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Abstract: Dry eye disease (DED) is one of the most common diseases worldwide that can lead to
a significant impairment of quality of life. The diagnosis and treatment of the disease are often
challenging because of the lack of correlation between the signs and symptoms, limited reliability of
diagnostic tests, and absence of established consensus on the diagnostic criteria. The advancement
of machine learning, particularly deep learning technology, has enabled the application of artificial
intelligence (AI) in various anterior segment disorders, including DED. Currently, many studies have
reported promising results of AI-based algorithms for the accurate diagnosis of DED and precise and
reliable assessment of data obtained by imaging devices for DED. Thus, the integration of AI into
clinical approaches for DED can enhance diagnostic and therapeutic performance. In this review, in
addition to a brief summary of the application of AI in anterior segment diseases, we will provide an
overview of studies regarding the application of AI in DED and discuss the recent advances in the
integration of AI into the clinical approach for DED.

Keywords: artificial intelligence; dry eye disease; deep learning; machine learning

1. Introduction

The advancement of computer science and the availability of big data has enabled the
emergence of artificial intelligence (AI; The abbreviations were summarized in Table 1),
which has led to a technological revolution significantly affecting many aspects of our daily
life [1–4]. The application of AI in the field of medicine is expanding rapidly [5], mainly
due to the advancement of machine learning (ML) that can be utilized for the analysis
of medical images and patient data, diagnosis of diseases, and prediction of treatment
outcomes [6].

ML is a paradigm of AI that systematically allows computer algorithms to adapt
according to a large amount of raw input data and make predictions or determinations
using the learned patterns [1,7,8]. The method can be roughly divided into conventional
machine learning (CML) and deep learning (DL) [8]. CML algorithms, such as the support
vector machine (SVM), random forest (RF), decision tree (DT), and linear regression and
logistic regression, generally do not involve large neural networks [8] and have been
applied for the construction of predictive algorithms for the diagnosis or classification
of diseases based on data from medical records or population-based studies [9]. DL has
usually been applied for the analysis of multimedia datasets, including images, sound,
and videos [7,8], and involves large neural networks composed of multiple neuron-like
layers of algorithms, such as artificial neural networks (ANNs), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs) [7,8].
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Table 1. List of abbreviations used in the review article.

Abbreviation Name

AI Artificial intelligence
ML Machine learning
CML Conventional machine learning
DL Deep learning
SVM Support vector machine
RF Random forest
DT Decision tree
ANN Artificial neural network
RNN Recurrent neural network
CNN Convolutional neural network
OCT Optical coherence tomography
ASP Anterior segment photographs

AS-OCT Anterior segment optical coherence
tomography

IVCM In vivo confocal microscopy
LASEK Laser-assisted epithelial keratomileusis
LASIK Laser in situ keratomileusis
SMILE Small incision lenticular extraction
DMEK Descemet membrane endothelial keratoplasty

AUC Area under the receiver operating
characteristic curve

DED Dry eye disease
BUT Break-up time

KNHANES Korea National Health and Nutrition
Examination Survey

LASSO Least absolute shrinkage and selection operator
LR logistic regression
RANSAC RANdom SAmple Consensus
MRF Material recovery facilities
MG Meibomian gland
MGD Meibomian gland dysfunction
mAP Mean average precision
GAN Generative adversarial network
CNF Corneal nerve fiber
DC Dendritic cell
AUPRC Area under precision-recall curve

In ophthalmology, AI has initially been applied for the analysis of fundus photographs
and optical coherence tomography (OCT) images; thus, previous studies have mostly
focused on the integration of AI into the diagnostic approach of posterior segment diseases,
such as diabetic retinopathy, glaucoma, macular degeneration, and retinopathy of prema-
turity [5,10–14]. However, as DL algorithms can be utilized for the analysis of imaging
the data of anterior segment structures, such as anterior segment photographs (ASPs),
anterior segment OCT (AS-OCT) images, specular microscopy, corneal topography, in vivo
confocal microscopy (IVCM), infrared meibography, and tear interferometry [2], AI is also
expected to assist in the diagnosis and monitoring of various anterior segment diseases [15].
Recently, many studies have been conducted on the application of AI in various anterior
segment diseases [2].

