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Abstract: Traditional breast cancer detection algorithms require manual extraction of features from
mammogram images and professional medical knowledge. Still, the quality of mammogram im-
ages hampers this and extracting high–quality features, which can result in very long processing
times. Therefore, this paper proposes a new K–means++ clustering based on Cuckoo Search Opti-
mization (KM++CSO) for breast cancer detection. The pre-processing method is used to improve
the proposed KM++CSO method more segmentation efficiently. Furthermore, the interpretabil-
ity is further enhanced using mathematical morphology and OTSU’s threshold. To this end, we
tested the effectiveness of the KM++CSO methods on the mammogram image analysis society of
the Mini–Mammographic Image Analysis Society (Mini–MIAS), the Digital Database for Screening
Mammography (DDSM), and the Breast Cancer Digital Repository (BCDR) dataset through cross-
validation. We maximize the accuracy and Jaccard index score, which is a measure that indicates the
similarity between detected cancer and their corresponding reference cancer regions. The experimen-
tal results showed that the detection method obtained an accuracy of 96.42% (Mini–MIAS), 95.49%
(DDSM), and 96.92% (BCDR). On overage, the KM++CSO method obtained 96.27% accuracy for three
publicly available datasets. In addition, the detection results provided the 91.05% Jaccard index score.

Keywords: breast cancer; mammogram images; K–means++ clustering; cuckoo search optimization

1. Introduction

Breast cancer is a challenging and fatal disease that seriously affects women, leading to
sudden death in critical cases. Based on the statistics provided by the World Health Organi-
zation (WHO) in 2020, there were 2.3 million women diagnosed with breast cancer [1]. As
of the end of 2020, WHO reported that 685,000 deaths among women globally were caused
by breast cancer. Automated detection of breast cancer from mammogram images is a con-
troversial issue among researchers. Several image processing methods have been proposed.
These include a variety of machine learning methods, such as Support Vector Machine
(SVM), Convolution Neural Networks (CNN), Naïve Bayesian (NB), and Artificial Neural
Networks (ANN). For instance, Karabatak et al. [2] proposed a new algorithm to detect
breast cancer using NB on the Wisconsin breast cancer dataset. Additionally, Pak et al. [3]
used non–subsampled contour transforms and super-resolution for breast cancer detection.
Sabu et al. [4] attempted a comparison of ANN and SVM by selecting the best detection
method among 60 cancerous and 60 non–cancerous images. This study focused on breast
cancer tumor types by Mini–MIAS, and DDSM. Then, Progressive Support–pixel Correla-
tion Statistical Method (PSCSM) was comparatively used by Yang et al. [5]. Global and local
thresholding based on image histogram, Region Growing Method (RGM), Markov Random
Field (MRF), stochastic relaxation methods, and fuzzy use membership function were used
for breast cancer detection by Punitha et al. [6]. Al-masni et al. [7] suggested deep regional
learning based on CNN. Shen et al. [8] proposed the Mixed-Supervision Guided Deep
Model (MSGDM) based on U-net model and ResCU-Net. Different machine learning, in-
cluding K–Nearest Neighbourhood (KNN), Fuzzy Clustering (FC), Neural Network (NN),
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Logistic Regression (LG), SVM, and Random Forest (RF), were applied for breast cancer
detection. A similarity of three unsupervised learning, including Fuzzy Rough Segmen-
tation (FRS), Rough Segmentation (RS), and Fuzzy Segmentation (FS), was proposed by
Punitha et al. [9]. Zebari et al. [10] offered a thresholding method and binary morphological
segmentation for breast cancer. Vaka et al. [11] presented end–to–end testing for breast can-
cer detection using Deep Neural Network with Support Value (DNNSV). Azlan et al. [12]
proposed Principal Component Analysis (PCA) and SVM for breast cancer detection. Next,
George et al. [13] developed hybrid methods by combining the CNN and SVM on the
Breast Cancer Histopathological Database (BreakHis). Alanazi et al. [14] performed a CNN
to detect breast cancer disease and took mammogram images from the Kaggle dataset. The
details of the existing up-to-date methods for breast cancer classification and detection are
illustrated in Table 1.

Table 1. Comparison of machine learning and deep learning methods for segmentation of
breast cancer.

Authors Methods Dataset SEN (%) SPEC (%) ACC (%)

Karabatak et al. [2] Naïve Bayesian Wisconsin breast cancer 99.11 98.25 98.54

Pak et al. [3] SVM and ANN Mini–MIAS and DDSM SVM = 100 SVM = 80 SVM = 92.85
ANN = 87.50 ANN = 93.33 ANN = 91.31

Yang et al. [5] PSCSM Mini–MIAS – – 90.9

Punita et al. [6] RGM, MRF segmentation, Stochastic Relaxation
methods, and Fuzzy DDSM 98.10 97.8 98.00

Al-masni et al. [7] Regional deep learning based on CNN and CLAHE IN Breast 97.14 92.41 95.64
Shen et al. [8] MSGDM IN Breast 97.56 88.89 94.16

Punita et al. [9] Fuzzy Rough Segmentation (FR), Rough
Segmentation (RS), and Fuzzy Segmentation (FS) Mini–MIAS

FR = 91.23 FR = 91.23 FR = 97.45
RS = 80.25 RS = 79.45 RS = 82.45
FS = 89.89 FS = 89.12 FS = 90.12

Zebari et al. [10] The thresholding method and binary morphological
for segmentation Mini–MIAS, IN BCDR 98.9 98.4 98.13

