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Abstract: A person infected with drug-resistant tuberculosis (DR-TB) is the one who does not respond
to typical TB treatment. DR-TB necessitates a longer treatment period and a more difficult treatment
protocol. In addition, it can spread and infect individuals in the same manner as regular TB, despite
the fact that early detection of DR-TB could reduce the cost and length of TB treatment. This
study provided a fast and effective classification scheme for the four subtypes of TB: Drug-sensitive
tuberculosis (DS-TB), drug-resistant tuberculosis (DR-TB), multidrug-resistant tuberculosis (MDR-
TB), and extensively drug-resistant tuberculosis (XDR-TB). The drug response classification system
(DRCS) has been developed as a classification tool for DR-TB subtypes. As a classification method,
ensemble deep learning (EDL) with two types of image preprocessing methods, four convolutional
neural network (CNN) architectures, and three decision fusion methods have been created. Later,
the model developed by EDL will be included in the dialog-based object query system (DBOQS), in
order to enable the use of DRCS as the classification tool for DR-TB in assisting medical professionals
with diagnosing DR-TB. EDL yields an improvement of 1.17–43.43% over the existing methods for
classifying DR-TB, while compared with classic deep learning, it generates 31.25% more accuracy.
DRCS was able to increase accuracy to 95.8% and user trust to 95.1%, and after the trial period, 99.70%
of users were interested in continuing the utilization of the system as a supportive diagnostic tool.

Keywords: deep learning; AMIS; chest X-ray; drug-resistant; tuberculosis

1. Introduction

Tuberculosis (TB) is a deadly contagious disease that claims the lives of millions of
people annually around the world. The World Health Organization (WHO) reports that, by
2020, it will have become the leading infectious agent-related cause of mortality [1]. The
bacterium Mycobacterium tuberculosis that causes TB can be resistant to the antimicrobial
medications that are used to treat it. Tuberculosis that does not respond to at least one
first-line anti-TB drug is referred to as drug-resistant TB (DR-TB). Multidrug-resistant TB
(MDR-TB) and extensively drug-resistant TB (XDR-TB) are two serious subtypes of DR-TB.
Mignani et al. [2] proposed the suggested drug for each form of drug-resistant tuberculosis,
which is a separate therapy regimen according to the patient’s drug-resistance status.

Both drug susceptibility testing (DST) results and the occurrence of serious adverse
events are necessary for the development of a treatment strategy for tuberculosis (TB).
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Options for anti-TB treatment include first-line drugs, second-line drugs, and newer, more
effective drugs (Figure 1).
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The treatment for tuberculosis typically consists in a medicine regimen to be taken daily 
for 6 months under close medical care. In crowded settings, such as prisons and hospitals, 
drug resistance is more likely to spread as a result of the improper or incorrect use of 
antimicrobial drugs, or the use of ineffective formulations of drugs (such as the use of 
single drugs, mediocre quality medicines, or bad storage conditions), and the premature 
interruption of treatment. Drug resistance can be diagnosed using specialized laboratory 
tests that examine the susceptibility of the bacteria to the medications, or that find patterns 
of resistance. These examinations may be molecular (such as Xpert MTB/RIF). Due to a 
lack of fully equipped laboratories, drug-resistance testing in a certain area can take a 
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The World Health Organization (WHO) recommends a 6-month-course of 2HRZ(E)/4HR
for a patient with DS-TB as a standard treatment. If the patient’s clinical and radiographic
status do not improve after 2 months of treatment with four drugs, DR-TB will be consid-
ered [4]. Multidrug-resistant tuberculosis (MDR-TB) is diagnosed when a patient is resistant
to at least rifampin and isoniazid, the two most powerful first-line anti-TB drugs, and re-
quires therapy with some second-line and new generation anti-TB treatments. Extensively
drug-resistant tuberculosis (XDR-TB) is diagnosed when a patient does not react to the most
effective second-line treatments, such as fluoroquinolones or injectable aminoglycosides,
and requires multiple second-line and new generation anti-TB drugs [2].