2. Application of AI in Anterior Segment Diseases

An ML model using an SVM showed an accuracy of 97% (97% sensitivity and 99%
specificity) for the diagnosis of anterior segment disorders, including arcus senilis or
cataracts, suggesting the potential of AI as a screening tool [16]. Subsequent studies
revealed that AI-based algorithms using ASPs could be useful for the detection and grading
of cataracts and even the classification of referable cases [17–20]. AI-based algorithms
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were also shown to enable a more accurate prediction of refractive outcomes after cataract
surgery, which is crucial for optimal visual outcomes [21–23].

AI can also be helpful for the diagnosis and management of various ocular surface
diseases. Recent studies have shown that DL algorithms can automatically detect the presence
of pterygium, classify its grade, and identify referable cases with high accuracy [24–26],
suggesting that AI may be used as a simple screening tool for the identification of pterygium
cases that need a referral to ophthalmologists in community screenings [26]. Kim et al. [27]
introduced an AI model using a bagging tree that may enable the automated quantitative
analysis of histopathological images of pterygium. Regarding corneal infection, Saini
et al. [28] reported that an AI model using an ANN showed a high accuracy of 90.7% for
the classification between bacterial and fungal keratitis, outperforming the prediction rate
of 62.8% by the clinical investigator. AI enables the automated segmentation of corneal
ulcer areas in ASPs, which may enhance the reliability of the quantitative assessment of the
treatment response in patients with corneal ulcers [29–31]. AI can also be helpful for the
identification of hyphae in IVCM images, indicating its potential as a powerful tool for a
non-invasive and accurate diagnosis of fungal keratitis [32–34]. Another Al model based
on a K-means clustering model showed high accuracy (100%) for the automated detection
of iris tumors [35].

The integration of AI into evaluation algorithms based on corneal topography has
been proven to improve the accuracy of the discrimination of keratoconus, even in early
cases [36–40]. Indices generated using the RF model based on data from Pentacam HR
(Oculus, Wetzlar, Germany) showed significantly superior accuracy for the detection of
keratoconus compared to other non-AI methods [36–38]. A DL model based on a CNN
using data from a corneal topographic map also showed a high accuracy of 96.4%, with
94.1% sensitivity and 97.6% specificity [41]. Kamiya et al. [42] reported that a DL model
based on color-coded maps obtained using AS-OCT data showed an accuracy of >97% for
the differentiation of keratoconus from normal corneas. For the treatment of keratoconus,
a DL model using an ANN was suggested to be helpful for predicting the quality of
vision after intracorneal ring implantation [43]. AI models can improve the prediction
accuracy of the screening of patients at high risk of developing iatrogenic ectasia after
corneal refractive surgery, including laser-assisted epithelial keratomileusis (LASEK), laser
in situ keratomileusis (LASIK), and small incision lenticular extraction (SMILE) [37,44,45].
Lopes et al. [37] revealed that an index developed using the RF model showed superior
accuracy for the classification of these patients to conventional methods. Cui et al. [46]
reported that an ML model using a multilayer perceptron algorithm improved the efficacy
of the nomogram prediction in SMILE, suggesting that AI can be helpful for optimizing
visual outcomes after refractive surgery [46].

AI may be useful for the automated evaluation of the corneal endothelium, which
might be useful for the long-term assessment of corneal grafts [47–51]. DL algorithms based
on U-net enabled the rapid and accurate segmentation of corneal endothelial cells [47,48,51,52].
Treder et al. [53] reported that a DL model using a CNN could allow for the automated
detection of Descemet membrane endothelial keratoplasty (DMEK) graft dislocation based
on AS-OCT images, with a high accuracy of 96%. Hayashi et al. [54] introduced a DL
model that enabled the automated clinical judgment of the need for rebubbling in cases
with detached grafts after DMEK with high accuracy (the area under the receiver operating
characteristic curve [AUC], 0.96; sensitivity, 96.7%; and specificity, 91.5%), suggesting that
the application of AI may improve the survival rate of corneal grafts.

3. Application of AI in Diagnosis and Treatment of Ded

Dry eye disease (DED) is one of the most common diseases, with a prevalence of
10–40% worldwide [55–57]. It is a multifactorial ocular surface disease characterized by the
loss of tear film homeostasis, such as hyperosmolarity and instability of the tear film [58].
Symptoms of DED, such as ocular discomfort, redness, pain and grittiness, foreign body
sensation, and visual blurring, may interfere with daily activities, including reading, using
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digital devices, and driving [58–60]. Thus, the disease can result in significant impairment
in quality of life [61].

