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Abstract: Right ventricular heart failure (RVHF) mostly occurs due to the failure of the left-side of
the heart. RVHF is a serious disease that leads to swelling of the abdomen, ankles, liver, kidneys,
and gastrointestinal (GI) tract. A total of 506 heart-failure subjects from the Faculty of Medicine,
Cardiovascular Surgery Department, Ege University, Turkey, who suffered from a severe heart
failure and are currently receiving support from a ventricular assistance device, were involved in the
current study. Therefore, the current study explored the application of both the direct and inverse
modelling approaches, based on the correlation analysis feature extraction performance of various
pre-operative variables of the subjects, for the prediction of RVHF. The study equally employs both
single and hybrid paradigms for the prediction of RVHF using different pre-operative variables. The
visualized and quantitative performance of the direct and inverse modelling approach indicates
the robust prediction performance of the hybrid paradigms over the single techniques in both the
calibration and validation steps. Whereby, the quantitative performance of the hybrid techniques,
based on the Nash–Sutcliffe coefficient (NC) metric, depicts its superiority over the single paradigms
by up to 58.7%/75.5% and 80.3%/51% for the calibration/validation phases in the direct and inverse
modelling approaches, respectively. Moreover, to the best knowledge of the authors, this is the first
study to report the implementation of direct and inverse modelling on clinical data. The findings
of the current study indicates the possibility of applying these novel hybridised paradigms for the
prediction of RVHF using pre-operative variables.

Keywords: right ventricular heart failure; pre-operative; artificial intelligence; hybrid-based paradigms;
validation step

1. Introduction

Right ventricular heart failure (RHVF) is generally due to problems arising from the
left atrium [1]. This heart disease is a syndrome characterised by the inability of the cardiac
output to match the body’s metabolic demands, stemming from structural or functional im-
pairment of ventricular filling or ejection. There are, however, two predominant conditions
where the anatomic right ventricular (RV) lies in the systemic position and the anatomic
left ventricular (LV) lies in the subpulmonary position, namely d-Transposition of the
great arteries (d-TGA), which is palliated with an atrial switch operation, and congenitally
corrected transposition of the great arteries (cc-TGA) [2]
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Most patients with symptoms and signs of heart failure have a left ventricular ejection
fraction that is not markedly abnormal [3]. The recognition of the magnitude of the problem
of heart failure with preserved ejection fraction in the past 20 years has spurred an explosion
of clinical investigation and a growing intensity of informative outcome trials [4].

Although substantial progress has been made in understanding the various patho-
logical conditions of RVHF, effective and accurate medical assessment of these factors,
as well as the benefits of RVHF diagnosis at an earlier stage, have led to a tremendous
surge in the use of detectors [5–7]. Furthermore, Manca et al. [8] reported that Titin (TTN)-
related dilated cardiomyopathy (DCM) has a higher likelihood of left ventricular reverse
remodelling compared with other genetic etiologies. Moreover, research indicates that
previously there were no data regarding the evolution of right ventricular dysfunction
(RVD) according to genetic background. Moreover, the findings of these results indicate that
the evolution of RVD in DCM is heterogeneous in different genetic backgrounds. Whereby,
TTN-related DCM is associated with a higher chance of RVD recovery compared with other
genetic etiologies.

Therefore, the need for understanding this medical condition using a simple, fast,
and cost-effective technique is of paramount importance. For instance, the application of
artificial intelligence (AI) and machine learning (ML) in locating, analysing, interpreting,
forecasting, and classifying the medical information associated with RVHF can serve
as the robust integration for understanding this important health condition, especially
when provided with the necessary medical information. Recently, ML and AI have been
recommended as valuable methods to enhance illness prognosis, diagnosis, and prediction
as well as progress management [5,9]. Several machine learning (ML) algorithms have
been implemented in RVHF to improve the medical workflow and avoid the limitations of
conventional methods. A recent example is the ML-based research by Jingjing et al. [10],
which uses AI-assisted auscultation to detect congenital cardiac disorders at a Shanghai
children’s medical center; they focused on the sensitivity, specificity, and accuracy of remote
auscultation. This study found that remote auscultation could find unusual heart sounds
with 98% responsiveness, 91% specificity, 97% accuracy, and a 0.87 kappa coefficient. A
total of 1397 people with CHD signed up for the survey. The rest of the specimens from the
1362-patient population (mean age 2.4 3.1 years, 46% female) were evaluated.

