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Abstract: Hormone receptor status is determined primarily to identify breast cancer patients who
may benefit from hormonal therapy. The current clinical practice for the testing using either Allred
score or H-score is still based on laborious manual counting and estimation of the amount and
intensity of positively stained cancer cells in immunohistochemistry (IHC)-stained slides. This work
integrates cell detection and classification workflow for breast carcinoma estrogen receptor (ER)-
IHC-stained images and presents an automated evaluation system. The system first detects all cells
within the specific regions and classifies them into negatively, weakly, moderately, and strongly
stained, followed by Allred scoring for ER status evaluation. The generated Allred score relies
heavily on accurate cell detection and classification and is compared against pathologists’ manual
estimation. Experiments on 40 whole-slide images show 82.5% agreement on hormonal treatment
recommendation, which we believe could be further improved with an advanced learning model
and enhancement to address the cases with 0% ER status. This promising system can automate the
exhaustive exercise to provide fast and reliable assistance to pathologists and medical personnel. The
system has the potential to improve the overall standards of prognostic reporting for cancer patients,
benefiting pathologists, patients, and also the public at large.

Keywords: Allred scoring; estrogen receptor; hormone receptor; tumor biomarker; breast carcinoma;
digital pathology

1. Introduction

Breast cancer is the most common cancer occurring in women and is the second
leading cause of cancer-related deaths in women. The majority of breast tumors and breast
cancers are first detected using either mammography, magnetic resonance imaging (MRI),
or ultrasound scans. However, for better diagnosis and prognosis of breast cancer, tissue
samples must be obtained, either through biopsy or surgery, for analysis by pathologists.
In the case of breast cancer treatment, a crucial step is to test the tumor tissue to determine
if it has estrogen receptors (ER), progesterone receptors (PR), and/or human epidermal
growth factor receptor 2 (HER2). These markers provide key information about how the
cancer may behave. Along with tumor grade and cancer stage, tumor marker status helps
determine the best treatment options for breast cancer patients. ER, together with PR, has
been recognized as a “predictive” marker for which women with breast cancer would
respond to hormonal treatment.

Predictive immunohistochemistry (IHC) is commonly used in breast histopathology
practice to determine the expression of hormone receptor proteins. The use of IHC to assess
the ER and PR status of breast cancers in formalin-fixed, paraffin-embedded (FFPE) tissue
sections of cancer samples is now a routine part of pathology practice worldwide and is
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recommended to be performed in all primary invasive breast carcinomas and on recurrent
or metastatic tumors. The hormone receptor status of a breast cancer helps the doctor
to decide whether the patient should be offered hormonal therapy or other treatments.
Hormonal therapy includes medications that either lower the amount of estrogen in the
body or block estrogen from supporting the growth and function of breast cells. If the
breast cancer cells have hormone receptors, then these medications could help to slow or
even stop their growth. Patients with ER-positive cancers are highly receptive to endocrine
therapy and have a higher chance of survival [1]. If the cancer is hormone-receptor-negative
(no hormone receptors are present), then hormonal therapy is unlikely to work. In this case,
other kinds of treatment should be sought.

Valid determination of ER and PR status is thus a prerequisite for establishing adequate
treatment strategies for breast cancer patients, regardless of disease stage. The determi-
nation of these protein expressions, however, is currently carried out manually, which
is not only tedious and time-consuming for the pathologists, but is also prone to errors
and inaccuracies. In this paper, we proposed a system for automated estrogen receptor
status evaluation in breast carcinoma patients which consists of four stages: cell detection,
positive/negative classification, weak/moderate/strong classification, and Allred scoring.
As both ER and PR share similar staining characteristics, the system can be further extended
to determine PR (and possibly HER2) expression in the future with minor modifications to
make for a complete hormone receptor system.

Figure 1 shows the block diagram of our proposed system. In our previous work,
indicated by blue boxes and arrows, we have reported our initial work on cell detection [2],
positively and negatively stained (PN) cell classification [3] and weakly, moderately, or
strongly stained (WMS) cell classification [4] on their own. In this work, we integrated
the three stages into a single system, experimented with each stage with the same set of
images, and evaluated their performances objectively and transitively in order to observe
the overall performance of the integrated system. Positively and negatively stained cells
are quite distinguishable based on their color properties, i.e., negative cells are stained
with a blue/purple hue, while positive cells are stained with a brown hue. Color analysis
based on the weighted hue and value of the cells (from the HSV color model), which we
previously used in p53 expression analysis of brain glioblastoma, can be used.