The lack of correlation between dry eye symptoms and signs has often been reported,
which renders the diagnosis and monitoring of DED challenging [62–64]. The heteroge-
neous nature of the pathophysiology of DED and the individual difference in the perception
of dry eye symptoms may partly result in this discrepancy [65]. In addition, the limited
reliability of the currently available diagnostic tests for DED may also play a role [65].
Traditional dry eye tests, including the Schirmer test and fluorescein tear film break-up time
(BUT), often show poor reliability and reproducibility [66]. The absence of an established
consensus on the diagnostic criteria for DED also makes its diagnosis difficult [67]. New
imaging modalities, such as infrared meibography, tear interferometry, IVCM, AS-OCT,
and non-invasive tear BUT meibography, can allow for the visualization and assessment of
the ocular surface and tear film. However, although these modalities are objective, their
interpretation may often depend on the subjective judgment of the examiners.

To overcome these challenges, AI can be applied to the analysis of DED tests and the
construction of protocols for the diagnosis and monitoring of the disease. Many studies
have reported promising results of AI-based algorithms for the diagnosis of DED and
analysis of the results of DED tests. Herein, we aim to provide a comprehensive overview
of the studies and discuss the recent advances in the integration of AI into the approach for
the diagnosis and treatment of DED.

3.1. Application of AI for Analysis of Medical Data

In 1999, Grus et al. [68] proposed a method for an ML-based analysis of the elec-
trophoretic patterns of tear proteins using an ANN and showed that an AI-based analysis
of the tears was effective for the detection of DED. In 2020, Nam et al. [69] developed an
explanatory model of DED using an ML-based model and network-based factor analysis of
the data from a large population study, the Korea National Health and Nutrition Examina-
tion Survey (KNHANES). In this study, continuous factors were classified using DTs, and
important factors were selected using the least absolute shrinkage and selection operator
(LASSO) regression [69]. These factors were then used for the training of a survey-weighted
multiple logistic regression, and the interrelationship of the DED-associated factors was
evaluated using the network graphs of the correlations between these factors [69]. This
model revealed that important risk factors of DED included female sex, corneal refractive
surgery, cataract surgery, depression, psychological stress, age of 54–66 years, rhinitis,
lipid-lowering medication, and omega-3 intake, in which age (54 to 66 years) had the
highest centrality in the network of the correlations between these risk factors [69]. Dros
et al. [70] proposed an ML-based algorithm for the identification of primary Sjögren’s
syndrome using routine healthcare data. In this study, the ML model was developed using
logistic regression (LR) and an RF for the classification of patients with and without primary
Sjögren’s syndrome, which attained an AUC of 0.82 (LR) and 0.84 (RF), a sensitivity of
72.3% (LR) and 70.1% (RF), and specificity of 74.0% (LR) and 77.9% (RF) [70].

3.2. Analysis of ASPs and Videos Using AI

Photographs or videos of anterior segment structures, such as the cornea, conjunctiva,
and eyelid, taken during a slit lamp examination can provide information regarding the
diagnosis of DED and monitoring of its treatment. However, assessment of the photos and
videos is often less reproducible and repeatable because of the lack of tools for reliable,
objective, and quantitative analysis, in which the application of AI is expected to be helpful
for the development of reliable interpretation tools.

In 2007, Yedidya et al. [71] developed a method for the automated detection of dry
regions in videos recorded during a fluorescein tear film BUT test using the RANdom
SAmple Consensus (RANSAC) algorithm. In a subsequent study, they introduced a pro-
tocol in which dry areas were segmented using a multi-label graph-cut algorithm on the
3D spatio-temporal data converted from a video sequence recorded during the test [72].
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The growth of the dry areas was measured using material recovery facilities (MRFs) and
expressed as a time-evolving map of the degrees of dryness [72]. These methods enabled
the accurate detection and quantitative measurement of the dry areas, which can be helpful
for the evaluation of the severity of DED [71,72]. Recently, Zheng et al. [73] developed a
DL-based algorithm for blink analysis using videos recorded by a Keratograph® 5M (Ocu-
lus Optikgeräte GmbH, Wetzlar, Germany). In this study, the frequency of the incomplete
blinking measured using the AI model was closely associated with the signs and symptoms
of DED, suggesting the potential of the DL algorithm as a diagnostic tool for DED [73].