Silvia et al. [11] reported that cardiovascular disease (CVD), despite the significant
advances in its diagnosis and treatment, still represents the leading cause of morbidity and
mortality worldwide. Therefore, to improve and optimise CVD outcomes, artificial intelli-
gence techniques have the potential to radically change the way we practice cardiology,
offering us novel tools to interpret data and make clinical decisions. AI techniques such as
machine learning and deep learning can also improve medical knowledge due to the in-
crease in the volume and complexity of the data, unlocking clinically relevant information.

The current study is, to our best knowledge, the first in the technical published
literature that employs the applications of hybridised paradigms (ILR–ANFS, ILR–GPR,
and ILR–GRNN) for the clinical prediction of RVHF using pre-operative variables and,
ultimately, is based on the recent technical literature as well as a scan of the literature, as
shown in Figure 1; in addition, to our best knowledge, this is the first study that reports the
feasibility of applying direct and inverse modelling for clinical prediction in health- and
medical-related studies.

Therefore, the current study aims at understanding the connection between pre-
operative variables and RVHF by using the correlational feature extraction method based
on heart failure patients’ data. Based on the correlational analysis results of the pre-
operative variables and RVHF as the dependent variable, two novel approaches were
developed, namely the inverse and direct approaches for modelling RVHF using single
stand-alone models with improved novel hybridised paradigms.
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2. Materials and Methods
2.1. Single Paradigms
2.1.1. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) can be referred to as robust non-linear predic-
tion model, which is probabilistic, nonparametric, supervised, and unsupervised learning
method that generalises the non-linear and complex function mapping hidden in datasets.
Recently, GPR has increasingly attracted the attention of researchers from different engi-
neering fields [12,13]. GPR is capable of handling non-linear data due to its use of kernel
functions. Moreover, one of the merits of a GPR model is that the model can provide a
reliable response to input data [14].

2.1.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

When there are problems, ANFIS can figure out what they are and how to fix them.
Its origin was from the feed-forward and multilayer adaptive networks. ANFIS is jointly
made up of input variables and the rule of fuzzy, which has dependent and independent
variables according to TSK (Takagi–Sugeno–Kan) inferences. Fuzzification and defuzzier
are all contained in the database of fuzzy. By using membership function parameters, fuzzy
set theory converts the information into fuzzified values.
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Nodes had a vital role as member functions (MFs), which made it possible to model
the correlation between the two parameters in a way that makes sense. It has a trian-
gular, trapezoidal sigmoid and Gaussian member function [15]. Based on the theory,
Equations (1) and (2) are created.

Rule No.1 : if µ(x) is A1 and µ(y)B1then f1 = p1x + q1y + r1 (1)

Rule No. 2 : if µ(x) is A2 and µ(y)is B2 then f2 = p2x + q2y + r2 (2)

A1,B1, A2, B2 parameters are membership functions for x and y, and inputs p1, q1, r1,
p2, q2, r2, are output function data. The structure of ANFIS and its formulation agrees with a

neural net set up with 5 tiers. More details about ANFIS are explained by Khademi et al. 2016.

2.1.3. Generalised Regression Neural Network (GRNN)

GRNN, also known as the lazy training method model, was developed by Specht [16]
to behave in the manner of the regression method, by generating a relationship between
the dependent manipulated variable (X) and the outcome variable (Y) with a non-linear
regression estimation for a smaller group of data. The input layer is similar to that of a
conventional neural network, in that its main purpose is to train the input data, and the size
of the input vectors is the main determinant of the number of neurons required for training.
The model training begins immediately in the pattern layer due to the Gaussian kernel’s
conversion of previously input data. The smoothing parameter (σ) is used to calculate the
weight of each neuron in this layer. This parameter is referred to as the “hyper-parameter
of the GRNN model”, and it contributes to the GRNN model’s prediction accuracy [17]. Its
general form is depicted as follows.

Pi = exp

(
− (X − Xi)

T(X − Xi)

2σ2

)
(3)

where X equals the input data of the dataset to be tested, Xi is the ith input of the training
dataset, and σ is the smoothing parameter.