Anji et al. [11] DNNS MG Cancer – – 97.21
Azlan et al. [12] PCA and SVM DDSM and Mini–MIAS 93.94 96.61 95.24
George et al. [13] The hybrid methods by combined the CNN and SVM BreaKHis 97.24 96.18 96.21
Alanazi et al. [14] CNN architectures Kaggle 162 H&E - - 87.00
Mohammed et al. [15] SVM Mini–MIAS - - 91.12
Agnes et al. [16] MA-CNN Mini–MIAS 96.00 - -
Yektaei et al. [17] Multiscale Convolutional Neural Network (MCNN) Mini–MIAS 95.90 - 97.03
Kaur et al. [18] Multiclass Support Vector Machine (MSVM) Mini–MIAS - - 96.90
Viswanath et al. [19] SVM Raw sample images – 68 84.84
Jin et al. [20] Binary classifier with CNNI–BCC Mini–MIAS – – 73.24
Kayode et al. [21] SVM Mini–MIAS 94.4 91.3 –

Debelee et al. [22] SVM and MLP Mini–MIAS SVM = 99.48 SVM = 98.16 SVM = 99
MLP = 97.40 MLP = 96.26 MLP = 97

Zhang et al. [23] Mask R–CNN DCE–MRI 80 74 75

From a comparative review of machine learning and performance parameters used
for evaluating the detection method, each method is suitable for detecting breast cancer
on different datasets. Nevertheless, the accuracy of each technique still varies for different
datasets. This work aimed to assess the reliability of the diagnosis system for automatically
detecting breast cancer in mammogram images. The automated breast cancer detection
from mammogram images comprises a series of contributions, which are listed as follows:
(1) We resolved the problem of poor quality and contrast enhancement of the original
image of the different datasets by using color normalization and noise reduction stages,
(2) A comprehensive application that used machine learning such as K-Means (KM), Fuzzy
C-Means (FCM), Fuzzy K-Means (FKM), and KM++CSO to select a suitable robust method
for the coarse segmentation stage, (3) A fused method for finely detecting breast cancer
disease associated with region-based segmentation based on Cuckoo Search Optimization
(CSO) is applied, (4) A new method was applied to three open-access datasets (Mini–MIAS,
DDSM, and BCDR) with different camera settings, intensities, and additional noise, and
(5) Validation of the proposed method by comparing it with Sensitivity (SEN), Specificity
(SPEC), Accuracy (ACC), and Jaccard index score.
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To achieve all these, we organized the study into four sections. Section 1 presents the
background of breast cancer problems and the current literature reviews. It also focuses
on segment limitations and how to use the proposed KM++CSO to solve these limitations.
Section 2 presents the pre-processing method and the proposed KM++CSO framework
phases. Section 3 describes the conducted results and comparisons with the literature.
Finally, the conclusion and the analysis of comparison KM++CSO and others are presented
in Section 4.

2. Materials and Methods

Since mammogram image is nowadays in digital format, it is possible to create a
Computer Aided Diagnosis (CAD) system that automatically segments breast cancer
disease. Nevertheless, automatic breast cancer detection using a CAD system requires
the education of human screeners or experts for further validation. Therefore, new breast
cancer detection is necessary for classifying breast cancer from the image background
without unnecessary interference from other regions. Typically, the mammogram image
includes noise or artifacts, which could adversely affect breast cancer detection. Sometimes
the image is as high-intensity in the center of the image and low–intensity in a region in the
posterior margin. This research proposed a fusion method to detect breast cancer from the
low-intensity of image and the block diagram for automatic detection of breast cancer, as
illustrated in Figure 1.
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age. The red line represents the area of breast cancer labeled by the specialist. Figure 1. The proposed KM++CSO for segmentation of breast cancer region from mammogram
image. The red line represents the area of breast cancer labeled by the specialist.

2.1. Dataset and Image Acquisition

A mammogram image used in this study is drawn from different datasets, some of
which are from the Mini–MIAS [5,9,15–19] and DDSM [12], while others are from BCDR [10].
We used the same images to evaluate their detection methods [3–6,9,10,12]. This dataset
from DDSM, Mini–MIAS, and BCDR comprises 2620, 323, and 123 images, respectively.
Mini–MIAS contains 323 images divided into 207 healthy and 116 abnormal images. DDSM
includes 1609 scanned film mammography studies divided into 695 healthy and 914
abnormal images. BCDR contains 18 normal and 105 abnormal images from 123 images.
Before discussing the mammogram image, it may be helpful to describe the structure of the
image; see Figure 2 [5,9,10,12,15–19]. Figure 2a is an image from Mini–MIAS, Figure 2b is
an image from INbreast, and Figure 2c is an image from BCDR, respectively.
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2.2. Image Color Normalization

The pre-processing method in many stages is image color normalization, and image
analysis is no exception. One of the commonest is the one proposed by Gonzalez [24]. The
author adopts a method based on the histogram specification to enhance the intensity of
the gray level of the mammogram image. Bejnordi et al. [25], proposed a Whole–Slide
Image Color Standardizer (WSMCS) to estimate the background and assumed that a
background image usually had distributed color. However, the processing time of WSMCS
is very high processing time. Janowczyk et al. [26] proposed stain normalization by
using sparse autoencoders for the image to obtain the normalized image. However, the
majority involve methods to scan the same image multiple numbers of times. Therefore,
it may cause false detection and some of the information lost. In this study, the global
histogram specification [27] helps adjust the histogram of the original image or histogram
modifications to enhance the contrast and create a new image. For normalizing the values
in the range [0, G], the probability density function of the input and output mammogram
image that follows a specified shape fz(z) for z ∈ [0, 1] is denoted by a subscript (s). If the
input is performed to attain processed (output) intensity levels (s), the result would be an
image that also has a uniform probability density function using Equation (1).

