 (17.71) 0.098 *
Creatinine, mean (SD), mg/dL 1.70 (2.39) 2.34 (3.06) 0.89 (0.31) 0.035 *

Thyroid pathology, n (%)
Hashimoto’s autoimmune thyroiditis 6 (10.7) 3 (10.3) 3 (11.1) 0.926 ˆ

Basedow’s disease 2 (3.6) 1 (3.5) 1 (3.7) 0.958 ˆ

Nodular goiter 22 (39.3) 10 (34.5) 12 (44.4) 0.445 ˆ

* Wald-Wolfowitz Runs Test, Levene Test of Homogeneity of Variances (p < 0.05). ˆ Pearson Chi-square.

We noticed the predominance of females (85.7%), with a greater percentage in group II
(96.3% vs. 79.3% in group I). The BMI mean value (mv) was 25.3 ± 4.9 kg/m2 with
21.7 ± 2.6 kg/m2 in group I vs. 29.1 ± 3.67 kg/m2 in group II. HPT was recorded in 87.5%
of subjects (69.6% primary), the rest of the cases presenting parathyroid adenomas, without
significant differences between the two groups. Comorbidities including diabetes (10.7%
of cases), renal pathologies (like chronic kidney disease), hypertension, and osteoporo-
sis (80.4% of cases) incidence were similar amongst the groups. Endocrine comorbidities
showed no distinction between the two groups, 60.7% of patients presented thyroid patholo-
gies, mainly nodular goiter (39.28% of cases) and Hashimoto’s disease (10.7%). Apart from
PTH (higher in group I with mv = 719.5 ± 1034.3 pg/mL vs. 174.5 ± 128.9 pg/mL in
group II, p = 0.0314; more than 25% of NO patients had values higher than 1290 pg/mL)
(Table 1) and creatinine (greater in group I with mv = 2.34 ± 3.06 mg/dL vs. 0.89 ± 0.31 mg/dL
in group II, p = 0.0354), all other biochemical and blood analysis findings were not signifi-
cantly different amongst BMI groups.

Following the PS analysis (Table 2), we noticed the presence of parathyroid adenoma(s)
in 82.1% of images. BAT had symmetric distribution in 92.9% and homogeneous in 42.9%.
This tissue was recorded in cervical and supraclavicular regions with a single localization
in 73.2% of scans (87.8% cervical), and a high frequency among NO patients (p = 0.0211),
whereas all the rest of the images presented multiple locations, with a preponderance among
OOB cases (p = 0.0228). The highest (total counts/pixels)BAT/(total counts/pixels)non-BAT
ratio was identified in the supraclavicular region with 2.59 vs. 2.49 in the cervical area. The
ratio for the right cervical localization showed a significant difference between the groups,
with a higher value in group II (1.53 ± 0.23 vs. 1.45 ± 0.31, p = 0.0314).

Concerning the values’ distribution of (total counts/pixels)BAT/(total counts/pixels)non-BAT
ratio, the cervical ratios (right and left) showed a high frequency of cases with values
between 1.4 and 1.8. A significant number of cases had values ranging between 1.4 and
1.6 for the right supraclavicular ratio, while the left supraclavicular ratio had values
distributed between 1.2 and 2.4 (Figure 2).
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Table 2. BAT pattern and quantification.

Total
Patients

Nonobese
Patients

(BMI < 25 kg/m2)
n = 29

Overweight and
Obese Patients

(BMI > 25 kg/m2)
n = 27

p-Value

BAT localisation, n (%)
Unique location 41 (73.2) 25 (86.2) 16 (59.3) 0.021 ˆ

Multiple locations 15 (26.8) 4 (13.8) 11 (40.7)

BAT,
homogeneous 24 (42.9) 10 (34.5) 14 (51.9) 0.189 ˆ

non-homogeneous 32 (57.1) 19 (65.5) 13 (48.1)

BAT
symmetric 52 (92.9) 28 (96.6) 24 (88.9) 0.265 ˆ

asymmetric 4 (7.1) 1 (3.4) 3 (11.1)

(total counts/pixels)BAT/
(total counts/pixels)non-BAT
ratio cervical right

median (IQR) 1.52 (1.34–1.65) 1.44 (1.29–1.66) 1.55 (1.46–1.63) 0.031 *
mean (SD) 1.49 (0.27) 1.45 (0.31) 1.53 (0.23)

(total counts/pixels)BAT/
(total counts/pixels)non-BAT
ratio cervical left

median (IQR) 1.58 (1.42–1.71) 1.54 (1.41–1.68) 1.59 (1.47–1.81) 0.412 *
mean (SD) 1.57 (0.31) 1.51 (0.31) 1.62 (0.30)

(total counts/pixels)BAT/
(total counts/pixels)non-BAT
ratio supraclavicular right

median (IQR) 1 (1–1.42) 1 (1–1.12) 1 (1–1.45) 0.284 *
mean (SD) 1.21 (0.35) 1.9 (0.41) 1.23 (0.29)

(total counts/pixels)BAT/
(total counts/pixels)non-BAT
ratio supraclavicular left

median (IQR) 1 (1–1.30) 1 (1–1.27) 1 (1–1.38) 0.992 *
mean (SD) 1.18 (0.31) 1.18 (0.38) 1.19 (0.31)

* Wald-Wolfowitz Runs Test, Levene Test of Homogeneity of Variances (p < 0.05). ˆ Pearson Chi-square.