Cell detection and WMS classification on the other hand, are more challenging. For cell
detection, the challenges lie in detecting the boundaries, in which some cells which are too
close to each other appear as if they belong to single large cells, while some others have
rather weak and unclear boundaries. For WMS classification, the differences between the
weakly, moderately, and strongly stained cells are not very obvious. The moderately stained
cells especially are very tricky as they can easily be classified into either the weak or strong
classes. The convolutional neural network (CNN) excels in these types of challenges by
learning the features end to end while avoiding the manual feature selection in traditional
image classification. Because of this we decided to use a deep convolutional neural network
for both the cell detection and WMS classification stages. Cell detection was carried out
using CNN with regression layer in order to obtain accurate cell boundaries (hence correct
cell detection), while WMS classification utilizes the CNN with the regular classification
layer to classify the cells into the three staining strengths.

The detected and classified cells are then fed to the final stage of the system, indicated
by the red box and arrows, for estrogen receptor status evaluation. By computing the
distribution of the strong, moderate, weak, as well as negatively stained cells within the
slides or regions of interest, the estrogen receptor expression for the slide is determined
by computing the Allred score [5], and compared to the pathologists’ manual scoring.
Alternatively, the H-score [6] can also be used for assessing estrogen receptor status, but in
this project we focus on Allred scoring as we have the ground truth available for evaluation.
To the best of our knowledge, this is the first work of its kind in developing such a system
with the scoring of whole-slide images, which would be a valuable tool for histopatholo-
gists in improving the reliability of tumor marker reporting as well as reducing manual
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intervention workload. There are some similar works found in the literature [7–9] working
on Allred scoring of ER-IHC patches. Since we aim to replicate the pathologists’ process
flow in deciding the score, which is on whole-slide images, the existing work from the
literature is not a fair comparison either in terms of accuracy or computational time.

Figure 1. Flowchart for the overview of the system.

This paper is organized as follows. Section 2 describes all the stages involved in the
proposed automated Allred scoring system in detail. Section 3 explains the experimental
set-up, while Section 4 discusses the experimental observations. Finally, the conclusion and
future works are presented in Section 5.

2. Methods

In this section, the three prior stages to the Allred scoring, which are cell detection,
PN classification, and WMS classification will be described before discussing the Allred
scoring methodology for hormone receptor evaluation.

2.1. Cell Detection

Our cell detection stage is based on the work by [10], where a score map is predicted
based on the Euclidean distance transform for cell centers in a given input image. The pre-
diction of the score map is performed using a regression method trained from cell images
and ground truth cell locations, similar to the work by [11]. The idea is to train the network
to fine-tune the boundary of individual cells regardless of their class, shape, color, and overlap-
ping parts, if any. In constructing the model, we experimented with a network up to 20 layers
by stacking the convolution, rectified linear units (ReLU), and max pooling (maxpool) layers,
followed by the regression layer at the end. Due to the limitation of our workstation, we kept
the design minimal and the footprint smaller. Figure 2 shows the proposed CNN model for
our cell detection stage, together with an example of the score map.
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During training, we asked our collaborating pathologists to mark each cell inside
small regions of around 500 × 500 pixels as the ground truth. Each cell mark is expanded
as a circle with a radius of 32 pixels, and 64 × 64 patches were extracted for use to train
the network. During detection, a score map is generated for the whole image by the CNN-
based regression model, and initial segmentation is obtained by thresholding the score map
(a score of 0.2 and higher constitutes cells). To address the problem of closely connected
cells, watershed-based boundary processing is carried out. Another thresholding is then
applied to remove the non-cells region (an area greater than 240) from the final detection.
As we are more interested in cell detection rather than cell segmentation, the choice of
thresholds does not affect the final outcome much. The centroids of the detected cells are
passed to the next stage for classification.

Figure 2. CNN model for cell detection, with regression layer at the end of the network (top), and the
generated score map at 20× magnification (bottom).