In 2022, Wang et al. [74] proposed a DL model constructed and based on VGGNet-
13 for the automated identification of lid margin abnormalities, which are potentially
associated with DED, using ASPs. This DL model achieved excellent accuracy for lid
margin abnormalities with high sensitivity and specificity, which were as follows: lid
margin irregularity (AUC, 0.977; sensitivity, 0.930; and specificity, 0.938), vascularization
(AUC, 0.980; sensitivity, 0.923; and specificity, 0.961), hyperkeratinization (AUC, 0.964;
sensitivity, 0.948; and specificity, 0.948), and meibomian gland (MG) plugging (AUC, 0.968;
sensitivity, 0.979; and specificity, 0.867) [74]. These findings suggest that the integration
of AI into the evaluation protocol of ASPs may be helpful for the diagnosis and treatment
of DED [74].

Chun et al. [75] developed a digital image analysis technique that could be useful for
the objective assessment of corneal staining. In this software, they applied a combination
of the difference of Gaussian’s edge detection for morphologic features, the red–green–blue
systems, and the hue–saturation–value color model for color detection and used Otsu
thresholding, a median filter, and a contrast-limited adaptive histogram equalization for
enhancing the contrast [75]. Pellegrini et al. [76] showed that their objective technique
of digital image analysis based on ASPs was useful for the objective quantification and
morphological characterization of corneal staining in DED and for differential diagnosis of
Sjögren syndrome and ocular graft-versus-host disease. Park et al. [77] introduced an auto-
mated image analysis algorithm for the objective assessment of a conjunctival injection that
showed an excellent correlation with subjective grading by ophthalmologists. Subsequent
studies have proven that the image analysis technique can be a useful tool for objective
and precise quantification of conjunctival injection [78–80], which is conceivably helpful
for monitoring DED. Kim et al. [81] developed software for the automated assessment of
corneal neovascularization and showed that it was more reproducible and time-saving
than the manual method. However, AI has not been used in these studies. We believe
that the integration of AI into these automated image analysis techniques based on ASPs
is expected to be helpful for the precise and accurate assessment of the disease activity
of DED and monitoring of the treatment response. However, it is not uncommon to find
patients without any visible changes in the cornea and conjunctiva, despite significant dry
eye symptoms [62–64]. Thus, clinicians should not solely depend on the analysis of AI for
the diagnosis and treatment of DED.

We have recently shown that AI-based algorithms for the analysis of histopathological
images might be a reliable method for the quantitative assessment of the histopathological
features of pterygium [27], suggesting that AI can also be helpful for the analysis of
histopathological samples, such as impression cytology specimens.

3.3. Analysis of Meibography Images Using AI

Infrared meibography enables the visualization of the two-dimensional silhouette of
MGs, and it can provide information regarding the amount of the MG’s dropout, the area
of the MG’s acini, and the length of the MG’s duct [82,83]. Hence, the device may allow the
evaluation of the severity of meibomian gland dysfunction (MGD) and DED associated
with MGD [83]. For a more precise assessment of the meibography images, semiautomated
software that can automatically calculate the ratio of the area of the MG’s dropout to
the total MG area has been proposed [84]. Llorens–Quintana et al. [85] also developed a
new algorithm for the automated detection of the MG area and objective analysis of the
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morphologic features of MGs. More recently, a fully automated algorithm that enables
an objective, quantitative, and multiparametric assessment of meibography images using
repeatable segmentation based on noise reduction and image contrast enhancement was
introduced [86]. However, AI was not applied to these methods.