2.1.4. Interaction Linear Regression (ILR)

Generally, we have different kinds of linear regressions (LRs), including multi-linear
regression (MLR), stepwise linear regression (SWLR), and interaction linear regression
(ILR), as can be seen from these studies [18–21].

ILR (isometric log-ratio) is a type of regression that looks at how the relying (target)
factors and one or more reaction (response) parameters are related and communicate [22].
Overall, S. I. Abba et al. [23] demonstrates that the multi-linear regression (MLR) concept is
the most commonly used regression model. MLR could be read even though it has a lower
prediction performance than AI-based modelling techniques [24]. Generally, LR models
can be expressed as:

y = b0 + b1x1 + b2x2 + . . . bixi (4)

where y represents the target parameter, x1 equals the value of the ith predictor, b0 denotes
constant regression, and bi indicates ith predictor coefficient.

2.2. Hybrid-Based Paradigms

Various modellers have different opinions regarding the buildup of models, method-
ology employed in inputting data, and duration of modelling; all had a significant impact
in optimal performance of the model [25–28].

The problem associated with artificial intelligence could be surmounted courtesy
of evolving techniques utilised in eradicating the issues. This recent outstanding tech-
nique takes into consideration the straight line association between the input data and the
predicted variable, and also there is no direct relationship between the information and
variable it gives out.
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These models, in artificial intelligence (AI) models such as Gaussian process regression
(GPR), general regression neural networks and adaptive neuro-fuzzy inference, have been
impacted positively.

According to the work of Marrero-Ponce et al. [29], ANN (artificial neural network) as
well as MLR (multi-linear regression) have been excellent in making remarkable predictions;
this is as a result of the combination of rectilinear and haphazard domains of these models
and their applications [30–33]. The “no free lunch” theorem emphatically states that no
singular model could be applied to varieties of datasets. The optimal performance of
model is dependent on the kind of information the model utilises in working and data
features such as measurement of linearity, size, and general wholeness, which all contribute
immensely to the working principle of the model.

Several researchers have reiterated that the same information and performance index
can vary once various provided variants are utilised.

Again, when data intelligence models are modified, they are wholly utilised in
multiple problems.

Therefore, in this study, four single models were employed to figure out right ventric-
ular heart failure, which are GPR (Gaussian process regression), GRNN (general regression
neural network), adaptive neuro-fuzzy inference, and ILR. An algorithm named “Hybrid
Data Intelligence” is then suggested. This combines both the linear ILR model and the
various artificial intelligence-based prototypes (ILR, GPR, GRNN, and ANFIS) to reap the
benefits of both the unique characteristics and strong points of both models, especially for
predicting data trends of various types. The combination of different modelling approaches
makes the whole process work efficiently. Afterwards, an ILR model learns in order to
acquire the finest models with linear characteristics. The composite (hybrid) method has
two categories. ILR, with learning that is associated with general best values, cannot model
non-linear features of the data, thereby it returns to the sequential ILR model, which has
information about non-linear dynamics and can be utilised by artificial intelligence models
to represent information.

f (yt) = qt + rt (5)

where qt represents the linear phase, and rt represents the non-linear phase. In order to
evaluate how the two proceed, information must be utilised. Let ε represent the residual at
time t from the linear model, therefore:

εt = yt − q̂t (6)

where q̂t is given as forecasted time value t based on the calculated correlation, by modelling
residuals using intelligence-based models. It is very vital to find non-linear connections.
Using n nodes that provide input, for the residuals, the summation of artificial intelligence
model will be:

εt = f (εt−1, εt−2, . . . ., εt−n) + εt (7)

where f is given as the function that is not linear, which was determined by the AI models
that make them, GPR, L-Boost, and SVM, giving εt as random errors. Moreover, Figure 2
depicts the methods used based on block diagram.

2.3. Grading Metrics of the Models Employed in the Current Study

The optimal performance of the model is estimated using different variables that
compare estimated values to the one obtained for any category of dataset.