2.2. PN Classification

The classification of cells into positively and negatively stained cells is based on our
earlier work in classifying positive and negative cells in p53 expressions [3,12] of brain
glioblastoma. Similar to p53 images, the positively and negatively stained cells in ER-
IHC stained images are quite distinguishable based on their color. Negative cells are
characterized by their blueish hue and low intensity. Positive cells, on the other hand, are
characterized by their brownish hue and rather high intensity. The classification of the cells
into positive or negative stains can thus be based on the intensity and color of the cells.

For each of the detected cells found in the previous stage, 32 × 32 pixel blocks are
extracted around their centroid, and converted into the HSV (hue/saturation/value) color
model. While most cells fit nicely into this 32 × 32 pixel block, there are some cases where
the cells are too big or too small. For the former, we should still be able to obtain the
color and intensity information from the part of the cells that fit into the block. For the
latter, however, it is possible that some other cells may also be captured by the block, thus
compromising the color and intensity information of that particular cell. To address this,
we used weighted hue and weighted value instead to compute the color and intensity,
respectively. The weights used are inversely proportional to the pixels’ distance to the



Diagnostics 2022, 12, 3093 5 of 17

centroid, with those closer to the center of the block receiving higher weight, and those
further from the center receiving less weight.

The weighted hue and value are calculated for each block and these values are used for
classifying the cells. Negative ER-stained cells tend to be blue (higher hue) and less intense
(higher value), while positive ER-stained cells tend to be brown (lower hue) with varying
intensities. Based on these properties, we propose a two-step classification rule: (1) if the
weighted value (wV) for a block is less than a particular threshold (darker), the block will
be classified as containing a positive cell, regardless of its weighted hue (wH); (2) otherwise,
the classification depends on weighted hue, with wH less than a particular threshold
meaning that the block contains positive cells, and wH more than the threshold meaning it
contains negative cells. From experiment, wH > 40 and wV < 50 were found to be suitable
thresholds for our ER-IHC images. Figure 3 summarizes the proposed positive/negative
cell classification process in a flowchart.

Figure 3. PN classification process.

2.3. WMS Classification

In order to get the best result in learning the features of ER-positive cells, a different
CNN model is proposed, which is based on earlier CNNs such as LeNet [13], ImageNet [14],
GoogLeNet [15], and a few others [10,11,16,17], and their recommendations. These include
the effect of the convolutional network depth on its accuracy in large-scale image recog-
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nition settings; usage of back-to-back convolution layers with padding to maintain more
pixel information in shrinking spatial information but increase model layer depth; usage
of ReLu as the activation layer to reduce training time, and the addition of dropout layer
to reduce overfitting in imbalance dataset. Nevertheless, similar to the model used in cell
detection, the key is to be able to run an optimized CNN model with a small footprint
using our limited hardware capability. Our network for this 3-class classification problem
is made up of nine convolutional layers including the fully connected layer. Figure 4 shows
the proposed CNN model for the WMS classification stage. The input to the network is
32 × 32 patches of positive cells from the previous classification stage, while the output is
one of the strong, moderate, or weak classes.

Figure 4. Our proposed 9-layer convolutional layer including the fully connected layer.

The same regions used for the cell detection experiment were used in generating
training and testing samples and their ground truth. Data augmentation such as horizontal
flipping, random cropping, and normalization is done to increase our training samples.
The network is trained for 600 epochs using Matconvnet [18]. The weight of each layer is
initialized by multiplying a small random number with the zero mean, sampled from Gaus-
sian’s standard deviation. Stochastic gradient descent is used to reduce the objective loss
with a learning rate set in two vectors of logarithmic space: the first 10 epochs are set to 10-2
and the remaining epochs are set to 10-4 increments to improve the network convergence.

2.4. Allred Scoring

In this work, we used the Allred score to express ER, where the evaluation is based
on the proportion of ER-positive cancer cells and the intensity of the reaction product in
most of the positive cells [19]. Table 1 shows how the respective proportion and intensity
scores are derived. Based on the percentage of ER-positive cells, the cancer is assigned
one of six possible proportion scores (0 to 5). Based on the intensity of most of the ER-
positive cancer cells, the cancer is also assigned one of four possible intensity scores (score
of 0 to 3 for negative, weak, moderate, and strong, respectively). The 2 scores are then
added together for a final score with 8 possible values (the Allred score). Allred scores
of 0 and 2 are considered negative for ER (i.e., not actionable), while scores of 3 to 8 are
considered positive (i.e., recommended for hormonal therapy). Note that a score of 1 is not
a possible outcome.