In 2012, Koh et al. [87] proposed computational methods for the automated detection
of the width and length of MGs based on the infrared meibography images of 55 patients
(26 ‘healthy’ and 29 ‘unhealthy’). A linear classifier was trained using features based on
the widths and lengths of the MGs, which showed high accuracy (sensitivity, 97.9%, and
specificity, 96.1%) [87]. Wang et al. [88] generated a DL-based algorithm using DNNs for
the automated segmentation of the MG’s atrophy area and computation of the ratio of the
atrophy area. Of note, this algorithm achieved a high accuracy of 95.6% for meiboscore
grading, outperforming the clinical investigators by 16.0–40.6% [88]. It also attained a high
97.6% and 95.4% accuracy for the segmentations of the eyelid (97.6%) and atrophy (95.4%),
respectively [88]. They also developed a DL-based approach for the automated segmenta-
tion of each MG region in meibography images and the analysis of their morphological
features, which showed an 84.4% sensitivity and 71.7% specificity for the identification of
ghost MGs [89]. In this algorithm, an SVM was applied for the analysis of the association
between the morphological features of the MGs and ghost glands, which revealed that
the low local contrast of the MG might be the primary indicator for ghost MGs [89]. Yeh
et al. [90] introduced a DL-based network model using an unsupervised learning approach
for the automated assessment of the severity of MG atrophy in meibography images, which
demonstrated a high accuracy of 80.9% for the meiboscore grading, outperforming the
clinical investigators by 25.9%. Setu et al. [91] proposed a DL-based method for MG seg-
mentation by applying transfer learning with Inception-ResNet-v224, which is a pre-trained
backbone. In this study, the baseline U-Net model was trained with transfer learning after
pre-training using chest X-ray images to enhance transfer learning performance [91]. This
algorithm achieved an AUC of 0.96, an average precision and recall of 83% and 81%, re-
spectively, and an F-score of 84% [91]. A DL framework based on a Mask R-CNN was also
developed for the segmentation of conjunctiva and MGs, which attained high accuracy in
the segmentation of the conjunctiva (mean average precision [mAP] > 0.976, validation
loss < 0.35) and MGs (mAP > 0.92, validation loss < 1.0) [92]. The evaluation of each image
using this AI model took 480 ms, 21 times faster than that of ophthalmology specialists [92].
In 2022, Saha et al. [93] introduced a classification-based DL model that could enable the
fast, automated, and objective assessment of the morphologic features of MGs, i.e., the seg-
mentation of MGs, quantitative analysis of the area and ratio of MGs, and determination of
the meiboscore. This AI model attained accuracies of 73.01% and 59.17% for the meiboscore
classification on the validation set and on the images from independent centers, respec-
tively, outperforming the accuracy of 53.44% by MGD specialists [93]. Moreover, this model
removed the specular reflection from the original images using a generative adversarial net-
work (GAN), which may allow for a distraction-free assessment by ophthalmologists [93].
These findings suggest that the integration of AI into the analysis of meibography images
may enable the more precise and accurate monitoring of DED (Table 2). Although the
AI-based analysis of meibography images enabled the quantitative analysis of MG changes,
it cannot provide information regarding the changes in the three-dimensional structure of
the MG. The development of devices capable of three-dimensional visualization of the MG
is, therefore, needed.
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Table 2. Summary of the studies regarding application of AI for analysis of meibography images.

Study Method (Protocol) Number of Image Samples Results

Koh et al. [87] (2012) linear classifier 26 ‘healthy’ images
29 ‘unhealthy’ images

sensitivity, 97.9%
specificity, 96.1%

Wang et al. [88] (2019) deep neural network 497 for training and tuning
209 for evaluations

95.6% accuracy for
meiboscore grading,

97.6% and 95.4% accuracy for
eyelid and atrophy segmentations,

respectively

Wang et al. [89] (2021) DL model
SVM

1039 for training and tuning
404 for evaluations

84.4% sensitivity and 71.7%
specificity in identifying ghost

meibomian gland

Yeh et al. [90] (2021) unsupervised feature
network learning

497 for network learning and tuning
209 for evaluations

80.9% accuracy for meiboscore
grading, outperforming the

clinical investigators by 25.9%

Setu et al. [91] (2021)

transfer learning with a
pre-trained backbone

training with U-net model
no image pre-processing

502 and 126 for training and
validation datasets, respectively

100 for comparison with
manual annotations

The average precision score of
83% with AUC value of 0.96

Yu et al. [92] (2022) Mask R-CNN 1878 for training and tuning
58 for evaluations

High accuracy in the identification
of conjunctiva and meibomian

glands (validation loss < 0.35 and
<1.0, respectively, and mAP >
0.976 and >0.92, respectively)
High speed that was 21 times

faster than specialists

Saha et al. [93] (2022)
classification-based DL model

generative adversarial
network (GAN)

752 for training
189 for analyzing the performance

600 from an independent center
for validation

73.01% and 59.17% accuracy for
meiboscore classification on

validation set and on images from
independent center, respectively

3.4. Analysis of Interferometry Images Using AI

Tear film interferometry is a valuable tool for the diagnosis and monitoring of DED [82,94].
It allows visualization of the tear film layer and provides objective data on tear film
properties, such as the thickness of the tear film and lipid layer, features of tear film break-
up, and distribution and wetting patterns of the tear film with sequential blinking [82,94].
Previous studies have attempted to characterize the interference phenomena as a color
texture pattern for automatic classification into interference pattern categories [95–98]. In
these studies, various texture analysis methods and machine learning algorithms, including
an SVM and multilayer perceptron, were used to analyze the interference patterns of the
tear lipid layer for automatic classification [95–98].

