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Abstract: While a large number of archived digital images make it easy for radiology to provide
data for Artificial Intelligence (AI) evaluation; AI algorithms are more and more applied in detecting
diseases. The aim of the study is to perform a diagnostic evaluation on periapical radiographs with an
AI model based on Convoluted Neural Networks (CNNs). The dataset includes 1169 adult periapical
radiographs, which were labelled in CranioCatch annotation software. Deep learning was performed
using the U-Net model implemented with the PyTorch library. The AI models based on deep learning
models improved the success rate of carious lesion, crown, dental pulp, dental filling, periapical
lesion, and root canal filling segmentation in periapical images. Sensitivity, precision and F1 scores
for carious lesion were 0.82, 0.82, and 0.82, respectively; sensitivity, precision and F1 score for crown
were 1, 1, and 1, respectively; sensitivity, precision and F1 score for dental pulp, were 0.97, 0.87 and
0.92, respectively; sensitivity, precision and F1 score for filling were 0.95, 0.95, and 0.95, respectively;
sensitivity, precision and F1 score for the periapical lesion were 0.92, 0.85, and 0.88, respectively;
sensitivity, precision and F1 score for root canal filling, were found to be 1, 0.96, and 0.98, respectively.
The success of AI algorithms in evaluating periapical radiographs is encouraging and promising for
their use in routine clinical processes as a clinical decision support system.

Keywords: artificial intelligence; periapical radiographs; deep learning; oral diseases; oral findings

1. Introduction

Although clinical and visual evaluation in dentistry is the first step in diagnosis, radio-
graphic examination is often used as an auxiliary method in the main diagnosis [1]. Dentists
often use periapical radiography, bitewing radiographs and panoramic radiographs in
the clinic. Panoramic radiographs are routinely preferred because they can display all
dentoalveolar structures together, but this technique is not as diagnostic as periapical
radiographs due to the enlargement and geometric distortions that occur in the images [2].
Periapical radiographs are the most preferred intraoral radiography technique as an aid to
dental carious lesion detection, examination of restorations, inter radicular radiolucency,
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root canal morphology, evaluation of alveolar bone level, periodontal ligament space, and
endodontic treatments. While the experience and knowledge of the physician play an
important role in the interpretation of these radiographs, factors such as radiographic
technique errors, contrast, and magnification may cause misinterpretation of the image [3].
For this reason, it is very meaningful for dentists to develop an automatic detection method
that assists in diagnosis and treatment evaluation stages on periapical radiographs.

Artificial intelligence (AI) is described as the capacity to simulate human intelligence,
and today, an AI system has been developed and is being widely used in different fields,
including medicine and dentistry [4]. AI algorithms provide benefits in detecting diseases
while avoiding unnecessary procedures [5]. In the field of radiology, training AI systems
became easy through data provided by a large number of archived digital images [6].
Machine learning (ML) is a subset of AI that uses training datasets to create algorithms
that can learn on its own, providing computers or systems with the ability to learn and
improve performance automatically without human intervention [7]. The main goal in
machine learning is to create mathematical models that can be trained to produce desired
results when fed with input data. Machine learning has been developed for many years
and has many subclasses. The most popular of these subgroups today is deep learning
(DL) algorithms. Simple network architectures with numerous layers are referred to as
“shallow” learning neural networks, which were one of the first algorithms to be devised.
DL neural networks are network designs that make use of numerous massive layer net-
works. Convolutional neural networks (CNNs) are typically employed to analyze massive
and complicated images [8]. Neural networks are mathematical models that mimic the
human brain [9]. A general CNN architecture includes several convolutional layers that can
break down an image into smaller pieces that allow easy processing. These layers’ outputs
are routed into the pooling layer. In the pooling layer, the data size and existing noise is
reduced. These two layers are fed into the neural network that generates a probability map
from images containing a desired target for detection [10]. In medical imaging, CNNs are
the most popular deep learning architectures and by utilizing original images CNNs can
automatically create visual features [11]. In the field of dentistry, there is an increasing
number of studies that use deep learning for diagnosis, screening, and decision making.
Most of the studies are aimed at evaluating the diagnostic performance of deep learn-
ing models developed for segmentation, classification, or anatomic landmark detection.
Numerous studies demonstrated that diagnosis using artificial intelligence models, such
as CNN architectures, is very promising especially in carious lesion detection [9,12–15],
periodontal disease detection [16,17], cephalometric analysis [18], periapical lesion detec-
tion [19], detection of atherosclerotic carotid plaques [20], detection of taurodont teeth [21],
and segmentation and classification of Sella turcica [22] findings.