Given an ER-stained whole-slide image, all the cells in the image are first detected and
classified into one of 4 classes: negatively, weakly, moderately, and strongly stained cells
(N, W, M, and S, respectively), as described in the previous three stages. The percentage
of positively stained cells over all cells, as well as the intensity score derived from the
majority class, is then used in computing the Allred score for hormone receptor status for
the particular slide.
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Table 1. Allred score * for estrogen and progestrone receptor evaluation.

ER Status
(Positive Cells %) Proportion Score Intensity Intensity Score

0 0 None 0
<1 1 Weak 1

1 to 10 2 Intermediate 2
11 to 33 3 Strong 3
34 to 66 4
≥67 5

* Allred score = proportion score + intensity score.

3. Experimental Setup

Our ER-stained whole-slide images (WSI) of breast cancer are scanned using a 3DHis-
tech scanner at 20× magnification with a resolution of 0.243 micrometer/pixel, resulting in
images with a resolution of more than 80,000 by 200,000 pixels. Altogether, 40 whole-slide
ER-stained images are available for use in all our experiments (refer Table 2). All 40 whole-
slide images were uploaded to our in-house Linux lab server which has been installed
with web interface [20] as shown in Figure 5, enabling an easy online WSI viewing and
annotation for the pathologists marking the ground truth. The ground truth for the images
(cell location, class, Allred score, etc.) is provided by pathologists from the Department of
Pathology, University of Malaya Medical Center.

Figure 5. Part of the Cytomine interface, which enabled online annotation on whole-slide images and
convenient working on gigabyte data of images. The different color dots show the different classes:
green for negative, blue for positive-weak, yellow for positive-moderate and red for positive-strong
class nuclei.

For cell detection and classification, the evaluation is based on the ability of the
system to detect and classify cells. For this, comprehensive annotation by the collaborating
pathologists was required. Since it is impossible to annotate all cells in the whole-slide
images, the following approach is observed. For each of the 40 whole-slide images, a small
region (around 500 × 500 pixels) is selected for annotation by the pathologists. However,
due to time constraints, only 37 regions were eventually annotated. Thus 37 regions
will be used in the detection and classification experiments: 30 regions used for training
and 7 regions used for testing. For a particular region to be annotated, the pathologists
were asked to identify all cells, and label them into either negatively, weakly, moderately,
or strongly stained cells. Cells were annotated by marking the center of the cell, followed
by annotating the cells into one of the four classes.
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Table 2. Summary of the images used in the experiments.

Image ID GT Exp A Exp B

01099 Y Train Test
05247 Y Train Test
05255 Y Train Test
05261 Y Train Train
05267 Y Train Train
05273 Y Train Train
05279 Y Train Train
05285 Y Train Train
05293 N NA NA
05299 N NA NA
05305 Y Train Train
05311 Y Train Train
05317 N NA NA
05323 Y Train Train
05329 Y Train Train
05337 Y Train Train
05343 Y Train Train
05349 Y Train Test
05355 Y Train Test
05361 Y Train Test
05367 Y Train Test
05373 Y Train Train
05379 Y Train Train
05385 Y Train Train
05391 Y Train Train
05397 Y Train Train
05403 Y Train Train
05409 Y Train Train
05415 Y Train Train
05421 Y Train Train
05427 Y Train Train
05435 Y Train Train
05441 Y Train Train
05447 Y Test Train
05453 Y Test Train
05459 Y Test Train
05465 Y Test Train
60537 Y Test Train
55522 Y Test Train
78990 Y Test Train

Figure 6 shows a couple of examples for the 37 regions used for this experiment,
together with their annotation. A total of 3445 cells were marked by the pathologists
from 37 annotated regions. Two-fold cross-validation was used, and we refer to these
experiments as Experiments A and B, respectively, as detailed in Table 2. All the marked
cells were later extracted as 32 × 32 augmented image patches. Data augmentation such
as horizontal flipping, random cropping, and normalization is carried out to increase our
training samples. To evaluate the performance of the system in detecting and classifying
the cells, the number of true positives (TPs), false positives (FPs), true negatives (TNs), and
false positives (FPs) were recorded. The performance of the proposed classification system
is presented in terms of the precision and recall for each of the detection, classification,
and quantification.
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Figure 6. Two of the thirty-seven regions used for the cell detection and classification experiments.