Subsequently, da Cruz et al. [99] proposed an ML-based method for classifying tear
interferometry images using texture analysis with phylogenetic diversity indices. The
automated classification was tested using various algorithms, such as an RF, a multilayer
perceptron, a naive Bayes, an SVM, a random tree, and a radial basis function network,
with the RF classifier demonstrating the best results, with an accuracy of over 97%, an AUC
of 0.99, an F-score of 0.97, and a Kappa index of 0.96 [99]. They also introduced a method
for the automated classification of tear film interferometry images using feature extraction
with phylogenetic diversity indices and Ripley’s K function [100]. Among the various
ML algorithms, the best results were obtained with the RF classifier, with an accuracy of
over 99%, an AUC of 0.999, an F-score of 0.996, and a Kappa index of 0.995 [100]. These
findings suggest that an ML-based analysis of tear interferometry images can be a useful
tool for screening DED. A small number of studies have been introduced so far, probably
due to the technical difficulty in image processing and analysis. With further technological
development, interferometry devices may provide images with an enhanced resolution
and contrast, which may be more suitable for AI-based analysis.

3.5. Analysis of IVCM Images Using AI

IVCM is a non-invasive imaging modality that enables real-time visualization of the
ocular surface tissue and changes in the ocular surface microstructures associated with
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DED [82,101]. However, although the IVCM image is objective, its interpretation may
depend on the subjective assessment of the observers. The application of Al enables the
objective and precise evaluation of ocular surface microstructures, such as the corneal
nerves, epithelial cells, and dendritic cells, based on IVCM images [102–105].

In 2016, Al-Fahdawi et al. [102] introduced an Al system for the automated segmenta-
tion of the corneal nerve and the assessment of its morphological parameters, including
nerve tortuosity, length, and thickness, using IVCM images, which is expected to be a
powerful tool for the early detection of diabetic peripheral neuropathy. For a quantitative
evaluation of diabetic polyneuropathy, Chen et al. [103] generated an automated algorithm
based on a multilayer perceptron neural network and RF models for the detection and
quantification of corneal nerve fibers using IVCM images. The automated quantification of
the corneal nerves using this AI-based method showed a high correlation with the manually
measured morphological features and similar results for the differential diagnosis of dia-
betic polyneuropathy, with repeatability and speed superior to manual quantification [103].
Williams et al. [104] recently introduced a DL algorithm employing a CNN with data
augmentation for the automated quantification of the corneal sub-basal nerve plexus. This
algorithm showed superior intraclass correlation coefficients for the corneal nerve parame-
ters compared to a validated automated analysis software, ACCMetrics [104]. Moreover, it
achieved a high AUC (0.83), specificity (0.87), and sensitivity (0.68) for the classification of
participants with and without neuropathy, suggesting that AI-based algorithms can be a
useful screening tool for peripheral neuropathy. Wei et al. [106] also developed an AI model
for the automated segmentation and evaluation of sub-basal corneal nerve fibers in IVCM
images using a CNN based on a DL algorithm. This model attained an AUC of 0.96 and
mAP of 94%, with a substantially higher speed (32 images per second) than that of clinical
investigators, suggesting that it can allow for the rapid and accurate assessment of changes
in the corneal nerves in DED [106]. Subsequently, they analyzed the morphologic features
of corneal sub-basal nerves in IVCM images using a DL model based on CNNs [107]. In
this study, DED was associated with reduced density and the maximum length of corneal
nerves measured using an AI algorithm [107]. The average corneal nerve density evaluated
using a DL model had a negative correlation with corneal intrinsic aberrations, particularly
higher-order aberrations [107]. Xu et al. [108] introduced deep transfer learning models
that comprised pre-trained networks and an adaptation layer for automated detection of
activated dendritic cells and inflammatory cells using IVCM images. In this study, the
Inception-ResNet V2 transfer model achieved the best performance in identifying activated
dendritic cells (AUC, 0.9646; accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G
mean, 0.8872) and inflammatory cells (AUC, 0.9646; accuracy, 0.9767; sensitivity, 0.9174;
specificity, 0.9931; and G mean, 0.9545), indicating that this AI model can be a powerful
tool for the quantitative assessment of corneal inflammation in DED and monitoring of
treatment responses [108].