The purpose of this study is to evaluate automatic segmentation performance of
features in periapical radiographs by DL based AI model developed using U-Net algorithm.

2. Materials and Methods
2.1. Patient Selection

Periapical radiographs used for various diagnostic purposes were obtained from the
archive of Eskisehir Osmangazi University, Faculty of Dentistry. The dataset includes
1169 periapical radiographs taken from adults between January 2016 and June 2020. Ra-
diographic images with poor image quality and artifacts that may affect the diagnosis
were excluded from the study. The research protocol was approved by the Eskisehir Os-
mangazi University Non-Interventional Clinical Research Ethics Committee and follows
the principles of the Declaration of Helsinki (decision date and number: 15 June 2021, 44).

2.2. Radiographic Dataset

All periapical radiographs were taken with the ProX periapical X-ray unit (Planmeca,
Helsinki, Finland) with the following parameters: 220–240-V, 60 kVp, 2 mA, and 0.05 s scan
time using ProScanner Phosphor Plate and Scanning System (Planmeca, Helsinki, Finland).
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2.3. Image Evaluation

As a research assistant with 2 years of experience and a dento-maxillofacial radiologist
with 12 years of experience performed labeling on periapical radiographs for different
findings using CranioCatch annotation software (CranioCatch, Eskişehir, Turkey).

2.4. Deep Convolutional Neural Network

DL was performed using the U-Net model implemented with the PyTorch library
(version 1.4.0). Blue boxes in Figure 1’s U-Net design represent multi-channel feature maps
and white boxes reproduce feature maps. The numbers above the blue boxes correspond
to the channel numbers. This architecture consists of narrowing and widening roads.
The widening path is roughly symmetrical with the narrowing path, forming a U-shaped
structure. The narrowing side (left) of the U shape is an encoder section where feature
extraction is performed. Each block in this section consists of two 3 × 3 convolution and
2 × 2 max pooling layers with rectified linear unit (ReLu) activation. The number of feature
channels are doubled at each subsampling step. On the expanding side (right) of the
U-shape, the decoding step and sampling operation is performed where the amount of
feature channels is halved via a 2 × 2 deconvolution. The feature map of each transmitted
convolution layer is combined with a feature map of a resolution similar to that of the
encoder section. In the final stage, 1 × 1 convolution is applied to reduce the feature
map to the required number of channels and provide segmentation. (Figure 1) [23]. Due
to sequential convolutional layers, this architecture allows more accurate segmentation
and it can successfully segment images with limited training data. For these reasons, it is
generally preferred in image segmentation in the medical field.
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2.5. Model Pipeline and Training Phase

The PyTorch library was used in this study. It is an open-source library that aims
to remove this barrier for both researchers and practitioners. Python open-source pro-
gramming language (v.3.6.1; Python Software Foundation, Wilmington, DE, USA) and
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PyTorch library were used for model development. The training method was applied using
computer equipment of Eskisehir Osmangazi University Faculty of Dentistry Dental-AI
Laboratory including Dell PowerEdge T640 Calculation Server (Dell Inc., Austin, TX, USA),
Dell PowerEdge T640 GPU Calculation Server (Dell Inc., TX, USA), and Dell PowerEdge
R540 Storage Server (Dell Inc., TX, USA). Anonymized mixed-size periapical images were
resized to 512 × 512 to increase image visual quality. This study applied image enhance-
ment techniques such as intensity normalization and Contrast Limited Adaptive Histogram
Equalization (CLAHE). Approximately 80% of the data set are divided into 3 parts: 80%
training, 10% testing, and 10% validation. The AI model was trained using different epoch
values for each situation. The model’s learning rate was found to be 0.0001. The testing
groups data were not reused (Figure 2).
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Statistical Analysis

A confusion matrix was used to evaluate model performance. This matrix was a
meaningful table that summarizes the predicted situation with the actual situation.