In this work, 2 statistical error metrics were employed, root-mean-square (RMSE) and
mean-squared (MSE), plus 2 goodness-of-fit variables: Nash–Sutcliffe coefficient (NC) and
Pearson coefficient (PC).
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NC = 1 −
∑N

j=1

[
(Y)obs,j − (Y)com,j

]2

∑N
j=1

[
(Y)obs,j − (Y)obs,j

]2 (8)

PC =
∑N

i=1
(
Yobs − Yobs

)(
Ycom − Ycom

)√
∑N

i=1
(
Yobs − Yobs

)2
∑N

i=1
(
Ycom − Ycom

)2
(9)

RMSE =

√
∑N

i=1(Yobsi − Ycomi)
2

N
(10)

MSE =
1
N ∑N

i=1 (Yobsi − Ycomi)
2 (11)

where N, Yobsi, Y, and Ycomi are data quantity, data that are seen, overall average of data
noted, and calculated values, respectively.
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2.4. Study Description and Validation Strategy for the Models Used

This study consists of 506 heart-failure subjects from the Faculty of Medicine, Cardio-
vascular Surgery Department, Ege University, Turkey, who suffered from a severe heart
failure and are currently receiving support from a ventricular assistance device. The pa-
tients’ group equally consists of RVHF patients, non-RVHF patients, and patients with a risk
of RVHF. Whereby, the patients pre-operative features, namely mean pulmonary arterial
pressure (mPAP), central venous pressure (CVP), transpulmonary gradient (tpg), preopera-
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tive alanine aminotransferase level (ALT), preoperative aspartate aminotransferase level
(AST), preoperative billurubin (BUN), prothrombin time (PT time), preoperative haemat-
ocrit level (pre htc), preoperative sodium level (pre-sodium), preoperative tricuspid valve
insufficiency (pre ty), extracorporeal membrane oxygenator (ECMO), preoperative mitral
valve prolapse (preMV), pulmonary capillary wedge pressure (Pcw), preoperative left
ventricular end systolic diameter (pre lvesd), preoperative left ventricular ejection fraction
(pre lvef), preoperative mitral insufficiency (pre my), preoperative aortic valve insufficiency
(pre ay), preoperative systolic pulmonary arterial pressure (pre spap), preoperative tri-
cuspid annular plane systolic excursion (pre tapse), intraaortic balloon pump (IABP), and
creatinine were recorded.

Hence, the current study employed the application of both single and hybrid paradigms
using different pre-operative variables for the prediction of RVHF. In addition, prior to
the modelling step, correlation-based feature extraction step was conducted in order to
separate the variables based on their connections with the RVHF output variable. The
direct modelling scenario involves pre-operative variables, namely mPAP, CVP, tpg, alt, ast,
BUN, pre Bili, PT time, pre htc, pre-sodium, pre ty, ECMO, and preMV for the prediction of
RVHF, while the inverse modelling scenario, composed of pcw, creatinine, pre INR, pre
lvesd, pre lvef, pre my, pre ay, pre spap, pre tapse, and IABP, was involved in the clinical
prediction of RVHF.

Furthermore, the fundamental aim of data-driven techniques is geared toward the
model of a collection of datasets, with the pointer in use as a building block for a reli-
able prediction of unknown. Keeping in mind that several constraints such as overfitting
and underfitting lead to poor training and testing results. Testing schemes include k-
fold cross-validation, holdout, leave one out, and others. The 10 k-fold cross-validation
procedure was used in the current study [34], for assessing and validating the datasets
used. According to the k-fold cross-validation, researchers have divided the informa-
tion: 75% for the calibrating (training) stage and 25% for the checking (verification) stage.
Moreover, Table 1 describes the basic descriptive statistics of the study population indi-
cating the mean (0.057312), median (0), mode (0), standard deviation (0.232668), kurtosis
(12.64552), skewness (3.820412), range (1), minimum (0), maximum (0), and count (506) of
the RVHF patients.

Table 1. Descriptive analysis of the study population.

Operation RVHF

Mean 0.057312
Median 0
Mode 0

Standard Deviation 0.232668
Kurtosis 12.64552

Skewness 3.820412
Range 1

Minimum 0
Maximum 1

Count 506

Based on Table 1, the minimum value is 0, which denotes ‘no’, meaning normal
patients; the maximum value is 1, meaning ‘yes’, which indicates patients suffering
from RVHF.

2.5. Model Conceptualisation

Phase 1: Data acquisition
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The complete dataset was obtained from a clinical study consisting of 506 heart-failure
subjects from the Faculty of Medicine, Cardiovascular Surgery Department, Ege University,
Turkey, who suffered from a severe heart failure and are currently receiving support from a
ventricular assistance device. Furthermore, the data points were divided into 75% for the
calibration stage and 25% for the testing stage. The data were subsequently validated to
check and control potential modelling problems such as overfitting and underfitting.