A new DL algorithm based on GANs, an emerging DL model for the processing of
medical images, was first introduced for the automated segmentation of corneal subbasal
nerves in IVCM images in 2021 [109]. In comparison with the U-Net-based algorithm, the
GAN-based algorithm showed a similar correlation and Bland–Altman analysis results.
The GAN-based method demonstrated higher accuracy for the segmentation of corneal
nerves in IVCM images, particularly in the applied images, compared to the U-Net-based
method [109]. In 2022, a new DL-based algorithm that enabled the automated segmentation
and evaluation of corneal nerve fibers (CNFs) and dendritic cells (DCs) separately in IVCM
images based on U-Net and Mask R-CNN architectures, respectively, was produced by
Setu et al. [110] In this study, both the CNF model (86.1% sensitivity and 90.1% specificity)
and the DC model (89.37% precision, 94.43% recall, and 91.83% F1 score) showed reliable
consistency with the manual evaluation and at a substantially higher speed, suggesting
that the DL model has the potential to be integrated into the monitoring tools of DED
using IVCM [110].
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AI can also be helpful for the detection of MGD using IVCM [105,111]. Maruoka
et al. [105] generated a DNN-based DL model for the detection of obstructive MGD using
IVCM images. Their ensemble DL model achieved a high level of accuracy (AUC, 0.981;
sensitivity, 92.1%; specificity, 98.8%), indicating that this model can enable the automated
diagnosis of obstructive MGD based on IVCM images [105]. Zhang et al. [111] also intro-
duced a DL model using a multilayer deep CNN for the differential diagnosis of MGD
based on IVCM images. In this study, the DenseNet169 CNN model showed a high accu-
racy of over 97%, a sensitivity of 88.8%, and a specificity of 95.4%, indicating that the DL
model has the potential to be a tool for the differential diagnosis of MGD [111].

The results of these studies suggest that AI-based analysis of IVCM images may
provide information regarding changes in the corneal nerve, DCs, and MG. However,
these microstructural changes may often have little correlation with the symptoms and
signs of DED [62–64]. Therefore, a comprehensive approach comprising clinical data and
information from various diagnostic modalities should be encouraged. Studies on the
application of AI in the analysis of the IVCM images are summarized in Table 3.

Table 3. Summary of the studies regarding application of AI for analysis of IVCM images.

Study Method (Protocol) Number of Image Samples Results

Al-Fahdawi et al. [102] (2016)
neural network

RF
SVM

498 for evaluation of
segmentation

919 for evaluation of extracting
morphometric features with

clinical utility

rapid (13 s/image), robust and
effective automated corneal nerve

quantification

Chen et al. [103] (2017)
multi-layer perceptron neural

network
RF models

200 for training and validation
888 for testing

AUC of 0.77 and 72%
sensitivity/specificity for
identification of diabetic

sensorimotor polyneuropathy

Williams et al. [104] (2020) CNN with data augmentation 1698 for training
2137 for external validation

AUC of 0.83, specificity of 0.87,
and sensitivity of 0.68 for

detection of diabetic neuropathy

Wei et al. [106] (2020) CNN 552 for training
139 for testing

High accuracy for corneal nerve
segmentation (AUC 0.96) and a
mean average precision (mAP)

of 94%

Wei et al. [107] (2020) CNN 229 eyes of 155 patients with DED
40 eyes of 20 healthy control

reduced density and maximum
length of corneal nerve measured

with AI algorithm had been
association with DED

Xu et al. [108] (2021) deep transfer learning network 3453 for training
558 for validation