Metrics Calculation Procedure

The following metrics were used to assess the model’s success:

• True positive (TP): dental diagnoses correctly detected and segmented.
• False positive (FP): dental diagnoses detected but incorrectly segmented.
• False negative (FN): dental diagnoses incorrectly detected and segmented.

The performance metrics of the model were determined according to the formulas
using the following TP, FP, and FN numbers.

• Sensitivity, true positive rate (TPR): TP/(TP + FN)
• Precision, positive predictive value (PPV): TP/(TP + FP)
• F1 score: 2TP/(2TP + FP + FN)

Intersection over Union (IoU): Intersection over Union (IoU) is a typical assessment
approach that uses true positives, false positives, and false negatives in Pascal VOC 2012.
The IoU metric displays area where the outcome of the suggested approach and the precise
reference space overlap (ground truth) [24]. In this study, this area was accepted as a TP
(true positive) if it was greater than 50% and FP (false positive) if it was smaller.

3. Results

The AI models based on deep-learning models improved the success rate of carious
lesion, crown, dental pulp, dental filling, periapical lesion, and root canal filling segmenta-
tion in periapical images. All test images were correctly segmented by the developed AI
model (Figure 3).

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 11 
 

 

The IoU metric displays area where the outcome of the suggested approach and the pre-
cise reference space overlap (ground truth) [24]. In this study, this area was accepted as a 
TP (true positive) if it was greater than 50% and FP (false positive) if it was smaller. 

3. Results 
The AI models based on deep-learning models improved the success rate of carious 

lesion, crown, dental pulp, dental filling, periapical lesion, and root canal filling segmen-
tation in periapical images. All test images were correctly segmented by the developed AI 
model (Figure 3). 

 
Figure 3. Dental conditions’ segmentation on periapical radiographs using the AI model ((A) caries, 
(B) crown, (C) dental pulp, (D) filling, (E) root canal filling, (F) periapical lesion). 

Sensitivity, precision, and F1 score for carious lesion, crown, dental pulp, filling, per-
iapical lesion, root canal filling were found to be 0.82, 0.82, and 0.82, respectively; 1, 1, and 
1, respectively; 0.97, 0.87, and 0.92, respectively; 0.95, 0.95, and 0.95, respectively; 0.92, 
0.85, and 0.88, respectively; and 1, 0.96, and 0.98, respectively (Tables 1 and 2). 

Table 1. Data distribution and training parameters. 

 
Periapical Radi-
ograph Numbers 

for Training 

Label Num-
bers for 
Training 

Periapical Ra-
diograph Num-

bers for Test 

Label Num-
bers for 

Test 

Periapical Ra-
diograph Num-

bers for Test 

Label Num-
bers for Test 

Learning 
Rate 

Epoch 

Carious le-
sion 352 577 35 59 35 53 0.0001 800 

Crown 91 108 9 11 9 12 0.0001 300 

Figure 3. Dental conditions’ segmentation on periapical radiographs using the AI model ((A) caries,
(B) crown, (C) dental pulp, (D) filling, (E) root canal filling, (F) periapical lesion).
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Sensitivity, precision, and F1 score for carious lesion, crown, dental pulp, filling,
periapical lesion, root canal filling were found to be 0.82, 0.82, and 0.82, respectively; 1, 1,
and 1, respectively; 0.97, 0.87, and 0.92, respectively; 0.95, 0.95, and 0.95, respectively; 0.92,
0.85, and 0.88, respectively; and 1, 0.96, and 0.98, respectively (Tables 1 and 2).

Table 1. Data distribution and training parameters.

Periapical
Radiograph
Numbers for

Training

Label
Numbers for

Training

Periapical
Radiograph

Numbers for Test

Label
Numbers for

Test

Periapical
Radiograph
Numbers for

Test

Label
Numbers for

Test

Learning
Rate Epoch

Carious lesion 352 577 35 59 35 53 0.0001 800

Crown 91 108 9 11 9 12 0.0001 300

Dental Pulp 975 3482 97 347 97 348 0.0001 200

Filling 758 1600 75 169 75 161 0.0001 200

Root Canal
Filling 627 1389 62 138 62 165 0.0001 300

Periapical Lesion 266 327 26 34 26 30 0.0001 500

Table 2. Estimated performance measurement based on the AI model.