The mismanagement of TB treatment and the dissemination of the disease from
patient to patient are the main causes of the emergence and spread of drug-resistant TB.
The treatment for tuberculosis typically consists in a medicine regimen to be taken daily
for 6 months under close medical care. In crowded settings, such as prisons and hospitals,
drug resistance is more likely to spread as a result of the improper or incorrect use of
antimicrobial drugs, or the use of ineffective formulations of drugs (such as the use of
single drugs, mediocre quality medicines, or bad storage conditions), and the premature
interruption of treatment. Drug resistance can be diagnosed using specialized laboratory
tests that examine the susceptibility of the bacteria to the medications, or that find patterns
of resistance. These examinations may be molecular (such as Xpert MTB/RIF). Due to
a lack of fully equipped laboratories, drug-resistance testing in a certain area can take a
considerable amount of time; therefore, approaches that are both quick and cost-effective
should be developed and used in this region. The gold standard for evaluating drug
resistance is called drug susceptibility testing (DST). Beyond screening or triaging TB, a
chest X-ray (CXR) is also used to recognize drug-resistant TB (DR-TB) due to the fact that
CXRs are more convenient as a rapid, non-invasive, and cost-effective tool for TB diagnosis
and therapy evaluation [5–8].

Machine learning (ML) and deep learning (DL) have become increasingly popular
in recent years to categorize the response to anti-tuberculosis drugs due to their effective-
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ness and low-cost. Parkinson’s, breast cancer, and chronic kidney disease are only a few
examples of diseases where ML and DL have been used to accurately forecast or estimate
outcomes. Automated DL-based methods that rely on CXRs for tuberculosis (TB) diagnosis
have been shown to be highly effective [9,10]. Karki et al. [11] used radiological parameters
and clinical patient data in conjunction with chest X-ray images to categorize tuberculosis
as drug-resistant (DR) or drug-sensitive (DS).

Machine learning was ultimately used by Tulo et al. [12] to categorize four distinct
types of drug-resistant TB. This includes DS-TB, DR-TB, MDR, and XDR, which some refer
to forms of tuberculosis that have developed resistance to at least some of the available
treatments. A binary classification approach was used to categorize these four types of
medication responses. The computational results show that there is room for improvement
in the accuracy of the binary classification between DR-MDR, MDR-XDR, and DR-XDR,
which lie between 82% and 93%. When diagnosing the TB medication response in the real
world, there should be a single system that can classify all four types of drug reactions
using a single CXR picture input, since it would be more convenient for clinicians to utilize.

Multi-class classification is a classification challenge in deep learning and machine
learning that involves more than two classes or results. Images from the TB dataset require
multi-class classification since there are at least four distinct treatment responses that must
be recognized by the model. It is more challenging to predict the outcome for multi-class
classification than for binary class classification since multiple outcomes must be gathered
from the same dataset. Bayesian classifiers that employ Bayes’ theorem [13], the decision
tree model [14,15], and the ensemble deep learning models [11] are all examples of methods
that could be improved upon to create a more effective classification process.

After carefully reviewing the aforementioned literature, we have developed our study
to target the following areas that have been overlooked to date:

1. The classification should be performed as four classes, which are DS, DR, MDR, and
XDR, in order to suggest the correct recommended treatment program to the treaters.

2. The designed model has not yet been used as the suggestion system, such as mobile
application or chatbot, in order to use the design model in real medical treatments.

3. The lowest accuracy is still 82%, which is not significantly high and can result in a
lack of trust from doctors.

Inspired by these unmet needs, we propose the design of a comprehensive classifi-
cation system for drug resistance that distinguishes between DS, DR, MDR, and XDR. To
achieve this, the system will be developed using the following techniques: (1) Create an
effective multi-class classification model, and (2) create an application utilizing the model
created in (1). The remaining sections are organized as follows. Section 2 will review the
related work, Section 3 will describe the materials and methods used in this study, and
Sections 4 and 5 will present the computational results and discussion. The investigation’s
conclusions will be reported in Section 6.

2. Related Work

The theory and related literature will be divided into two major sections: (1) The
effective classification methods, and (2) the dialog-based object query system (DBOQS)
development system.

