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Abstract: Deep brain stimulation (DBS) is a beneficial procedure for treating idiopathic Parkinson’s
disease (PD), essential tremor, and dystonia. The authors describe their set of imaging modalities used
for a frameless and fiducial-less method of DBS. CT and MRI scans are obtained preoperatively, and
STN parcellation is done based on diffusion tractography. During the surgery, an intraoperative cone-
beam computed tomography scan is obtained and merged with the preoperatively-acquired images
to place electrodes using a frameless and fiducial-less system. Accuracy is evaluated prospectively.
The described sequence of imaging methods shows excellent accuracy compared to the frame-
based techniques.
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1. Introduction

Deep brain stimulation (DBS) is a widespread technique used to neuromodulate sub-
cortical brain structures in patients with neurological and psychiatric disorders, mainly
Parkinson’s disease (PD), dystonia, essential tremor, obsessive-compulsive disorder, and
schizophrenia. The highest level of evidence supports using this method in PD compared to
the best pharmacological treatment [1]. DBS is now indicated sooner and more frequently,
even for the earlier stages of PD. The neurosurgical techniques used to place the electrodes
range from frame-based stereotaxis with microelectrode recording and physiological map-
ping of target structures [2,3] to a frameless implantation technique using neuro-navigation
guidance with skull-mounted aiming devices, in conjunction with bone-implanted fiducial
markers.

The success of the surgical treatment is primarily dependent upon the proper place-
ment of the electrodes in the brain. Anatomical structures used as targets, such as the
thalamus or subthalamic nucleus (STN), could be localised based on structural images
from magnetic resonance imaging (MRI). However, only whole structures are depicted in
these structural images. Therefore, it is not possible to distinguish their parts with these
methods (e.g., parts of the STN) or nuclei (e.g., ventral intermedial nucleus of the thalamus),
which are crucial for precise targeting in patients with essential tremor and tremor in PD.
Diffusion-weighted imaging (DWI/dMRI) can disclose anatomical connectivity using trac-
tography, visualizing thalamo-cortical pathways [4,5] and providing dMRI-based thalamic
parcellation. Some have established probabilistic tractography-based parcellation as an
acceptable and reliable method to separate the ViM nucleus. In STN, the subdivisions can
also be identified using the connectivity-based parcellation by the hyper-direct pathway
projections [6]. The motor (lateral) part of the STN is the desired target for DBS in PD;
whereas, stimulation of the limbic part is responsible for some of the adverse, non-motor
effects [7,8].
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The current clinical practice uses a structural (T2-weighted) MRI to define the target,
which is being done by an experienced clinician. The repeated proposal to use tractography-
based parcellation to improve STN targeting has provided inconsistent results, and the
clinical use of this method remains a matter of ongoing debate. Therefore, the use of
MRI tractography is our primary method used to visualise the white matter tracts in vivo,
representing the anatomical connectivity of the STN, identifying the parts responsible for
motor and non-motor symptoms. To perform a frameless and fiducial-less DBS procedure,
it is necessary to use other imaging methods and fuse them using a planning station. In
our centre, we use a CT scan, which is fused to an MRI and for intraoperative imaging and
an O-arm scan, which is fused to the CT scan. Our project aims to present the numerous
imaging techniques required for the highest possible efficiency and efficacy of placing
DBS electrodes into the STN in PD patients, using tractography as guidance. The final
placement of the DBS electrodes is the main factor influencing a successful outcome of
DBS, conjoining with an appropriate selection of candidates, optimised programming, and
pharmacotherapy after the surgery.

2. Materials and Methods

The use of a combination of imaging modalities is needed for the best possible outcome
of surgical placement of DBS electrodes. Thus, the precise knowledge of the STN region is
crucial in achieving the most significant antiparkinsonian benefit. This precise localisation
can only be achieved by the accurate and effective use of ideal imaging techniques.

The best clinical effect on motor symptoms is based on the optimal localisation of the
lateral part of the STN, which also leads to the smallest possible number of side effects of
the surgical therapy induced by stimulation of adjacent neuroanatomical structures. For
evaluation of the clinical impact of DBS therapy in PD patients, the Unified Parkinson’s
Disease Rating Scale (UPDRS) parts III and IV are used, in conjunction with the levodopa
equivalent daily dose (LEDD) [9,10]. All the above evaluations are made preoperatively in
OFF medication and half a year after the surgery in OFF medication with ON stimulation.
OFF-medication is defined as refraining from antiparkinsonian pharmacotherapy for at
least 12 h or one day for long-release formulations. By retrospective assessment of the
structural connectivity based on the position of the optimal active contacts, the volume
of tissue activated (VTA) enables us to further refine the method by identifying markers
predicting good treatment response and side effects of the therapy.