True-Positive
(TP)

False Positive
(FP)

False-Negative
(FN)

Sensitivity
(TP/(TP + FN))

Precision
(TP/(TP + FP))

F1 Score (2TP/2TP +
FP + FN))

Carious lesion 34 7 7 0.82 0.82 0.82

Crown 12 0 0 1 1 1

Dental Pulp 274 40 6 0.97 0.87 0.92

Filling 129 6 6 0.95 0.95 0.95

Root Canal Filling 110 4 0 1 0.96 0.98

Periapical Lesion 24 4 2 0.92 0.85 0.88

4. Discussion

The development of deep learning and neural network methods has accelerated the
use of AI in medicine and dentistry [19]. Many studies are using AI in the field of dentistry.
Hamdan et al. [25], as a result of their studies investigating the contribution of deep learning
tools to the evaluation of radiolucent areas in the apical regions of the teeth, concluded
that the diagnostic efficiency of clinicians in determining apical radiolucency on periapical
radiographs increased with the AI model. Chen et al. [26] conducted a study to detect and
number teeth faster in dental periapical films with Faster R-CNN in the TensorFlow library.
Their studies have shown that predictions and recalls are 90% accurate using Faster R-CNN.
The responses of three dentists who examined the independent dataset were compared
with the responses of the system, and they found success in the study close to that of
dentists new to the profession [26]. The objective of Görürgöz et. al. [27] was to assess
how well the Faster Region-Based Convolutional Neural Network (R-CNN) algorithm
performed when it came to identifying and numbering teeth on periapical radiographs.
In their study, evaluating 1686 periapical radiographs, a pre-trained model (GoogLeNet
Inception v3 CNN) was used for preprocessing and transfer learning techniques were
applied for dataset training. An AI algorithm based on R-CNN initial architecture has been
designed to automatic detect and numbering teeth. Of the 864 teeth in the 156 periapical
radiographs, 668 were correctly numbered in the test dataset. The F1 score, precision, and
sensitivity were specified as 0.8720, 0.7812, and 0.9867, respectively [27]. To assess the
efficacy of deep CNN algorithms for the identification and diagnosis of dental caries on
periapical radiographs, Lee et al. [12] used the GoogLeNet Inception v3 CNN network
for preprocessing and transfer learning on 3000 periapical radiographs. The diagnostic
accuracy of the models was found to be 89% in premolar models, 88% in molar models, and
82% in premolar-molar models, and the researchers stated that the deep CNN algorithm
provides a very good success in detecting dental caries in periapical radiographs [12]. In
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another study on periapical and bitewing radiographs, composite, amalgam, and metal-
ceramic restorations were segmented with a ResNet34 architecture-based CNN model,
and it was reported that the model, with AUC values of 0.95, 0.95, and 1.00, respectively,
showed high diagnostic performance [28].