For the Allred scoring experiment, the evaluation is done at the whole-slide level,
i.e., to compare the Allred score automatically computed by the system to the ones estimated
by the pathologists. No detailed cell-level annotation is required, instead only the Allred
score from the pathologists’ calculation/estimation for the 40 images is needed as the
ground truth. Note that even though for 30 of the image there is some bias (since there is a
region within the slides that were used in training), these regions are very small (around
500 × 500) compared to the whole slides (less than 0.01%), so the bias is very minimal,
if any. To evaluate the performance of the Allred scoring, cell detection and classification
are applied on each of the 40 whole-slide images (divided into non-overlapping high power
field regions within the tissue area), before Allred scoring is carried out for each image and
compared to the ones manually computed/estimated by the pathologists. Figure 7 shows
one example of the 40 whole-slide images used in this experiment.

Figure 7. Example of the whole-slide image used in the Allred scoring experiment.

4. Results and Discussion

The results are presented in two subsections. In the first subsection, the performances
of cell detection, PN classification, and WMS classification are evaluated at the cell level
objectively and transitively. In the second subsection the performance of Allred scoring is
evaluated at the slide level.

4.1. Cell Detection and Classification

As mentioned in the previous section, 30 regions were used for training and 7 images
were used for testing. Two-fold cross-validation was carried out, named Exp A and Exp
B, respectively. Table 3 shows the true positives, false positives, false negatives, recall,
and precision for cell detection results for each of the 14 test images from the two-fold
experiments. Overall there are 1425 cells from the 14 test images, 1328 of which were
correctly detected. A total of 97 cells were missed, while 62 non-cells were detected as cells,
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giving a precision of 93% and recall of 96%, which shows that the proposed system is able
to carry out its task reliably. Upon closer inspection, of the 62 false positive cells, 46 are
non-tumor cells of the supportive stroma such as stromal cells and epithelial cells, and only
16 are actually non-cells. An improved system that can differentiate between tumor cells
from stromal and epithelial cells would further improve the detection performance.

Table 4 shows the summary of the PN classification and Table 5 shows the clas-
sification of the detected cells into positive and negative cells for each of the 14 test
images. The 62 false positive cases (non-tumor cells and non-cells wrongly detected
in the previous stage) are also included in the classification experiment (last row of
Table 3). As can be seen, only 13 cells were wrongly classified among 1328 correctly
detected cells from the previous stage. The overall accuracy for all the detected cells is
95%, but if the false positive cases are removed (the error actually stemmed from the
previous stage), the accuracy improved to 99%. This is also true for the true positive
rate (correct classification of positive cells) and true negative rate (correct classification
of negative cells). Overall, the proposed color-based classification is very reliable in
classifying cells into positively and negatively stained cells.

Table 6 shows the classification of the detected positive cells into the strong, moder-
ate, and weak classes for the 14 test images. The negative and non-tumor cells wrongly
detected and classified as positive cells in the previous stages are also included in this
experiment. As can be seen, most cells are classified correctly. Of the incorrect classi-
fication, 10 are from strong cells (classified as moderate), 13 are from moderate cells
(6 classified as strong, and 7 as weak), and only 1 from weak cells (classified as moderate).
Most of the negative and non-tumor cells that were classified as positive are classified as
weak. Table 7 summarizes the overall accuracy as well as the positive prediction value
(PPV) and the true positive rate (TPR) for each class. The overall accuracy of 88% is
observed when including the false positive cells from prior stages, which improved to
90% if these cells were excluded.

Table 3. Cell detection results.

Image ID TP FP FN Recall Precision

Exp A

05447 107 4 5 0.96 0.96
05453 100 3 1 0.99 0.97
05459 43 7 4 0.91 0.86
05465 73 0 3 0.96 1.00
60537 112 4 6 0.95 0.97
55522 103 2 5 0.95 0.98
78990 99 3 3 0.97 0.97

Exp B

01099 84 13 13 0.87 0.87
05247 97 0 7 0.93 1.00
05255 80 15 9 0.90 0.84
05349 96 6 6 0.94 0.94
05355 76 0 6 0.93 1.00
05361 128 0 13 0.91 1.00
05367 130 5 16 0.89 0.96

Overall 1328 62 97 0.93 0.96

Table 4. PN classification results.