The correlations between this BAT ratio and the demographic aspects showed a
significant relation between the right and left cervical BAT ratios and the BMI values
(the increase in BMI was followed by the increase in right and left cervical BAT ratios;
r = −0.299, p = 0.014 on the right; r = −0.295, p = 0.014 on the left) (Figure 3).

It was shown that an increase in PTH correlates with a decrease in the right and left
supraclavicular BAT ratios (r = −0.260, p = 0.023 on the right; r = −0.279, p = 0.018 on the
left), however, these ratios rise with an increase in FT4 (r = 0.407, p = 0.012 on the right;
r = 0.449, p = 0.005 on the left) (Figure 4).

As vitamin D increases, the right and left cervical BAT ratios decrease (r = −0.304,
p = 0.031 on the right; r = −0.410, p = 0.012 on the left). Furthermore, the increase in
magnesium leads to a decrease in the right and left supraclavicular BAT ratios. It was noted
that the increase in creatinine and urea was followed by a significant decrease in the right
and left supraclavicular BAT ratios (Figure 5).

The values of (total counts/pixels)BAT/(total counts/pixels)non-BAT ratio in the right
and left cervical localization, in addition to the right and left supraclavicular regions, did
not show significant differences with the scintigraphic diagnosis (parathyroid adenomas
and hyperfunctional PGs) (p > 0.05) (Figure 6).
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Figure 2. Histograms for the values of (total counts/pixels)BAT/(total counts/pixels)non-BAT ratio
in the cervical (a,b) and supraclavicular localizations (c,d). (A ratio of 1 is obtained when BAT is not
activated in the concerned localisation: (total counts/pixels)BAT = (total counts/pixels)non-BAT).
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Figure 5. Pearson correlations between the biochemical/blood analysis (a,b) Ca, (c,d) vit D,
(e,f) Phosphorus, (g,h) Mg, (i,j) uree, (k,l) creat and the values of (total counts/pixels)BAT/(total
counts/pixels)non-BAT ratio.
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The analysis of the predictive values of the (total counts/pixels)BAT/(total counts/
pixels)non-BAT ratio (Figure 7) indicated a cutoff for the right cervical ratio of 1.52 (AUC = 0.74,
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p = 0.036), with a sensitivity (Se) of 79% and a specificity (Sp) of 81%. Ratios higher than
1.52 indicated an increased probability of obesity. For the left cervical ratio, a cutoff of
1.72 was calculated with a Se = 93% and Sp = 79% (p = 0.016). In the supraclavicular
localization, only the right supraclavicular ratio values presented a cutoff with significant
predictive power (p = 0.029). Values lower than 1.15 indicated an increased probability of
obesity (Se = 76%, Sp = 44%).
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4. Discussion

Given the variations in its developmental, anatomical, and functional characteristics,
adipose tissue is typically categorized as either white or brown [33].

White adipose tissue (WAT) accumulates triglyceride molecules as a source of energy,
which it aims to deliver into the bloodstream through free fatty acids as a response to the
lack of glucose provision [34]. Obesity and insulin resistance could be a direct result of an
excess of this type of energy supply [35].

It is likely that obesity, through vitamin D deficiency and expansion of the parathyroid
glands, contributes to PHPT [6,7]. In contrast, it has been proposed that PHPT may promote
obesity. Adam MA et al. [6] demonstrated in their study that, regardless of vitamin D levels,
obesity may impact parathyroid tumor (PT) growth. Larger PT weight, higher pre- and
postoperative PTH, and more severe symptoms are all signs that severely obese patients
(BMI ≥ 35 kg/m2) have a more severe disease pattern [6,7,36].
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While WAT is responsible for storing and releasing lipids, BAT oxidizes lipids to pro-
duce heat. In addition to its ability to generate heat with the non-shivering process of ther-
moregulation, BAT contributes to the modulation of energy balance and insulin resistance.
It also regulates the entire body’s metabolism by producing a variety of adipokines [19–22].
It has been demonstrated that this tissue’s activity has a more striking impact in lean
subjects in comparison with obese ones [37–40], and an activated BAT by cold exposure ex-
pends up to several hundred kcal/day [41], representing the organ with the most important
glucose/gram consumption, in this situation [42].

This tissue is characterized by multilocular adipocytes with large numbers of mito-
chondria (which give its specific name and color), expanded blood supply, and plentiful
sympathetic noradrenergic innervations, such as b3-adrenergic receptors [43].