Acquiring all this information should also lead to an improved understanding of the
pathways that connect subcortical and deep structures of the brain.

Patients were included based on meeting the two main criteria–confirmed Parkinson’s
disease and suitability for surgery. Patients that did not meet the MDS-PD criteria were
excluded from this study. For patients that met the criteria, comorbidity, compliance, and
life expectancy were evaluated. Patients who were not compliant enough to cooperate for
the 3-h implantation done under local anaesthesia were excluded, as were those unable
to go under general anaesthesia for the second phase of the surgery, implantation of the
Implantable Pulse Generator. All other patients passing these criteria were approved for
surgery and included in our study.

In total, 11 patients were included in our study. The average age was 64 (57 to 75)
years old. There were 6 females and 5 males; all patients were Caucasian.

2.1. Imaging Methods
2.1.1. MRI Examination

MRI examination before the surgery is performed on 3T MR scanner (Siemens Vida,
Erlangen, Germany) using a 20-channel head/neck coil seven days before the surgery. The
protocol contains structural sequences and dMRI sequences used for the tractography.
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Diffusion Magnetic Resonance Imaging (dMRI) Procedure

Diffusion MRI (dMRI) is a technique sensitive to random water molecule movement
in tissues. Various models can mathematically model the directionality of the diffusion.
This information can then be used for a method called tractography, which identifies white
matter tracts and bundles in-vivo. Advanced diffusion models such as Ball-and-Sticks [11]
allow modelling diffusion within multiple compartments to characterise diffusion properly
in voxels with more than one fibre population, which is crucial for identifying subsidiary
pathways [12]. Multi-compartment models require high-angular resolution diffusion
imaging (HARDI). The 3T HARDI protocol, in combination with similar techniques like
simultaneous multi-slice, can acquire high-resolution dMRI data covering >64 diffusion
directions within a clinically acceptable time of about 5 min. There are no requirements for
examined patients to cooperate during dMRI examination besides keeping their head still.
Cushions immobilise the subject’s head to assure maximum comfort and minimise head
motion.

Data Acquisition

The MR imaging protocol covers the whole brain with focusing on deep brain struc-
tures, such as the thalamus and STN, and consists of a high-resolution T1-w 3D MPRAGE
(Magnetization Prepared-RApid Gradient Echo) of the whole head (0.9 mm3 isotropic voxel,
256 × 256 matrix, 208 slices) with and without a contrast agent (Gd-based), T2-w 2D axial
TSE (Turbo Spin Echo) sequence (0.4 × 0.4 × 2.4 mm3, 448 × 448 matrix, 30 slices) scan,
and T2-w 2D axial SWI (Susceptibility Weighted Imaging) sequence (0.9 × 0.9 × 1.5 mm3,
232 × 256 matrix, 80 slices). (Figure 1). Diffusion data are collected utilising the HARDI
technique to equally sample diffusion gradients with reversed phase-coding (anterior-
posterior (A-P) and posterior-anterior (P-A)), resulting in pairs of images with distortions
going in opposite directions (2.0 mm3 isotropic voxel, 100 × 100 matrix, 60 slices, 64 diffu-
sion directions b = 1000 s/mm2 with interspersed b = 0 s/mm2 image every 8 diffusion
volumes in A-P direction and 8 b = 0 s/mm2 images in P-A direction). The duration of the
entire MRI examination is about 30 min.
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Analysis of MRI Data, Tractography, and STN Segmentation 

Figure 1. Example of STN parcellation: (a) Coronal view of T1-w MPRAGE overlaid by T2-w image
with adjusted brightness and contrast to delineate STN. The light-blue colour indicates a segmented
mask of STN, and the yellow-red colour indicates the motor part of STN identified by probabilistic
tractography. (b) Zoomed detail to STN in relation to lateral ventricles.