s = G(z) =
∫ z

0
fz(w)dw (1)

where fz(w) is the probability density function of the severity levels in the image, G is the
grayscale limit (or range), and the transformation function for equalizing the histogram. An
adjustable transformation function is generated by histogram specification in the process of
the original image with L gray–level values. The implementation of histogram specification
and the transformation function T(r) are defined as Equations (2) and (3), respectively.

sk = T(rk) = ∑k
j=0 fR

(
rj
)

for k = 0,
1

L− 1
,

1
L− 1

, . . . , 1 (2)

sk = G(zk) = ∑k
i=0 fZ(zi) for k = 0,

1
L− 1

,
1

L− 1
, . . . , 1 (3)

The shape of the histogram specification is necessary to get the output image for some
distinctive implementations. After the implementation of histogram specification, the
normalized image is obtained. Here, the images in Figure 3a,b demonstrate the reference
image, and its histogram while Figure 3c,d display the obtained image for grayscale after
the normalization by histogram and its histogram after histogram specification of grayscale.
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Figure 3. The mammogram image and it is after histogram specification with their respective
histograms: (a) looking at the mammogram image, in which the original image appears to contain
mostly the same grayscale value, (b) histogram of the original mammogram image, (c) the subtle
changes in grayscale images become for the mammogram image to classify in the normalized
image, and (d) the peak in the normalized image is approximately 50 grayscale levels, as seen in
the normalized histogram. Fortunately, the process improves the segmentation of breast cancer in
mammogram images, and it simultaneously enhances the noise in mammogram images.

2.3. Image Denoising

The histogram specification applied in the previous section is helpful for the enhance-
ment of image contrast. However, this step has also increased the intensity of the noise in
the image. Therefore, the median filtering [28] was specially designed to remove the noise
over-amplification in the image to some extent so that the image looks real. This method
runs a window size of a median filter of 3 × 3 through the whole image. In a window size
of the median filter, the targeted pixel is defined as per Equation (4).

f(x, y)= median

[
2

∑
i=−2
×

2

∑
i=−2

window(x− i, y− j)

]
(4)

Median filtering works well when there is one out–layer value in the window. This
technique gives a good denoising result when the neighboring pixel values are very close.
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2.4. Breast Cancer Detection

In this subsection, we chose a comprehensive application that used machine learning,
such as KM, FCM, FKM, and KM++CSO, to select the most suitable algorithm for the coarse
segmentation stage. Then, we combined these works with the clustering method coupled
with mathematical morphology and OTSU’s threshold.

2.4.1. KM Clustering Method

KM clustering [29] is the simplest of machine learning that solves the well–known
clustering problem. Given a dataset {x}n

1 ⊂ <d and a set of initial center locations
{

cj
}k

1 ⊂
<d, we merely alternate between the following two steps repeatedly (by assigning each
point xi to its nearest center and relocating each center cj to the centroid of all points
assigned to it), until center locations converge. Formally, the KM task is an optimization
problem that partitions data into clusters while minimizing the sum of the squared distances
between each data point and the cluster center it belongs to. Given a set of data points
{x}n

1 ⊂ <d and a set of initial center locations
{

cj
}k

1 ⊂ <
d, we defined the minimization

objective function J(x, c) as the sum of squared errors given in Equation (5).

J(x, c) = ∑n
i=1 argmin

j
‖xi − cj‖2 (5)

There are n ways to partition a set of n points into k possibly empty clusters. If we
insist on strictly non-empty clusters, then the number of ways to partition the set is given
by the Stirling numbers of the second kind k, which we define below in Equation (6).{

n
k

}
=

1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
jn (6)

The results segmented by using standard KM clustering to mammogram images are
depicted in Figure 4. In this stage, k = 2, 3, 4, 5, and 6 run 110 iterations, which are used as
the initial values for starting the detection. Figure 4b displaying the image detected using
k = 3 is a “good” value and gives satisfactory results. Since KM is the simplest and most
frequently unsupervised, we can implement it efficiently. Moreover, KM requires a few
computations for comparing distance among data points and grouping clusters. However,
KM has several limitations. First, the cluster that the method produces may be arbitrary
and far from the optimal clustering. Second, the technique requires the user to specify k
and the number of clusters and provides an initial guess of cluster locations. Finally, KM
takes a long time to run this application.

2.4.2. FCM Clustering

FCM has been widely used and developed for biomedical image segmentation. The
FCM, presented by Bezdek et al. [30], describes the fuzzy segmentation for the pixels by
calculating the membership values for fuzzy sets. The objective function minimizes the
FCM for the fuzzy C–partition U and many cluster centers V defined as per Equation (7).

Minimize JFCM(U, V) = ∑N
k=1 ∑C

i=1 (uik)
md2(xk, vi) (7)

where X = {x1, x2, . . . x3} ⊆ <p, U is the fuzzy C–partition, C is the number of cluster
centers (In this work, an experimental variation from two to six is used), m represents the
weight exponentially, d2(xk, vi) is a measuring distance between pixel xk and cluster center
of vi (usually the Euclidean distance), N is the number of the feature vector in an image,
uik is the membership values for fuzzy sets of pixel k in cluster i, vi is the cluster center
for subset i in feature space (U, V) = ∑N

k=1 ∑C
i=1 (uik)

m
d2 and is an overall weight sum of

generalized A–error. On solving the objective function (U and V), minimizing an objective
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function will be obtained so that the subject is subject to the constraint in Equation (8)
is satisfying.