AUC, 0.9646; sensitivity, 0.8171;
specificity, 0.9517 in identifying

activated dendritic cells
AUC, 0.9901; sensitivity, 0.9174;
specificity, 0.9931 in identifying

inflammatory cells

Setu et al. [110] (2022)
U-Net for segmentation of corneal

nerve fibers Mask R-CNN for
segmentation of dendritic cells

U-Net (corneal nerve fibers)
1097 for training

122 for testing
Dendritic cells
679 for training

75 for testing

Corneal nerve fibers model:
86.1% sensitivity and 90.1%

specificity dendritic cell model:
89.37% precision, 94.43% recall,

and 91.83% F1 score

Yildiz et al. [109] (2021) U-net
GANs

403 for training
102 for testing

The GAN-based algorithms
showed higher accuracy than
U-Net for automated corneal
nerve segmentation based on

IVCM images

Maruoka et al. [105] (2020) Deep neural network 137 with obstructive MGD 84 with
normal meibomian glands

High level of accuracy for
detection of obstructive

meibomian gland dysfunction
(AUC 0.981, sensitivity 92.1%, and

specificity 98.8%)

Zhang et al. [111] (2021) multi-layer deep CNN 4985 for training
1663 for validation

excellent accuracy (over 97%) for
differential diagnosis of MGD
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3.6. Application of AI for Analysis of AS-OCT Images

AS-OCT can provide cross-sectional images of the tear meniscus and a quantitative
assessment of tear film parameters, such as the height and area of the tear meniscus, which
may be helpful for the diagnosis and monitoring of DED [112–114].

In 2020, Stegmann et al. [115] introduced a DL-based algorithm for the automatic
segmentation of the lower tear meniscus using images taken with a custom-built AS-
OCT system. In this study, 6658 images labeled by the thresholding-based segmentation
algorithm were used to train deep CNNs with supervised learning [115]. The five-fold
cross-validation showed a sensitivity of 96% and a specificity of 100%, indicating that
DL-based segmentation of the tear meniscus can be a powerful tool for the evaluation
of the tear film [115]. Using 158,220 images from 879 eyes of 478 participants, Elsawy
et al. [116] developed a multi-disease DL diagnostic network based on AS-OCT images
and revealed that it attained an AUC > 0.99, an area under precision-recall curve (AUPRC)
> 0.96, and F1 scores > 0.90 for DED. AI can also be used to optimize the integration of
data from AS-OCT images for screening and staging DED [117]. Edorh et al. [117] used
RF regression to generate an optimal multivariable model for the diagnosis of DED that
included data from wide corneal epithelial mapping using AS-OCT and validated the
model using a bootstrapping method. This diagnostic algorithm showed high sensitivity
(86.4%) and specificity (91.7%), suggesting that the integration of OCT corneal epithelial
mapping data into a diagnostic algorithm using AI may improve the reliability of the
diagnosis of DED [117]. Although a limited number of studies regarding the application
of AI for the analysis of AS-OCT images have been conducted so far, the development of
advanced devices, including high-resolution OCT, may enable the assessment of subtle
changes in the ocular surface and tear film using AI [15].

4. Future Perspectives

The favorable results of the studies introduced in this review indicate that AI can
be a critical tool for the management of DED in the future. AI can allow the diagnosis
of DED and precise assessment of its severity by integrating the symptoms, signs, ocular
and systemic risk factors, and results of various test devices. It can also enable precise
monitoring of the treatment response of DED by detecting and analyzing subtle changes
in dry eye signs, symptoms, and test results. With technological developments, images
of anterior segment structures, meibomian glands, and the tear film can be obtained
using mobile devices. By integrating and analyzing these images and clinical information
provided by patients and primary healthcare providers, AI can enable telemedicine for the
monitoring of DED and mass screening for the disease. AI can also improve the accuracy of
the analysis of big data for the evaluation of the risk factors and prevalence of DED in the
general population, which may enable the estimation of the risk of DED in each individual
in the near future.

5. Conclusions

Advances in ML technology, particularly DL algorithms, have enabled the application
of AI in various anterior segment diseases, including DED. AI is expected to be able to
integrate the data from medical records, test results, and large population-based studies and
provide optimized protocols for the diagnosis and management of DED [15]. The analysis of
data obtained by imaging devices for DED, such as ASP, meibography, tear interferometry,
IVCM, and AS-OCT, using AI may enable the precise and accurate assessment of the
tests for DED, which would be critical for proper diagnosis and optimal treatment of the
disease. The results of the studies introduced in this review are promising. With further
development, integration of AI into the clinical approach for DED may be crucial for
enhanced diagnostic and therapeutic performance.
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