Positive Negative

Positive 238 12
Negative 1 1077

Non-Tumor 5 57
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Table 5. PN classification results for 14 test images.

Image ID All Detected Cells Only True Tumor Cells
Acc. TPR TNR Acc. TPR TNR

Exp A

05447 0.96 NA 0.96 1.00 NA 1.00
05453 0.92 0.00 0.97 0.95 0.00 1.00
05459 0.86 0.40 0.91 1.00 1.00 1.00
05465 0.93 0.55 1.00 0.93 0.55 1.00
60537 0.97 0.00 0.97 1.00 NA 1.00
55522 0.97 NA 0.97 0.99 NA 0.99
78990 0.96 0.00 0.97 0.99 0.00 1.00

Exp B

01099 0.87 1.00 0.48 1.00 1.00 1.00
05247 1.00 1.00 1.00 1.00 1.00 1.00
05255 0.84 0.99 0.00 1.00 1.00 NA
05349 0.94 NA 0.94 1.00 NA 1.00
05355 1.00 1.00 1.00 1.00 1.00 1.00
05361 0.99 0.93 1.00 0.99 0.93 1.00
05367 0.96 NA 0.96 1.00 NA 1.00

Overall 0.95 0.93 0.95 0.99 0.95 1.00

The performance of the WMS classification agrees with our previous finding on 1200
extracted individual cells (400 weakly, 400 moderately, and 400 strongly stained cells).
As reported in our previous article [4], 1066 out of 1200 cells have been classified correctly,
which constitutes 88.8% accuracy on average and an overall AUC (area under curve) of
97.5%. The individual PPVs for the strong, moderate, and weak categories were reported as
90.5%, 88%, and 88%, respectively, which is in line with what is observed in this experiment.
The results from this experiment on 14 test regions, as well as the previous experiments
on 1200 individual cells (32 × 32 blocks) proved that the proposed WMS classification
algorithm is reliable in classifying the positive cells into the three staining strengths. Figure 8
shows several visual examples of the final detection and classification results, while Figure 9
shows the proposed algorithms integrated into our ER-IHC breast carcinoma assessment
system, for use in prognostic applications.

Table 6. WMS classification results.

Strong Moderate Weak

Strong 48 10 0
Moderate 6 86 7

Weak 0 1 80
Negative 0 0 1

Non Tumor Cells 1 0 4

Table 7. Accuracy, PPV, and TPR for WMS classification.

All Detected Positive Cells Only True Positive Cells

Accuracy 0.88 0.90
PPV-Strong 0.87 0.89

PPV-Moderate 0.89 0.89
PPV-Weak 0.87 0.92
TPR-Strong 0.83 NA

TPR-Moderate 0.87 NA
TPR-Weak 0.99 NA
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(a) Region 1. (b) Region 2.

(c) Region 3. (d) Region 4.

Figure 8. Examples of the classification results for 4 regions. Legends: blue (negative), green (weak),
yellow (moderate), and red (strong).

Figure 9. Cell detection and classification in ER-IHC breast carcinoma assessment system.

4.2. Allred Scoring

Table 8 shows the computer prediction of the Allred scoring for all 40 whole-slide
images against the pathologist’s estimation. The images were sorted according to the
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pathologist’s estimated Allred score, from lowest to highest. As mentioned in the previous
section, there are eight possible scores for each slide, with scores of 0 and 2 considered
negative, while scores of 3 to 8 are considered positive (actionable for hormonal treatment).
For more than half of the images (23), the computer predicted exactly the same score as
the pathologist’s estimation. Seven other images recorded a difference of only a single
score, while another seven images recorded a difference of two scores. Only three images
recorded a difference of more than two between the pathologist’s estimation and the
computer prediction. Figure 10 illustrates the difference better, where it can be seen that
except for a few images, the computer prediction more or less follows the general pattern
of the pathologist’s estimation.

Figure 10. Pathologist’s estimation vs. computer prediction.

Table 8. Allred scoring results.