Analysis of MRI Data, Tractography, and STN Segmentation

The patients in our study were divided into two groups; in the active group (6 patients),
the neurosurgeon adjusted the preoperative virtual plans of electrode placement according
to the tractography-based STN segmentation. In the control group (5 patients), tractography
is performed retrospectively, but no correction of electrode placement is done, and the
surgery team remains blinded to the STN parcellation.
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Diffusion MRI data processing is done using FSL (FMRIB Software Library, www.fmrib.
ox.ac.uk/fsl, accessed on 1 January 2020); structural MRI data processing is performed using
FSL and FreeSurfer (http://surfer.nmr.mgh.harvard.edu/, accessed on 1 January 2020). Pre-
processing of dMRI data consists of correcting motion artefacts, susceptibility artefacts, and
eddy currents artefacts using FSL’s topup and eddy tools based on reversed phase-coding
sequences. Multi-compartment Ball-and-Stick model is then fitted on artefacts-corrected
dMRI data using the 4edpost [11] function. Initially, STN is segmented using a standard
anatomical atlas [13] complemented with manual edits [14–16] if necessary, exploiting T2-
weighted and SWI images linearly co-registered with high-resolution T1-weighted image
using the FLIRT tool [17]. Next, the neurosurgeon creates virtual manual plans of electrode
placement for both patient groups (while blinded to group allocation). Brodmann areas
(BA) 4, 6, and 1–3, corresponding to the primary motor cortex, premotor cortex, and
primary somatosensory cortex, respectively, are extracted from the cortical reconstruction.
Volumetric segmentation is performed using FreeSurfer and used as seed areas for the
hyper-direct pathway to the motor part of the STN. In contrast, BA 25, 30, 34, and 35
serve as seed areas for the pathway reaching the limbic region of the STN [18]. Using the
probtrackx [11,16,18] tool, probabilistic tractography is performed from cortical seed areas
to STN to delineate the two STN subdivisions. Time-demanding estimation of the Ball-and-
Sticks model and running of probabilistic tractography is parallelised using the HTCondor
parallelisation tool over multiple CPUs. The resulting parcellation of STN is merged with
the MPRAGE image, imported to the planning station (Medtronic, Minneapolis, MN,
USA), and co-reregistered using rigid registration (6 degrees of freedoms–3 translations, 3
rotations) with the reference CT.

2.1.2. CT

A pre-surgical CT scan covering the whole head is acquired on a clinical machine (GE
LightSpeed VCT) using the helical mode several days before the surgery. Images from the
CT are then imported into the planning station (Medtronic, Minneapolis, MN, USA) and
used as reference images for consequent MRI and O-arm data registrations. Acquisition of
this image is crucial for perfect alignment with the MRI and intraoperative CT.

2.1.3. Intraoperative CT

Intraoperative 3D cone-bean CT (Medtronic O-arm O2, Minneapolis, MN, USA) cover-
ing the whole head is acquired at the beginning of the surgery using the Stereotaxic mode
and 40 cm FOV (field-of-view). The gantry of the O-arm is positioned to have the patient’s
head in the isocentre. If necessary, the gantry can be tilted to achieve the best possible
alignment with the patient’s head. After the scan is finished, the exact scanning position
of the gantry is saved, and the gantry is moved horizontally towards the patient’s legs to
free up space for the surgeon. The acquired 3D image is automatically transferred to the
neuro-navigation Stealth Station S8 (Medtronic, Minneapolis, MN, USA) and co-registered
using rigid registration (6 degrees of freedoms–3 translations, 3 rotations) with the reference
preoperative CT image to allow precise intraoperative navigation.

Three O-arm scans are made during the surgery in total. The first O-arm scan is
performed at the beginning of the surgery to localise entries for the electrodes. The sec-
ond O-arm scan is performed after attaching the reference frame (NexFrame, Medtronic,
Minneapolis, MN, USA) to the right side of the patient’s head. The third O-arm scan is
performed after attaching the reference frame to the left side of the patient’s head.

2.2. Surgical Technique

The surgery is performed in one day, split into two stages. During the first stage—
insertion of the DBS electrodes—the patient is awake; the second stage—implantation of
the internal pulse generator—is done under general anaesthesia.

An intraoperative CT scan using 3D O-arm is acquired at the start of the surgery, fused
with MRI and CT images made preoperatively, using the Stealth Station S8 stereotactic

www.fmrib.ox.ac.uk/fsl
www.fmrib.ox.ac.uk/fsl
http://surfer.nmr.mgh.harvard.edu/
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navigation software. The selection of target points for the tips of the electrodes is made
using a combination of direct and indirect targeting in PD. Using the volumetric MRI
images, the trajectories are shown, and minor adjustments are made to the trajectories to
avoid damaging dural venous sinuses, cortical veins, and lateral ventricles. (Figure 2)
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The burr hole entry point of the predetermined electrode trajectory is localised and
marked on the skin using a passive planar blunt probe and active S8 navigation; a small
hole is drilled to mark that point on the skull. After that, sterile draping is done, a skin
incision is made, and the burr holes centred on the pilot holes are completed. With the lead
anchoring device and the Nexframe base attached, a navigated O-arm picture is acquired
and fused with preoperative imagery. Registration of sterile instruments is performed to
achieve a registration error under 0.5 mm. Attachment and alignment of the Nexframe
tower are done using S8 navigation software to correspond to the chosen target. The target
depth is then calculated and set on the microTargeting Drive System positioning device.
The dura mater is closed to prevent CSF leak or pneumocephalus with the help of fibrin
glue.