∑C
i=1 uik = 1, ∀k ∈ {1, . . . , N} (8)

with these observations, we can decompose of JFCM be (uik, ck). The necessary conditions
for (uik, ck) are calculated using Equation (9) and Equation (10), respectively.

uik =
1

∑C
j=1

(
dik
djk

)2/(m−1)
(9)

vi =
∑N

k=1 (uik)
mxk

∑N
k=1(uik)

m (10)

The algorithm of FCM is composed as seen in the following steps: (1) Fix the initialize
the fuzzy membership matrix c, 2 c < N; Fix m, 1 < m < ∞; (2) Initialize step of the fuzzy
C–partition U(0); (3) Assume distribution to be normal steps as b = 1, 2, . . . , N; (4) Calculate
the c fuzzy cluster centers vi as per Equation (10); (5) Update U(k), U(k+1) by calculate the
new calculated uik as per Equation (9); (6) Compute the change in the membership values
using an appropriate norm; if U(k) − U(k+1) < T, STOP; otherwise, set k = k + 1 and return
to steps 4 and (7) A termination criterion is needed to stop the iterative process when the
objective function is less than (T) and otherwise return to step 2.
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Figure 4. An original mammogram image is shown in a KM segmented version: (a) pre-processed
image, (b) the first image segmented with k = 2, (c) good quality segmented with k = 3, (d) another
example of segmenting breast cancer with k = 4, (e) segmenting cancer with k = 5, and (f) region
segmented as candidate cancer area with k = 6 after 110 iterations.
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The images segmented as test images for applying the FCM method with the various
clusters are illustrated in Figure 5b–e. Figure 5b displays the three clusters designated using
k = 3 (57 iterations) and the segmented image. Figure 5c shows the four clusters formed by
selecting k = 4 (62 iterations). Figure 5d displays the five clusters formed by selecting k = 5
(100 iterations). Figure 5e depicts the six clusters formed by selecting k = 6. Figure 5f shows
the seven clusters formed by selecting k = 7. This study concludes empirically that k = 4 is
a “good” value. This value forms further advantages of simplifying the update equations
and can therefore speed up computer implementations of the method.
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2.4.3. FKM Clustering

FKM clustering [31] is one method that provides a better result than KM for overlap-
ping datasets. This method is utilized for the dataset in which the data points are between
the centers. The technique works on the objective to minimize by as Equation (11).

F(X, C) = ∑n
i=1 ∑k

j=1 um
ij ‖xi − cj‖2 (11)

where m is the fuzzifier and any real number greater than 1, uij the degree of membership
in which data points belong to each cluster xi to the cluster center cj with the limitation that
uij ≥ 0, ∑k

j=1 uij = 1 ∀i and ‖xi − cj‖2 is the distance between the data points to calculate
xi and cj, is an assign of the distance of the n data point to the closest cluster by its sum
of squared distance from the cluster’s centroid. KM is a popular method that has been
used in many segmentation domains. It is a good candidate for an extension to work
with fuzzy feature vectors. The iterative approach of optimizing the objective function
F(X, C) by updating the degree of participation of the data point xi to the cluster centroids
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cj and the cluster center cj results within the clustering of the data is calculated based on
Equations (12) and (13), respectively.

uij = ∑k
j=1 ‖xi − cj‖

−2
m−1
/

∑k
j=1

(
‖xi − cj‖

−2
m−1
)

(12)

cj = ∑n
i=1 um

ij · xi

/
∑n

i=1 um
ij (13)

As the value of m increases, the algorithm becomes fuzzy. The proposed FKM is tested
on the image by setting the number of clusters to K = 2. The resultant images are displayed
in Figure 6b. We compared these methods to those FKM clustering methods’ capability to
provide “good” classification performance as the number of clusters increases. Figure 6c–f
show the breast cancer classification performance as set in the number of clusters K = 3,
4, 5, and 6, respectively. Figure 6d shows “good” breast cancer classification performance
with a number of clusters k = 4.
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2.4.4. Optimization Design with KM++CSO

KM++ is an algorithm to initialize the number of clusters k, which is given as an
input to the KM method [32]. Since selecting the appropriate value of K prior is difficult,
KM++ provides a method for determining the optimum value of K before proceeding to
cluster the data. Impressively, this method offers theoretical guarantees about the output
clustering quality. KM++ initialization method chooses the first center c1 selected uniformly
at random from the dataset X, but each successive center cj is chosen with probability by
Equation (14).

D2(cj)

∑x∈X D2(xi)
(14)
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Here D(cj) denotes the minimum distance from a data pixel x to the closest point
between cj and all previously chosen centers. Then, the essential component of KM is pre-
sented as follows: (1) A starting with center c1, a point is chosen uniformly at random from
the dataset X; (2) Take another center ci1, ci1 = x ∈ X with probability D2(cj)/∑x∈X D2(xi)

where D2(cj) is the shortest distance between the data point x to the closest center which is
chosen; (3) Repeat step 1 to 2 until the values of k center are chosen, and (4) Perform the KM
using the k center as the initial center. In step 2, “D2 weighting” is the applied weighting.
As a result of the segmentation error of KM, this seeding algorithm gives out considerable
improvements. The clustering performed by KM++ does not provide any guarantees
that it theoretically performs the best clustering. So, we can use an improved method
with CSO [33] to find a better solution for initial centroids. The Cuckoo’s reproductive
behavior inspired it as a particular species by laying its eggs in the nests of other host birds
or species. We can summarize more details for KM++CSO in the pseudocode (Algorithm 1).

Algorithm 1: KM++CSO.