Image
ID

Manual Automated
ER

Status
Intensity P

Score
I

Score
Allred
Score

ER
Status

S M W P
Score

I
Score

Allred
Score

05349 0% NONE 0 0 0 0.83% 0.01 0.02 0.8 * 1 1 2
05367 0% NONE 0 0 0 0.19% 0.16 * 0.01 0.02 1 3 4
05305 0% NONE 0 0 0 1.87% 0.02 0.03 1.83 * 2 1 3
55522 0% NONE 0 0 0 0.8% 0.01 0.03 0.77 * 1 1 2
60537 <1% WEAK 1 1 2 0.14% 0.02 0.01 0.12 * 1 1 2
05409 <1% WEAK 1 1 2 0.11% 0.01 0.01 0.09 * 1 1 2
05317 <1% WEAK 1 1 2 1.29% 0.02 0.04 1.23 * 2 1 3
05343 <1% WEAK 1 1 2 0.63% 0.02 0.01 0.6 * 1 1 2
78990 <1% WEAK 1 1 2 0.33% 0.03 0.05 0.25 * 1 1 2
05337 <1% WEAK 1 1 2 0.80% 0.03 0.04 0.74 * 1 1 2
05403 <1% WEAK 1 1 2 1.09% 0.03 0.05 1.01 * 2 1 3
05267 <1% WEAK 1 1 2 0.15% 0.02 0 0.12 * 1 1 2
05385 <1% WEAK 1 1 2 0.5% 0.07 0.12 0.31 * 1 1 2
05329 <1% WEAK 1 1 2 0.35% 0.01 0.03 0.32 * 1 1 2
05447 <1% WEAK 1 1 2 0.56% 0.02 0.01 0.53 * 1 1 2
05459 <1% WEAK 1 1 2 0.56% 0.03 0.1 2.84 * 1 1 2
05441 <1% WEAK 1 1 2 47.54% 1.69 2.76 43.09 * 4 1 5
05397 1–10% WEAK 2 1 3 2.54% 0.02 0.08 2.44 * 2 1 3
05391 1–10% WEAK 2 1 3 3.55% 0.01 0.06 3.47 * 2 1 3
05355 1–10% WEAK 2 1 3 1.99% 0.02 0.04 1.93 * 2 1 3
05421 1–10% WEAK 2 1 3 4.42% 0.05 0.19 4.18 * 2 1 3
05453 1–10% WEAK 2 1 3 4.61% 0.05 0.07 4.49 * 2 1 3
05279 1–10% WEAK 2 1 3 3.38% 0.12 0.19 3.07 * 2 1 3
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Table 8. Cont.

Image
ID

Manual Automated
ER

Status
Intensity P

Score
I

Score
Allred
Score

ER
Status

S M W P
Score

I
Score

Allred
Score

05379 1–10% WEAK 2 1 3 0.76% 0.02 0.03 0.7 * 1 1 2
05373 1–10% WEAK 2 1 3 1.31% 0.01 0.02 1.28 * 2 1 3
05361 1–10% WEAK 2 1 3 2.91% 0.04 0.06 2.81 * 2 1 3
05415 1–10% WEAK 2 1 3 3.67% 0.03 0.09 3.55 * 2 1 3
05285 1–10% WEAK 2 1 3 0.22% 0.03 0.05 0.14 * 1 1 2
05427 1–10% WEAK 2 1 3 7.89% 0.44 0.25 7.2 * 2 1 3
05465 1–10% WEAK 2 1 3 8.41% 0.01 0.05 8.35 * 2 1 3
05273 >95% STRONG 5 3 8 46.39% 9.59 19.65 * 17.15 4 2 6
05299 >80% MODERATE 5 2 7 47.73% 4.97 26.56 * 16.19 4 2 6
05435 >95% MODERATE 5 2 7 77.44% 12.46 36.19 * 28.8 5 2 7
05247 >90% MODERATE 5 2 7 49.84% 12.36 17.87 * 19.6 4 1 5
01099 >95% MODERATE 5 2 7 62.63% 7.55 21.58 33.5 * 4 1 5
05255 >95% STRONG 5 3 8 73.15% 18.02 40.22 * 14.91 5 2 7
05261 >95% STRONG 5 3 8 49.47% 14.65 23.91 * 10.91 4 2 6
05311 >95% MODERATE 5 2 7 73.5% 22.27 40.96 * 10.26 5 2 7
05293 >95% MODERATE 5 2 7 43.75% 16.66 19.54 7.54 4 2 6
05323 >90% STRONG 5 3 8 48.39% 11.65 22.11 14.63 4 2 6

* Highest positive class proportion.