Unfortunately, the BAT physiological response to stimulation and its regulating mecha-
nisms are still not elucidated [15,44]. It was shown in our work that the increase in BMI was
followed by an increase in right and left cervical BAT ratios. Thus, these features spiked the
pharmaceutical industry’s interest in developing pharmacologic agents that can activate
and expand this tissue, for example through sympathetic stimulation, and integrate it into
antiobesity and metabolic dysregulation therapeutical strategies [15,45–47]. Recent studies
using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomog-
raphy (PET/CT) on healthy subjects proved that mirabegron, a β3-adrenergic receptor
agonist, rises BAT activity and could be a promising agent for a potential treatment against
metabolic diseases [48]. It was also mentioned that adenosine could have therapeutic
implications by activating this type of fat and recruiting beige adipocytes through A2A
receptors [49].

Due to the high concentration of mitochondria in active BAT, 99mTc-sestamibi repre-
sents a suitable radiotracer for this tissue’s function detection.

This agent is a lipophilic cationic radiotracer that passes the cellular membrane by
passive transport to be captured into the mitochondria [27,50]. 99mTc-sestamibi is able
to visualize hyperfunctional PGs (with normal or ectopic localizations) and parathyroid
adenomas due to their oxyphil cells that are overloaded in mitochondria, contrary to the
normal PGs that have no uptake [50,51].

Knowledge about the BAT response to pharmacological stimulations is still very
limited, thus the accessible 99mTc-sestamibi scintigraphy could have a principal role in
providing more information about its pattern and function.

The inducible “browning” of WAT is a phenomenon that is obtained after the stim-
ulation, by a particular type of factor like cold exposure, of a certain population of WAT
adipocytes in the presence of mitochondrial uncoupling protein 1 (UCP1). These adipocytes
turn into a specific type of cell called “brite fat” or “beige fat”, which are different from the
classic BAT from a developmental point of view [19,52–54].

PTH is a traditional calcium-regulating hormone whose primary effects on the kidney
and bones has long been known [55]. Adipose tissue is another organ that PTH targets,
according to research presented by He Y et al. [56]. In addition to the thyroid and cate-
cholamine hormones, which are known to promote WAT browning/ BAT activation, PTH
also facilitates these effects [48,56].

He Y et al. [56] demonstrated that in PHPT mice and patients the increased serum
PTH levels stimulated the browning of adipose tissue, which resulted in higher energy
expenditure, lower fat content, and, ultimately, lower body weight. The fact that in our
study PTH had higher values in NO supports this hypothesis. However, many researchers
revealed that serum PTH levels were positively correlated with body weight and body
fat mass in people, contradicting the hypothesis of PTH browning effects [57,58]. Further-
more, Mendoza-Zubieta V et al. [59] showed that compared to healthy control subjects,
PHPT patients had greater body weight, higher levels of WAT, and elevated prevalence of
insulin resistance and metabolic syndrome. It is yet to be determined how increased PTH
secretion contributes to the regulation of body weight in PHPT and how it affects the WAT
browning/BAT activation.
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The new pathogenic PTH effects on adipose tissue, previously described, led us to
carefully re-evaluate the pathophysiological alterations in HPT, which is typically defined
by hypercalcemia and its associated gastrointestinal, renal, and skeletal symptoms [55].

Differences in the metabolic indices between asymptomatic and symptomatic HPT
patients were identified in various studies: It was demonstrated that asymptomatic PHPT
patients had a higher prevalence of metabolic syndrome than symptomatic ones [60,61].

Therefore, the disease severity or stage/duration of its evolution could explain the
opposition between the elevated body weight or the metabolic syndrome prevalence,
described in PHPT by some researchers, and the body weight loss due to browning WAT/
BAT activation [36].

Crucially, the findings might serve as a reminder to endocrinologists to take into ac-
count the increased energy-consuming condition when treating patients with symptomatic
PHPT, particularly in those with severe disease [56].

When evaluating the results of the current study, it is important to consider a number
of limitations. Patients with PHPT are thought to lose weight as a result of hypercalcemia
and its resulting gastrointestinal symptoms, such as nausea and vomiting [56]. Another
thing that should be emphasized is the connection between thyroid diseases and weight
loss in HPT. The small number of patients considered in the groups is explained by the fact
that, in order to study the BAT pattern, we needed to include only patients with activated
BAT. These patients represent a minority as it is already known that BAT could be activated
in adults only in very specific situations. Given the small number of cases in the analyzed
patient groups, statistical tests specific to this particularity (small samples) were applied to
validate the hypotheses. Thus, in the univariate statistical analysis used for comparisons,
the statistical power of the estimates was maintained at an acceptable level.

5. Conclusions

This research supports the hypothesis that there is a correlation between the pattern
of BAT distribution in NO and OOB patients and the pattern of HPT. Furthermore, this
type of fat can represent an important factor in the evolution of HPT. HPT severity or
stage/duration of its evolution may have an impact, by activating BAT, on the patient’s
weight status, implicitly on the treatment of obesity. Due to this association, BAT activation
represents a candidate for a potential prospective therapeutic method/algorithm for obesity,
in the context of certain types of parathyroid pathologies.
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