2.3. Intraoperative Microelectrode Registration (MER)

Four needles are used to perform MER in STN-DBS, allowing us to delineate the
borders of the STN using an array as central, lateral, anterior, and posterior. The starting
point for STN is set 10 mm above the MRI based localisation, and the Microdrive makes an
advancement of 500 µm towards the target each time.

2.4. Macro-Test Stimulation

After the microelectrode registration is done, the microelectrode tip is retracted. Chan-
nels that showed clinically significant activity over a length exceeding 3 mm are selected
for intraoperative, real-time test stimulation (for PD, the duration of the pulse is 60 ms, the
frequency of the pulse is 130 Hz, 1–4 mA) [19]. The chosen electrode with the macro-tip
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is then used for macro-test stimulation, performed by an experienced neurologist. After
evaluating the selected channels, the one with the largest therapeutic window, meaning the
lowest current threshold for the highest clinical response and the highest threshold for side
effects, is chosen for permanent electrode implantation. Afterwards, the final control 3D
O-arm scan is performed to confirm the accuracy of electrode placement.

2.5. Clinical Assessment

Both motor and non-motor symptoms (NMS) were evaluated preoperatively and
postoperatively at months 1 and 4, utilising a large variety of scales.

For motor symptoms, we used the Movement Disorder Society Unified Parkinson’s
Disease Rating Scale, (MDS-UPDRS), part III: Motor Examination.

The main scale used for non-motor symptoms was the Nonmotor Symptoms Scale
for Parkinson’s Disease (NMSS), which tests the severity and frequency of NMS over the
previous 30 days. Other scales used were The Parkinson’s Disease Sleep Scale (PDSS), The
Parkinson’s Disease Questionnaire (PDQ-39), and the Scales for Outcomes in Parkinson’s
disease—Autonomic (SCOPA-Aut) Questionnaire.

3. Results

For all 11 patients, we implanted four microelectrodes using the parallel multi-track
microelectrode recording. Afterwards, we confirmed the optimal position of the electrodes
within the STN by recording the signal from the nucleus in all patients. On average, three
microelectrodes had a good signal (one minimum, four maximum). After MER is finished,
the tip of the microelectrode was retracted. Channels showing clinically significant activity
over a length exceeding 3 mm are selected for intraoperative, real-time test stimulation
(for PD, the pulse duration was 60 microseconds, the frequency of the pulse was 130 Hz,
1–4 mA).

To confirm the proper position of the lead and the accuracy of the procedure, we
obtained an intraoperative 3D O-arm scan and fused the newly acquired image with preop-
erative planning. This can be used anytime during the surgery to control the procedure
(Figure 3).
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The precision of insertion of the electrode into the STN can be evaluated by calculat-
ing error on the pre-/perioperative MRI/CT fusion images. The point of entry anterior
commissure-posterior commissure (AC-PC) coordinates point A and the target point AC-
PC coordinates point B of the trajectory can be found on the perioperative navigation
device using preoperative MRI. The target is then usually intraoperatively modified in
accordance with the micro recording and clinical examination by shifting the trajectory,
labelled as distance d. Knowing both the distance and the AC-PC coordinates of both the
starting point and the planned target enables us to calculate the AC-PC coordinates of the
modified target (point C). The electrodes’ actual position AC-PC coordinates (point D) can
be localised by manually placing a cursor at the end of the electrode, which is visible on the
MRI/CT fusion using the navigation device. Using the equation to calculate the distance
between two points in three-dimensional space makes it possible to determine the total
error (distance between the actual placement position and the modified target). Using an
equation for calculating the distance of two points in a straight line, we can quantify the
placement error in anteroposterior, lateral, and vertical axes. The accuracy of placement is
shown in Table 1. We found no significant differences by comparing our results to other
publications [1,10].

Table 1. Accuracy of the Frameless Fiducial-less procedure.