(1) Select an appropriate value for K which is the number of clusters and obtain a number of data points.
(2) Randomly initialize of K cluster center (c1, . . . , ck)
(3) Keep repeating steps 4 and 5 until the algorithm convergence to a certain value or the centroids do not change
(4) In each generation, all data points (xi) are now assigned the point to the cluster with the closest centroids (c1, . . . , ck)
(5) Assign each data point to the closest cluster centroids j = 1, 2, . . . , k
(6) End
(7) A solution of the objective function (CSO); f(x), x = (x1, x2, . . . , xk)
(8) Populate the initial population of n host nests xi, which is generated at random
(9) While (t < Max Generation) or (Stopping criterion) do
(10) For each loop Cuckoo i do
(11) Get a Cuckoo randomly (named i) and replaced it by performing intensity values
(12) Evaluate its quality/fitness Fi
(13) Choose randomly a nest from n (named j)
(14) If (Fi > Fj) minimization them
(15) Replace j with i (generate a new solution)
(16) End if
(17) The number of host nests is fixed with a probability (Pa) of the eggs with low fitness being abandoned and rebuilt other

nests somewhere
(18) Keep the best nests with a higher fitness value
(19) Rank the solution and find the best current one
(20) Pass the current best solutions to the next generation
(21) End while

We can summarize the KM++CSO: (1) Domain space: Initial centroids by CSO gen-
erated, and the used KM++ start with generated centroids. The result of clustering after
classification is measured by a Peak–Signal–to–Noise Ratio (PSNR) between the input im-
age and output image; (2) Improved optimization: the closet cluster centroid using CSO and
KM++ finds the optimal initial image centroids by CSO, so the automatic detection is done
using a clustering result and (3) An acquisition function: although the initial parameter
selections take extra time, KM++CSO converges very fast for the coarse segmentation stage
and lowers the computation time. KM++ determines a set of k clusters with parameters set
to 2, 3, 4, 5, and 6 (100 iterations). Then the best solutions to optimize the results obtained
by the Cuckoo search algorithm using the fraction Pa = 0.2 is used to compare the capability
in segmentation performance as the number of clusters increases. The resultant images are
displayed in Figure 7b–f, respectively. Figure 7d shows “good” segmentation performance
in the number of clusters (k) is set to 4.
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2.4.5. Binary Image Detection

In this stage, binary image segmentation using the Gaussian OTSU’s threshold [34] is
used. Given an image: P(i) is the normalized frequency of i, and is calculated according to
Equation (15).

P(i)
number{(r, c)|image(r, c) = i}

(R, C)
(15)

Here r represents an index for rows, and c is a column of the image. R is the number
of rows, and C is the columns of the image respectively. The value calculates the “good”
of the threshold at value T* by minimizing the within-class variance (weighted) and the
between-class variance, which is the sum of the weighted variances of the two classes.
If this minimum is not unique, obtain T* by averaging the T value corresponding to the
various minimized segments. This threshold is determined by minimizing within-class
intensity variance at any threshold, where T is calculated by Equation (16).

σ2
w = wmb(T) ∗ σ2

mb(T) + wbc(T) ∗ σ2
bc(T) (16)

Here wmb(T) and wbc(T) are the probability of the number of mammogram background
and breast cancer pixels in each class for this threshold T and variance of the two classes
T0 with a set of intensity levels from 0 to T, σ2

mb(T) and σ2
bc(T) represent the variance

of color values and variance of class T1 with a set of intensity level from T + 1 to L, or
T1 = {T, T+, . . . , L–, L} and σ2

w is the weighted sum of group variances. Based entirely on
computations performed on the histogram (1–D) of the image, the normalized histogram
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of pixels that will be detected as mammogram background (wmb) and breast cancer (wbc)
pixels, is given by Equation (17).

wmb(T) =
T

∑
i=1

P(i),wbc(T) =
T

∑
i=T+1

P(i) (17)

The probability of pixel intensity (P) is computed for each pixel value in two sepa-
rated clusters (namely background and breast cancer pixels) using the cluster probability
functions expressed as per Equation (18).

µmb =
T

∑
i=1

P(i)/Wmb, µbc =
L

∑
i=T+1

P(i)/Wbc (18)

where L is the number of pixels in a grayscale image containing information between 1 and
L {1, 2, 3, . . . , L} and ∑L

i=T+1 P(i) is the sum of P(i), where values between i = T + 1 and
L { i = T + 1, T + 2, = T + 3, . . . , L}. The class variance of the background and breast cancer
pixels is given by Equations (19) and (20).

σ2
mb(T) =

1
wmb(T)

T

∑
i=1

(i− µmb)
2 ∗ P(i), (19)

σ2
bc(T) =

1
wbc(T)

T

∑
i=1

(i− µbc)
2 ∗ P(i) (20)

The between-class variance is defined as per Equation (21).

σ2
mb = σ2 − σ2

w
σ2

mb = wmb ∗ σ2
mb + wbc ∗ σ2

bc + wmb ∗ (µmb − µ)2 + wbc ∗ (µbc − µ)2

σ2
mb = wmb ∗ wbc(µmb − µbc)

2
(21)

The procedure for determining the appropriate threshold value (T) is related to the maxi-
mum variance between groups. According to Equation (17), if

(
Wmb = ∑T

i=1 P(i) = 0.138
)

and sets the probability of pixels in the background image Wmb = {0.138, 0.291, 0.268}
while if

(
Wbc = ∑L

i=T+1 P(i) = 0.638
)

and sets the probability of pixels in the background
image Wbc = {0.638, 0.734, 0.725}. According to Equation (18), if µmb = {0.138, 0.121, 0.110}
and µbc = {0.710, 0.821, 2.823}, the average background and breast cancer pixels can be
calculated by µmb = ∑T

i=1 P(i)/Wmb and µbc = ∑L
i=T+1 P(i)/Wbc, respectively. There-

fore, the maximum variance of each group was calculated using Equation (21), which
is σ2

mb = {0.028, 0.212, 1.427}. If the maximum variance between groups occurs in three
iterations, then the maximum variance is 0.028 + 0.212 + 1.427 = 0.556. Hence, in this binary
detection process, the optimal threshold setting is 0.556, with 1 for the breast cancer pixel
and 0 for the background pixel. The highlighted breast cancer regions were white, while
the highlighted mammogram background was black (see Figure 8).