It is interesting to note that for the four images considered to be 0% ER status by the
pathologists (i.e., 100% of the cells were stained negatively), none of them were correctly
predicted by the computer. The reason is, while the computer detection more or less
agrees that the cells are almost entirely negative, it still detected a very small percentage of
brownish objects, which could be either actual positive cells or other artifacts with similar
characteristics to the positive cells such as noise. These images will thus automatically have
a score of at least 1 for the proportional score (a score of 1 for those between 0% and 1%,
and a score of 2 for those between 1% and 2%), and a score of at least 1 for the intensity
score (since the intensity score is still given regardless of how small the positive proportion
is). The final Allred scores for these four images are 2, 2, 3, and 4, respectively. In future
work, we will work with our collaborating pathologists to suggest possible rules for a more
accurate prediction for this kind of images.

It is possible that the pathologist misses some positive cells due to the sheer size of
the images, so the rule may be very useful. The only other image with a score difference of
more than 2 is image 05441, where the pathologists estimated an ER status of less than 1%,
while the computer predicted it to be close to 50%. Upon detailed inspection, it was found
that this particular image was a rather brownish in general compared to other images with
similar status, which could be caused by an error during the staining process. Overall,
the proposed approach managed to predict the scores similar to the pathologists, except for
a few cases explained earlier.

In terms of hormonal treatment (not actionable vs. recommended for hormonal
therapy), 33 out of 40 computer-predicted treatments agree with the pathologist’s recom-
mendation, giving an accuracy of 82.5%. Note that the pathologist’s recommendation
is based on manual computation and/or estimation from sampled regions, while the
computer prediction is based on the counting throughout the whole slides. It is possible
that there may be some bias in the pathologist’s sampling, although this will be very
hard to prove due to the large size of the images. The computer prediction, on the other
hand, is free from this sampling bias, as all regions are considered. Overall this is a very
promising result. Out of the seven disagreements, four are caused by the single differ-
ence between scores 2 and 3, which can be addressed with a more advanced learning
model. The other three were from the 0% ER status and staining error case, as discussed
previously. It is also interesting to note that five out of the seven disagreements are
for the negative treatment cases, meaning the system has more difficulties predicting
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negative treatment cases. Further improvement to the deep learning model can help to
address this problem.

The results demonstrate that the proposed system can be very useful in assisting
pathologists in their predictive tumor marker reporting of breast carcinoma. It helps to
reduce the bias in sampling, reduce inter- and intra-reader variability, provide more consis-
tent reporting, and can reduce pathologists’ workload significantly. Further improvement
to the system will only enhance its performance.

5. Conclusions

We have proposed a cell detection and classification system based on a convolu-
tional neural network model for use with the Allred scoring system for breast carcinoma
hormone receptor status testing. The system classifies each cell in the ER-stained whole-
slide images into negatively, weakly, moderately, and strongly stained cells, before Allred
scoring is carried out to recommend hormonal treatment options. To the best of our
knowledge, this is the first work of its kind in developing such a system, which would
be a valuable tool for histopathologists in improving the reliability of predictive tumor
marker reporting as well as reducing manual intervention workload. The cell detection
and classification were applied on 40 whole-slide images before Allred scoring was
carried out to recommend hormonal treatment options. Experimental result shows very
promising observations for both the detection and classification processes, as well as the
Allred scoring computation. The automated Allred scoring matches well with patholo-
gists scoring, for both the actual Allred score and hormonal treatment cases. Future work
will focus on further improving the accuracy of the system, extending the system on PR
and possibly HER2 expression, as well as reducing the computational load in running
the system on very large whole-slide breast carcinoma images. The improvement to the
accuracy can be either by increasing the training samples, improving the network model,
or by proposing some rules for the 0% ER status images as this proved to be the main
source of error during performance evaluation.
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Abbreviations
The following abbreviations are used in this manuscript:

ER Estrogen receptor
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
IHC Immunohistochemistry
PN Positive and negative
WMS Weak, moderate, strong
CNN Convolutional neural network
WSI Whole-slide image
TP True positive
FP False positive
TN True negative
FN False negative
PPV Positive prediction value
TPR True positive rate
AUC Area under the curve
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