Phase 2: Simulation using single models
The stand-alone paradigms (GPR, GRNN, and ANFIS) together with the traditional

linear regression ILR were all conducted using MATLAB 9.3 (R2020a).
Phase 3: Hybrid data-intelligence
The data-intelligence techniques involve combining the properties of the classical

linear ILR technique with AI-based techniques in order to improve the performance of the
single models. Hence, ILR, GPR, GRNN, and ANFIS are developed.

Furthermore, the major essence of developing these techniques is to understand the
behaviour of different clinical data (consisting of the input and output variables) to assign
some weight that can be used in predicting the target. For instance, in the current study, the
pre-operative variables are used in determining whether a patient will suffer from RVHF
or not. Moreover, developing mobile application is very possible through this approach, in
order to assist clinicians, patients, and policy makers in understanding the behaviour and
risk factors of RVHF.

3. Results

Recently, computational techniques have been established in the medical field for
the prediction of various diseases, prevalence, and disorders. AI-based techniques and
machine learning are the major dominant techniques over classical regressions, owing to
their robustness in handling highly chaotic datasets. Therefore, understanding a dataset
prior to the employment of AI techniques for prediction is of paramount importance.
Different feature-extraction techniques such as mutual understanding, sensitivity analysis,
and correlational analysis feature the extraction method. Therefore, an exploratory method
based on correlation analysis is utilised in Table 2 in order to determine the input–output
relation of the variables used in the current study.

An exploratory technique informed of correlation analysis is employed in Table 2 to
elucidate the relation between the variables used in the current study.

Performance of the Single and Hybrid Paradigms for Modelling RVHF Using
Pre-Operative Variables

The currect section demonstrates both the quantitative and visualised performance of
both the single and hybrid paradigms for the direct and inverse prediction of RVHF using
various pre-operative variables.



Diagnostics 2022, 12, 3061 9 of 15

Table 2. (a) Direct and (b) inverse correlation analysis.

(a) Direct

Variables mPAP CVP tpg alt ast BUN pre Bili PT time pre htc pre
sodium pre ty ECMO preMV RVHF

mPAP 1
CVP 0.42 1.00
tpg 0.51 0.48 1.00
alt −0.05 −0.04 −0.08 1.00
ast 0.01 0.03 0.06 0.41 1.00

BUN −0.05 −0.03 0.03 0.10 0.20 1.00
pre Bilirubin 0.08 0.32 0.16 −0.03 0.25 0.07 1.00

PT time 0.06 0.02 0.09 0.11 0.00 0.07 0.04 1.00
pre htc 0.03 −0.04 0.10 0.03 −0.07 0.05 −0.12 0.17 1.00

pre sodium −0.12 −0.09 −0.05 0.09 −0.01 0.05 −0.21 0.20 0.21 1.00
pre ty 0.06 0.19 0.13 −0.02 0.21 0.07 0.56 0.06 −0.07 −0.09 1.00

ECMO −0.07 −0.06 0.00 0.04 0.48 0.14 0.34 −0.05 −0.08 0.02 0.20 1.00
preMV −0.03 0.14 −0.13 0.06 0.07 −0.08 0.21 −0.02 −0.13 0.00 0.11 0.03 1.00
RVHF 0.02 0.00 0.05 0.03 0.07 0.07 0.01 0.15 0.01 0.16 0.02 0.10 0.01 1

(b) Inverse

Variables pcw creatinin pre INR pre lvesd pre lvef pre my pre ay pre spap pre tapse IABP RVHF

pcw 1
creatinin 0.14 1.00
pre INR 0.16 0.60 1.00
pre lvesd 0.11 0.38 0.79 1.00
pre lvef 0.07 0.09 −0.16 −0.33 1.00
pre my 0.05 0.08 0.00 −0.11 0.21 1.00
pre ay 0.12 0.30 0.58 0.74 −0.28 −0.05 1.00

pre spap 0.16 −0.17 −0.27 −0.28 0.20 0.08 −0.20 1.00
pre tapse 0.01 −0.16 −0.28 −0.32 0.24 0.05 −0.22 0.25 1.00