Procedure Total Error (mm) Lateral Axis AP Axis Vertical Axis

FL 1.79 ± 0.68 1.10 ± 0.78 1.37 ± 0.87 1.21 ± 0.9

The accuracy of electrode placement adjusted in accordance with pre-operative STN
parcellation (active group) has been slightly better in comparison to the control group;
however, these results were not statistically significant.

3.1. Surgical Outcomes and Complications

Patients treated with DBS for PD have reported significant improvements in motor
fluctuation, documented in the patient’s diaries before the surgery and six months after DBS
STN. Patients mark into their diaries one of three states (OFF state, ON without dyskinesias,
or ON with dyskinesias) every hour for three consecutive days before the DBS procedure
and then for three successive days six months after the DBS. The mean OFF time (in hours)
before the DBS was compared to the mean OFF time after the DBS. Six months after DBS,
the mean OFF time was reduced by 52%; dopaminergic medication was reduced by 54.3%.

One patient undergoing frameless, fiducial-less STN-DBS had an infection post-
operatively that ultimately led to the removal of the entire system. The patient then
underwent reimplantation with no further complications. Postoperative CT scans showed
bilateral subdural air with no clinical symptoms in two patients. No other complications
were noted in the clinical records of the rest of the patients.

3.2. Clinical Outcomes

The motor symptoms have improved significantly at months 1 and 4, as expected, as
STN-DBS has been primarily developed for the treatment of PD motor complications.

For non-motor symptoms, the overall NMSS values have improved at both month 1
and 4, with mainly the gastrointestinal, urinary, and cardiovascular sub-scores reduced
significantly.

4. Discussion

Two main methods are nowadays used to perform DBS, one using a stereotactic frame
and the other using a frameless system with small fiducials attached to the skull [20].
(Figure 4). Excluding the fiducials in this new method and utilising perioperative O-arm
imaging and an online navigation system does not decrease the accuracy. None of the
existing techniques achieve perfect accuracy of electrode placement, and the average error
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is between 1 and 2 mm. Several weak points can lead to inaccuracy with this new method,
mainly CT, MRI, and O-arm fusion. Still, by using the latest navigation system, the error
lowers to only about 1 to 2 imaging voxels.
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Figure 4. Flowchart comparison of older stereotactic methods with frameless, fiducial-less method.

Urgosik et al. [21] analysed the weak points that can lead to inaccuracy with this
method, mainly the fusion of MRI, CT, and O-arm, the accuracy of DBS placement using the
Leksell frame according to intraoperative monitoring. Still, the newest navigation system
has an error of about 1–2 imaging voxels. Rohlfing et al., on the other hand, analysed
the accuracy of DBS placement using the Leksell frame according to intraoperative CT,
which had a reduced accuracy of stereotactic frames because of torque introduced by the
effect of weight-bearing monitoring with excellent results and minimum complication.
Holloway et al. [22] and Krahulik et al. [23] confirmed the comparable accuracy of the
frameless approach, which pointed to reduced accuracy of stereotactic frames because of
torque introduced by the effect systems to the frame-based systems.

Articles published recently focusing on the O-arm stereotactic registration precision
show good procedure accuracy if operated by experienced Nexframe users. Our study has
shown similar results, but the number of patients is smaller. Using tractography based STN
parcellation preoperatively shows higher accuracy, but the results are limited by a relatively
small group of patients in our study and more work is needed to prove this point.

The focus of this study was not surgery times or patients’ toleration of the overall
procedure. Still, having used all three methods in our centre, we can conclude that the
patients best tolerate this new procedure, and it shortens the operation time. Disadvantages
of this procedure could be the radiation dose during multiple perioperative O-arm scanning
for the patient and a longer learning curve to achieve accuracy for the surgeon and his
team. All our patients indicated for DBS as a treatment for PD, dystonia, or ET are currently
operated on with this procedure [24]. For some non-PD diagnoses, such as those mentioned
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above, the spectrum of imaging techniques can be narrower as the anatomical targets can
be seen on native MRI scans in a quality sufficient for exact electrode placement.

5. Conclusions

Our single centre exploratory study has proved that the frameless, fiducial-less method
using the perioperative O-arm and Nexframe navigation system is an equally accurate and
safe procedure that has been well-tolerated by all our patients. The accuracy of electrode
placement is comparable to recently published articles, and our previous work focused on
a frameless Nexframe approach. As we obtain a larger group of patients in the future, we
can convincingly prove our initial findings to be correct. This method should be primarily
used by a team with experience with the Nexframe system.
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