2.4.6. Improved Binary Image Using Mathematical Dilation Operators

Besides the binary detection applied in the previous section, morphological dilation
operators are essential for more accurate detection [35]. The dilation is a procedure that
enables the pixels to grow along these lines and fill the little holes, i.e., similar to increasing
the thickness of the areas and associating the separate points. This operation is mainly
performed post-segmenting of the characteristics of regions in mammogram images and
adopts the logical processes by using the structure element involving the growing mam-
mogram pixels in a binary image. The dilation of A represented by B is calculated in
Equation (22).

A⊕ B =
(
z
∣∣(B̂)z ∩A 6= ∅

)
(22)
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where B represents the structuring element, is a reflection of set B and ∅ is the empty
set. Furthermore, the detailed explanation of the method used in this paper is as follows;
(1) Input a binary image by thresholding (Figure 9a) and then the breast cancer region in the
image that is filled using mathematical dilation operators; (2) Assign mathematical dilation
operators with structuring elements is set to 7 using a 3 × 3 mask. Dilation operation
has effects of smoothing the contour of breast cancer, eliminating thin protrusions, and
breaking narrow isthmuses (see Figure 9b,c) Save the resulting image after applying step 2,
and the pixels of the breast cancer are preserved, and all small pixels removed after dilation
by using thresholding methods [36] again.
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Figure 9. Segmenting and removing small pixels by morphological modeling based on a dilation
operator, (a) breast cancer segmented using KM++CSO and OTSU’s threshold method, (b) image
reconstructed with structure element of 7 to disconnect component pixels of the binary image,
(c) regional maxima image preserved and all small objects removed using global thresholding.

This is an iterative algorithm for automatic estimation of threshold T given as follows:
(1) An initial threshold from the image intensity histogram values T and partitions the
image into two classes, G1 and G2, using the threshold, (2) Calculate the mean intensity
values for G1, G2→mean(G1), and mean(G2), (3) Select a new threshold value using
T = 0.55 × (mean(G1) + mean(G2)), (4) Repeat steps 1–3 until the mean intensity values G1,
and G2 in successive iterations do not change ∆T. In this step, start means gray level and
∆T = 0. The algorithm results in T = 0.67 after five iterations, so T = 0.67 is used. The breast
cancer region is shown in Figure 9c.
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2.4.7. Edge Detection

As the segmented image in Section 2.4.6, we perform some experiments to compare
with various edge detectors such as the Sobel edge operator [37], Robert edge operator [38],
Prewitt edge operator [39], and Canny edge operator [39], for the segmentation of the
boundaries of breast cancer on Figure 9c. Figure 10 shows the result in this case. According
to Figure 10a, the Sobel edge detector will be more accurate in detecting the boundaries of
breast cancer and more flexible to unseen image datasets.
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Figure 10. The mammogram image is segmented with various edge operator, (a) Sobel edge operator,
(b) Robert edge operator, (c) Prewitt edge operator, (d) Canny edge operator. Canny edge segmen-
tation results are different from the other methods. Prewitt and Robert’s edge operators produce
almost the same edge segmentation. However, the Sobel edge segmentation result is superior by far
to the other methods.

3. Results

The outcomes of the proposed method by using KM, FCM, FKM, and KM++CSO
show breast cancer detection through mammogram images from three different datasets.
The proposed method was evaluated by SEN, SPEC, and ACC [40] and the Jaccard index
score [41]. SEN, SPEC, and ACC were used for standard quality measurement of the
segmented output image. SEN is the percentage of breast cancer pixels segmented as breast
cancer pixels, and SPEC is the percentage of background detected as background pixels.
ACC represents the percentage of the overall pixels that are segmented correctly. These
indexes are defined by Equations (23)–(25).

Sensitivity (SEN) =
TP

TP + FN
∗ 100 (23)

Specificity (SPEC) =
TN

FP + TN
∗ 100 (24)

Accuracy (ACC) =
TN + TN

(TP + TN) + (FP + FN)
∗ 100 (25)

where TP (True Positive) is the number of breast cancer pixels that are detected as abnormal,
FN (False Negative) is the number of breast cancer pixels that are detected as normal, TN
(True Negative) is the number of backgrounds that are detected as normal, and FP (False
Positive) is the number of backgrounds that are detected as abnormal. Another metric to
evaluate the breast cancer detection between the proposed method and manually detected
with three experts was used for comparative analysis, which is widely used in the literal.
Another performance aspect of the Jaccard index score [41] is defined as per Equation (26).

Jaccard Index =
|ROIKM++CSA ∩ ROIGT|
|ROIKM++CSA ∪ ROIGT|

(26)
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where ROIKM++CSA was the breast cancer region by using the proposed detection method,
ROIGT was the breast cancer region of the ground truth image and |ROIKM++CSA| is
its cardinality.