IABP 0.10 0.31 0.66 0.83 −0.37 −0.10 0.80 −0.28 −0.27 1.00
RVHF −0.03 −0.04 −0.04 −0.03 −0.03 −0.24 −0.02 0.00 −0.01 −0.03 1.00
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4. Discussion

The correlational analysis shown in Table 2 demonstrates both the direct and inverse
relation for the input and the corresponding RVHF variable. Based on Table 2a, all the inde-
pendent variables showed a weak connection with the output variable (RVHF), whereby
pre sodium and PT time showed a superior relation than the others, with R-values equal
to 0.16 and 0.15, respectively. Moreover, CVP showed a 0 correlational value with RVHF;
this is due to the fact that most of the patients are suffering from left ventricular heart
failure but not RVHF. Furthermore, Table 2b equally indicates that all the input variables
showed a weak negative correlation with RVHF as the corresponding output variable.
Based on the inverse results, pre my with an R-value equal to −0.24 with RVHF showed
the highest relation with the output variable, in which pre spap showed a 0 relation with
the corresponding RVHF output variable.

Based on the correlational analysis performance shown in Table 2, four different
single-paradigm (GPR, GRNN, ANFIS, and ILR) models integrated with three different
novel hybrid paradigms (ILR–GPR, ILR–GRNN, and ILR–ANFIS) were used in predict-
ing RVHF using various pre-operative variables in two different scenarios (direct and
inverse approaches).

Table 3 demonstrates the performance of the direct modelling scenario approach
for the prediction of RVHF. The performance metrics, PC, DC, RMSE, and MSE, used
in the current scenario indicate the superiority of the hybrid techniques over the single
approaches for the clinical modelling of RVHF in both the calibration and validation stages.
Various modellers reported that for any prediction model or computation paradigm to be
accepted, it should show a minimum DC-value of 0.8. Therefore, all four single models
(ILR, ANFIS, GRNN, and GPR) failed to fulfill this criterion, as they failed to meet this
requirement in both the calibration and validation phases. In addition, ILR–GPR and
ILR–ANFIS, with DC-values equal to 0.862 and 0.813, respectively, in the calibration phase
fulfilled the minimum requirement. Whereby, ILR–ANFIS (0.696) failed and ILR–GPR
(0.861) succeeded in the validation step. The weak performance of the paradigms can
be attributed to the low correlation between the pre-operative variables and RVHF as
the corresponding output variable, as shown in Table 2a. In general, for both the single
and hybrid paradigms used in the direct modelling of RVHF based on the pre-operative
variables, only the ILR–GPR hybrid technique was able to capture the highly non-linear
and chaotic nature of the dataset.

Table 3. Performance of the direct modelling scenario approach.

Calibration

Models DC PC MSE RMSE

GPR 0.419 0.647 0.002 0.050
GRNN 0.485 0.697 0.002 0.047
ANFIS 0.416 0.645 0.003 0.050

ILR 0.275 0.525 0.003 0.056
ILR–GPR 0.862 0.928 0.001 0.029

ILR–GRNN 0.777 0.882 0.003 0.041
ILR–ANFIS 0.813 0.902 0.001 0.039

Validation

GPR 0.201 0.449 0.058 0.241
GRNN 0.106 0.325 0.065 0.255
ANFIS 0.160 0.400 0.061 0.247

ILR 0.335 0.578 0.048 0.220
ILR–GPR 0.861 0.928 0.001 0.024

ILR–GRNN 0.559 0.748 0.002 0.044
ILR–ANFIS 0.696 0.834 0.001 0.036
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Hence, the performance of the results obtained in the current study is in line with
studies reported by Konstantinos et al. [35] regarding the current and future state of the
AI-enhanced electrocardiogram in detecting heart disease for patients in at-risk popu-
lation densities. Their technique has made it possible for the electrocardiogram to be
interpreted quickly.

Moreover, Muni et al. used AI techniques to present the importance of passive and
semi-sensors and unique approaches analysing heart failure [36]. More studies related with
the implementation of ML and AI on cardiovascular diseases require elucidation.