Khan et al. [3] labeled carious lesion, alveolar bone loss, and inter radicular radi-
olucency on periapical radiographs using deep learning techniques. They claimed that
the U net+ Densenet 121 design had the greatest performance in the validation dataset
when they examined the results of deep learning architectures to select the most appro-
priate architecture for automated analysis [3]. Lee et al. [16], in their study on periapical
radiographs, wanted to develop a computer-aided detection system based on the CNN
algorithm and evaluate the potential utility and accuracy of this system for the diagnosis
and prediction of periodontal disease in teeth. The overall diagnostic accuracy was 81.0%
for premolar teeth, the highest diagnostic accuracy (82.8%) for severe periodontal disease,
and the lowest (77.3%) for moderate periodontal disease. The overall diagnostic accuracy
was 76.7% for molar teeth, the highest (81.3%) for severe periodontal disease, and the lowest
(70.3%) for moderate periodontal disease. They claimed that the deep CNN algorithm can
help with periodontal disease detection and prediction [16]. Images of 801 patients were
used in a study to evaluate the classification of four different implant types on periapical
radiographs of deep neural networks. Images containing Brånemark Mk TiUnite, Dentium
Implantium, Straumann Bone Level, and Straumann Tissue Level implant types were used,
and SqueezeNet, GoogLeNet, ResNet-18, MobileNet-v2, and ResNet-50 were evaluated in
order to select the best pre-trained network design. All five models were reported to have
test accuracy of over 90%. According to the findings of this work, even with a small mesh
size and few images, a CNN can assess implant photos and automatically classify four
specific implant fixture types with high accuracy [29]. In another study, in which a total of
1800 digital periapical radiographic images were evaluated with the software developed
through CNN to detect and identify three different dental implant brands, accuracy values
were found to be 99.78% for group training data, 99.36% for group test data, and 85.29% for
validation data [30]. Cha et al. [31] aimed to measure bone loss around the implant and
evaluate its severity in 708 periapical radiographs. They used transfer learning to train
a modified region-based CNN (R-CNN) using data from the Microsoft Common Objects
dataset. In this study, in which radiographic bone loss was measured and classified by
identifying key points, it was stated that there was no statistically significant difference
between the modified R-CNN model and the evaluation of the dentist in determining the
landmarks around dental implants [31]. Li et al. [32] made research to evaluate success of
automatic detection dental caries and periapical periodontitis on periapical radiographs
using two cascaded ResNet-18 backbones and two individual convolutional layers. The
deep learning model automatically recognized caries with an F1-score of 0.829 and peri-
apical periodontitis with an F1-score of 0.828. The AI model showed remarkably higher
success than young dentists. They concluded that the AI could develop the accuracy and
consistency of assess tooth caries and periapical periodontitis on periapical radiographs
based on these study results. [32] Another study conducted by Chen et al. [33] purposed
develop CNN based AI model for detection of lesions on periapical radiographs and assess
the performances in terms of disease types, severe of lesion, and train methods. Generally,
precision and recall values were found as between 0.5 and 0.6 on different type of disease
for lesions detection. The effect of train methods, disease type, and severe of lesions had
statistically significance on performances (P<.001). The study emphasized that deep CNNs
has capable to detect diseases on periapical radiographs. [33] Duong et al. [34] presented
an automate recognize carious lesions algorithm on tooth occlusal surfaces in smartphone
images according to International Caries Detection and Assessment System using a group
of extracted teeth. The achieved images were assessed and annotated into three different
classes: “No Surface Change (NSC)”; “Visually Non-Cavitated (VNC)”; and “Cavitated”
(C). An automated two-step SVM classification system was developed for caries detection.
The accuracy, sensitivity, and specificity were found as 92.37%, 88.1%, and 96.6%, respec-
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tively, in C vs. (VNC + NSC) classification and they were found as 83.33%, 82.2%, and
66.7%, respectively, in VNC vs. NSC classification. [34] Alevizakos et al. [35] developed an
AI system for training diagnosis and differentiation with molar incisor hypomineralization
(MIH) and carious lesion, amelogenesis imperfecta, dental fluorosis in clinical pictures.
ResNet34, ResNet50, AlexNet, VGG16 and DenseNet121 were performed on the datasets.
The precision of VGG16 network was the lowest with 83.98% for amelogenesis imperfecta.
Dense121 showed the highest values with 92.86%. The carious lesion detection rate was
100% in the resNet50 group. [35]

In the presented study, U-Net based AI algorithm was developed to segmentation of
different dental findings in dental periapical radiographs. The sensitivity, precision, and
F1 value was found as up to 80%. Although the presented study has some limitations
including one type X-ray machine used to take images, didn’t use external data set, lack of
observers with different experiences, didn’t use different CNN models. This developed AI
model using U-Net model improved the success rate of, carious lesion, crown, dental pulp,
dental filling, periapical lesion, and root canal filling segmentation on dental periapical
images. Future studies should be held using more data and eliminated these limitations.

5. Conclusions

The result of this study demonstrates the potential of deep learning systems based on
CNN architectures to assist dentists in segmenting different features in periapical images.
Having sufficient training data is necessary to achieve successful results in training deep
neural networks. The success rate can be increased with more data; therefore, it can be
ensured that physicians use time efficiently in the diagnosis process.
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