3.1. Breast Cancer Detection Results

The proposed methods are implemented on MATLAB version 2020a (The MathWorks
Inc.) and run on a 4.00 GHz Intel(R) Core (TM) i7–6700K CPU, 8GB (RAM) under the Mi-
crosoft Windows 10, 32–bit operating system. In Figure 11, we list images with four different
detection methods and a number of clusters for every clustering method. Figure 11(a1) is
the original image with signs of breast cancer. Figure 11(a2) shows the results of applying
KM to detect breast cancer. Figure 11(a3) shows the effect of using OTSU’s threshold on
the detected image of Figure 11(a2). Figure 11(a4) is the result of running a mathematical
morphology on the image (Figure 11(a3)) and applying global thresholding. The detection
results revealed that the detected images generated by morphological dilation are the best
way to fill the gaps in the segmented stage. Figure 11(a5) shows the result of applying the
Sobel edge operator. We tested the proposed method with some images in which SEN,
SPEC, ACC, and Jaccard index score indices evaluated the method′s effectiveness. Selecting
a range of values for a number of clusters k would lead to a not-so-good detection result. If
the value for the number of clusters is decreased, the colors of the neighborhood may be
confused. Moreover, KM requests that the user indicate the number of clusters k before
the detection commences. The number of clusters the user indicates must compare with
the number of gray colors. It is not essential to have prior knowledge of the number of
gray colors contained by the image since there is an arrangement made for re–inputting
the number of clusters as soon as KM gets to the end of the clusters, which indicates that it
stops. In this experiment, the proposed method results with the test image can be seen in
Figure 11(b1–b5). Figure 11(b1) is the original image of breast cancer. Figure 11(b2) is the
result of applying FCM with four clusters performed using k = 4. Figure 11(b3) shows the
binary detection results for Figure 11(b2) using the OTSU’s threshold. The result of apply-
ing mathematical morphology based on dilation operators and running global thresholding
on the dilated image is shown in Figure 11(b4). Figure 11(b5) displays the result of applying
the Sobel edge operator. FCM iterates are based on the number of clusters and come over
on the considered image. Unlike KM, the FCM will return the number of clusters after
the detection. Next, FKM was tested on a mammogram image, the gray level image, and
their results are shown in Figure 11(c1–c5). The image shown in Figure 11(c2) displays the
four clusters performed by choosing k = 4 and the detected image. Figure 11(c3) shows the
result of using the OTSU’s threshold method. Figure 11(c4) shows the results of applying
mathematical morphology based on dilation operators and running global thresholding on
the image. Figure 11(c5) displays the result of using the Sobel edge operator. FKM could be
an algorithm produced from FCM and KM but carries more of an FKM property than KM.
Finally, KM++CSO is tested on mammogram images, and its performance is compared to
that of other machine learning like KM, FCM, and FKM. The first test image Figure 11(d1),
is displayed to compare the experimental results of breast cancer. Figure 11(d2) shows the
four clusters performed using k = 4 and the detected image. Figure 11(d3) is applied to
detect breast cancer regions using OTSU’s method with threshold values of 0 to 255 and set
to 128. The breast cancer is dilated from its background using morphological–based dilation
operators, and the results of applying global thresholding are shown in Figure 11(d4). The
Sobel edge is again used to detect edges in the regions. By observing Figure 11(d5), we can
say that the Sobel edge detects the edges. KM++CSO works on gray-level images like FCM
and creates the same number of iterations as in KM and FKM. Time is taken to detect based
on the tested image using KM++CSO to be faster than other clustering methods, whereas,
in a few cases, KM also shows up to be faster than the original FCM and FKM. Whereas
KM++CSO and KM compete in time, FCM has been modified to create the same number
of iterations as FKM with a faster operation time. That is, FKM is faster than FCM. The
conflict in time between FCM and FKM and KM and KM++CSO is expected to account for
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the properties of the image under consideration and the efficiency of the machine on which
the algorithms are tested.
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In terms of average accuracy, the number of iterations is considered. The more
iterations, the more accuracy. The iteration that FCM and FKM can perform generally
depends on the number of gray images contained by an image, which limits its iterative
ability, unlike that of KM++CSO, which segments based on the number of clusters assigned
in an image. As a result, FCM and FKM are less accurate than the KM and KM++CSO. The
performance of the proposed methods on three open-access datasets is shown in Table 2.
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They have been tested in four unsupervised machine learnings: KM, FCM, FKM, and
MK++CSO. Typically, the training dataset is generally for the samples required; at present,
the methods are built with a series of image processing methods, which might still need a
training set for a constant learning rate and an optimization for all parameters. From the
data analysis, the FCM used on 123 images of BCDR successfully obtained the SEN, SPEC,
and ACC rates of 61.29%, 61.19%, and 61.20%, respectively. However, using KM++CSO, the
SEN, SPEC, and ACC rate increased to 96.90%, 96.16%, and 96.42%, respectively. Therefore,
the accuracy has been increased to 35.22%. For FCM used on 123 breast cancer images of
Mini–MIAS, the algorithm successfully obtained the SEN, SPEC, and ACC rates of 60.67%,
60.97%, and 60.78%. Then, KM++CSO achieved SEN, SPEC, and ACC rates of 96.78%,
97.10%, and 96.92%, respectively. Therefore, the rate of accuracy has been increased to
36.14%. Also, 2620 images have been used to evaluate and compare the performance of the
fusion methods. Similarly, for DDSM, we obtain SEN, SPEC, and ACC. FCM received the
SEN, SPEC, and ACC rates of 67.22%, 69.12%, and 61.10%. Then, KM++CSO achieved SEN,
SPEC, and ACC rates of 95.68%, 95.10%, and 95.49%, respectively. Therefore, the accuracy
has been increased to 26.39%. For this reason, the detection method has achieved perfect
detection results. Overall, the proposed method demonstrated that the detection results
are good quality and suitable for the breast cancer detection region from the mammogram
image. However, comparing the proposed methods directly with other methods is difficult
because of the difference in the number of images, differences in the dataset, and evaluation
performance of detection.

Table 2. Comparison between the proposed segmentation method in terms of SEN, SPEC, ACC, and
Jaccard index score.