The performance of both the single and hybrid techniques can be comparatively
visualised using various graphical illustrations. For instance, the MSE- and RMSE-values
are used to indicate the error performance of each model. The error performance of both
the single and hybrid techniques developed using the direct modelling approach can be
graphically compared in both the calibration and validation steps using column and bar
charts (see Figure 3).
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the single and hybrid paradigms.

Moreover, the fitness of the direct modelling can be compared based on performances
against the clinical RVHF values, which can be visualised using a time series plot (see
Figure 4).

Furthermore, Table 4 indicates the performance of inverse modelling for the prediction
of RVHF in both the calibration and validation steps. Based on the quantitative performance
of the single and hybrid techniques, it can be seen that all four single models, GPR, GRNN,
ANFIS, and ILR, failed to predict RVHF as the dependent variable. Whereas, for the hybrid-
based inverse modelling, ILR–GPR and ILR–ANFIS were able to predict the behaviour and
properties of the complex RVHF dataset. Moreover, comparative analysis of all the inverse-
based techniques indicated that ILR–ANFIS outperformed all six other techniques in both
the training and validation stages. Furthermore, based on the DC-metrics performance
of the ILR–ANFIS technique, its ability in improving the performance prediction of the
single paradigms increased up to 81% and 51% in the calibration and validation stages,
respectively. Hence, the comparative performance of the techniques can be graphically
compared, based on the performance-error in terms of RMSE and MSE (see Figure 5).

Moreover, the metrics PC and DC indicate the performance fitness between the pre-
dicted and experimental values. Therefore, the response plot information of the time series
can be used to compare the performance of the hybrid techniques for the simulation of
RVHF (see Figure 6).
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Table 4. Performance of the inverse modelling scenario approach.

Calibration

DC PC MSE RMSE

GPR 0.103 0.321 0.065 0.255
GRNN 0.673 0.820 0.024 0.154
ANFIS 0.063 0.251 0.068 0.261

ILR 0.179 0.423 0.060 0.244
ILR–GPR 0.898 0.947 0.007 0.086

ILR–GRNN 0.709 0.842 0.021 0.146
ILR–ANFIS 0.906 0.952 0.007 0.082

Validation

GPR 0.419 0.647 0.002 0.050
GRNN 0.673 0.820 0.001 0.037
ANFIS 0.537 0.733 0.002 0.045

ILR 0.472 0.687 0.002 0.048
ILR–GPR 0.802 0.896 0.001 0.029

ILR–GRNN 0.437 0.661 0.002 0.049
ILR–ANFIS 0.929 0.964 0.000 0.017

Hence, the novelty of the current work can be shown in different ways: (1) This is
the first study that reports the combined application of GPR, GRNN, and ANFIS AI-based
techniques for the clinical prediction of RVHF using pre-operative variables. (2) It is,
equally, the first study that employs the application of the ILR regression method for the
clinical modelling of RVHF; in fact, this is the first study that reports the implementation of
this model in any clinical/health-related study. Ultimately, to the best knowledge of the
authors, based on the recent technical literature as well as a scan of the literature, as shown
in Figure 1, this is the first study that reports the feasibility of applying direct and inverse
modelling for clinical prediction in health- and medical-related studies. Moreover, the
quantitative performance of the hybrid technique based on the Nash–Sutcliffe coefficient
(NC) metric depicts its superiority over the single paradigms by up to 58.7%/75.5% and
80.3%/51% for the calibration/validation phases in the direct and inverse modelling
approaches, respectively. However, one of the major limitations of the current study is
the employment of a two-step technique: the single and hybrid approaches; whereby, the
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single approach was unable to capture the RVHF datasets owing to its complexity and
chaotic nature.
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5. Conclusions

Medical informatics deals with improving the management of clinical knowledge,
patient data, population data, and information related to patient care. This emerging
technique is regarded as a promising tool that helps policy and decision makers in making
critical decisions related to patients’ care. Therefore, the current study explores the appli-
cation of both direct and inverse modelling using AI-based techniques and hybrid-based
paradigms for the prediction of RVHF; whereby, the hybrid techniques depict a higher
performance compared with the single paradigms. Hence, the results of the current research
recommend the application of various metaheuristic and computational approaches for im-
proving the prediction ability of RVHF using various pre-operative variables. Furthermore,
future work on different ways of identifying the complex behaviour of the data through
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the non-linear feature extraction technique, feature scaling, the normalisation of data, and
standardisation are equally recommended.
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