Methods Datasets
Percentage

SEN (%) SPEC (%) ACC (%) Jaccard Index (%)

KM

DDSM

88.38 89.10 88.89 80.45 (2108/2620)
FCM 67.22 69.12 69.10 70.95 (1859/2620)
FKM 90.15 90.18 90.16 83.55 (2189/2620)
KM++CSO 95.68 95.10 95.49 87.37 (2289/2620)

KM

Mini–MIAS

90.10 89.78 89.92 85.13 (275/323)
FCM 60.67 60.97 60.78 64.08 (207/323)
FKM 91.12 91.20 91.14 86.99 (281/323)
KM++CSO 96.78 97.10 96.92 89.47 (289/323)

KM

BCDR

89.96 89.89 89.92 78.86 (97/123)
FCM 61.29 61.19 61.20 65.85 (81/123)
FKM 91.40 91.56 91.48 88.62 (109/123)
KM++CSO 96.90 96.16 96.42 91.05 (112/123)

3.2. Manual Detection Versus Measurement

In this section, the proposed detection method has been evaluated of the breast cancer
region by three experts versus measurements automatically detected by the proposed meth-
ods. The correlation between the area of breast cancer detected and the measures created
by three experts is calculated as per Equation (26). For BCDR, this paper used 123 images
based on KM++CSO, and we obtained 112 images successfully, while 11 images were
misdiagnosed. Therefore, the proposed algorithm achieved a Jaccard index score of 91.05%.
For Mini–MIAS, the proposed method accurately detected 289 images out of 323. Therefore,
it is shown that 289 images with a Jaccard index score of 89.47% are detected correctly,
while 34 images with a score of 10.53% are detected incorrectly. Moreover, the method
accurately detected 2289 images out of 2620 images (87.37% Jaccard index score) in DDSM,
while 331 images with a score of 12.63% were detected incorrectly. Figure 12 illustrates the
segmentation results for mammogram images randomly selected from BCDR, Mini–MIAS,
and DDSM databases. The first segmentation of Figure 12a is demonstrated as the best
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breast cancer segmentation, which obtained a 91.05% Jaccard Index score on the BCDR
database. The segmentation results of Figure 12b correctly depict the breast cancer region,
which received an 89.47% Jaccard Index score on the Mini–MIAS. The segmentation results
of Figure 12c correctly display the breast cancer region, which obtained an 87.37% Jaccard
Index score on the DDSM. Based on the experimental results of our proposed method,
its suitability for breast cancer segmentation has been successfully verified. Moreover,
the proposed method outperformed breast cancer segmentation compared with BCDR,
Mini–MIAS, and DDSM datasets. However, the proposed method obtained lower results by
SEN, SPEC, ACC, and Jaccard Index scores in the DDSM for breast cancer segmentation.
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4. Discussion

The diagnosis system of artificial intelligence in medicine has increased in recent years,
which may be seen in the number of published articles [2–14]. The KM++ based on the
CSO method for mammogram evaluation used within this work presented high sensitivity,
specificity, and accuracy for the segmentation of breast cancer. The following contributions
to the research community were provided in this article:

(1) We provided an overview of the breast cancer segmentation methods on three
publicly available datasets, optimizing the parameters of KM++CSO for each dataset. With
KM++CSO, the best SEN, SPEC, ACC, and Jaccard index scores in detecting breast cancer
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using mammogram images among the four methods are 96.90%, 96.16%, 96.42%, and
91.05%, respectively. A description of the experimental results is provided in Table 2.

(2) When it comes to the detection of healthy and breast cancer–infected mammogram
images, the time taken to segment based on the tested image with a KM++CSO appears
to be faster than the KM, FCM and FKM whereas, in a few cases, KM also shows up to be
faster than FCM and FKM. The average execution time required for KM, FCM, and FKM to
get the optimal solution with three clusters is 7, 12, and 9 seconds per image, respectively,
using the computer specifications described earlier. The average time for KM++CSO for the
same cluster with the same clusters and iterations is 4 seconds per image. The proposition
of the new method and its performance are shown in Section 3.1.

(3) It is also shown that the pre-processing methods have improved the accuracy and
enhanced the coarse detection performance of the KM++CSO, including OTSU’s threshold-
ing and mathematical morphology. This paper indicates that by cutting–edge performance
in KM++ and applying CSO, it is possible to achieve a higher level of performance, improv-
ing breast cancer detection accuracy.

(4) A new method for accurately detecting breast cancer was proposed based on
KM++CSO in mammogram images. The technique allows for more accurate detection of
breast cancer by tracking the lesions on the mammogram surface. It can also aid the experts
in the manual classification and detection of breast cancer. The proposed methods can
produce good detection with no effort in terms of coarse to fine detection of breast cancer
in a mammogram image.

The results from the mammogram image analysis revealed the possibility of the suc-
cessful detection of breast cancer. The results from the image segmentation confirmed
differences in the position, shape, and cancer features between the healthy image and
people with breast cancer. However, there are limitations to this work. The proposed
method is evaluated on small datasets, although it provides data for appropriate segmen-
tation analysis. The second limitation is setting the multiple algorithms to compare with
the ground truth image as the basis of three expert reports. This process requires more
complexity in time. However, for future work, the execution time in the detection process is
a region of interest. Sometimes, the methodology, which does not require fixing the number
of clusters before detecting, may be used for coarse detection.

5. Conclusions

Within this work’s limitations, we can conclude that the tested KM++CSO can be
helpful for an initial evaluation of breast cancer screening for medical diagnostics. More-
over, the result of the proposed method outperformed breast cancer segmentation when
compared with the existing approach on BCDR, Mini–MIAS, and DDSM datasets.
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