2.1. The Effective Classification Methods
2.1.1. Chest X-ray and Deep Learning

Karki et al. [11] and the World Health Organization [16] proposed a method for
classifying DS-TB and DR-TB using a system of deep learning. The CNN architecture
ResNet18 was utilized in this research. Radionics [17] has been utilized to identify patterns
that radiologists may have overlooked when examining anomalies in medical images.
Multi-task learning [18] was employed to standardize the core model and to guide the
network’s focus on the seemingly relevant portions of the image. To prepare the CXR image
for processing, the Original CXR is provided to U-Net, which generates a binary lung mask.
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The Original CXR is then cropped, and the lungs are segmented inside the bounding box
that has been diminished. Tulo et al. [12] used machine learning (ML) to examine the lungs
and mediastinum, in order to classify the TB patients’ drug response. Despite the use of
binary categorization [19] in this study, other kinds of drug-resistant tuberculosis, including
DS, MDR, and XDR, are predicted. Several machine learning algorithms, including multi-
layer perceptron [20,21], K-nearest neighbor [22,23], and support vector machine [23,24]
were used to identify the solution.

Successful deployments of deep learning architectures have been carried out in many
fields, from image/video classification to healthcare [25]. Due in large part to the automatic
parsing of radiology reports to generate labels, the CXR research community has profited
in recent years from the publication of multiple large, labeled databases, satisfying the
insatiable need for data that are inherent to deep learning. In 2017, the NIH clinical center
began this pattern by releasing 112,000 photos [26]. Additional articles later demonstrated
that deep learning is superior to other forms of AI in CXR analysis [27–29].

2.1.2. Ensemble Deep Learning Model

Ensemble deep learning is a deep learning architecture that uses multiple architectures
to address a problem within a single model. Combining the predictions of numerous models
has proven to be an excellent way to improve the performances of models. Ensemble
learning or ensemble model refers to the process of mixing many predictions from various
models, in order to arrive at a final solution. The solution quality of deep learning is
contingent on many mechanisms, such as data preparation techniques, deep learning
architectures, and fusion techniques.

Image Preprocessing Method

The chest X-ray images used in this research came from seven different countries:
Belarus, Georgia, Romania, Azerbaijan, India, Moldova, Ukraine, Kazakhstan, and South
Africa. Diverse X-ray machines produce vastly different results in terms of image quality.
The initial dimensions of the amassed images varied in the number of pixels. The image
analysis workflow highly depends on the pre-processing phase. Through this, it is possible
to improve the original image while simultaneously decreasing the amount of noise or
distracting elements. Easy image preprocessing methods can dramatically increase the
qualities of the classification results of ML and DL. Karki et al. [11] employed image
segmentation to restrict the input pictures for the binary DR/DS classifier to only include
regions that are significant for the categorization of pulmonary tuberculosis, i.e., the lungs.
In addition, potential confounding elements are eliminated and the lungs are resized in
order that they occupy the same percentage of the image. Lung size and patient placement,
for example, are commonly connected with clinical settings and could serve as confounding
variables. After the segmentation is completed, the results reveal that their proposed model
benefits greatly from including these techniques.

Caseneuve et al. [30] introduced two methods that are referred to as the threshold
approach and edge detection to identify CXR images with two clearly discernible lung
lobes. These two methods were founded on the concepts of Otsu’s threshold [31] and the
Sobel/Scharr operator [32,33]. Sobel examines the presence of the upper/lower image
boundaries or left/right image boundaries in the horizontal and vertical gradient calcula-
tions. Specifically, the Sobel operator will indicate if visual changes are rapid or gradual.
The Scharr operator represents a modification where the mean squared angular error is
measured as an extra optimization and an introduction of greater sensitivity. This enables
the kernels to be of a derivative type, which approximates Gaussian filters more closely.

Before feeding the images into the CNN model, Ahamed et al. [34] and Wang et al. [35]
applied the cropping and sharpening filters of image processing techniques to the obtained
datasets to enhance the quality of the images, to extract the primary portion of the lung
image, i.e., to remove undesirable, irrelevant portions of the photos. The images were
trimmed with the correct height-to-width ratio in mind. All of the acquired photos were
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then filtered with a sharpening filter for enhancement. Conceptually, this filter is derived
from Laplacian filters, and is an example of a second-order or second-derivative system of
enhancement that accentuates regions of fast intensity variation [36,37].

One of the most popular preprocessing techniques that are used to improve the
image quality is contrast enhancement. Many contrast enhancement techniques have
been introduced to improve the contrast of an image, such as the histogram equalization
(HE)-based methods. The classical HE can efficiently utilize displayed intensities, but it
tends to over-enhance the contrast if there are high peaks in the histogram, which often
results in a harsh and noisy appearance of the output image. Numerous methods have
been proposed for limiting the level of enhancement, most of which are obtained through
modifications on HE [35,38].

In Arici et al. [39], the authors present a histogram modification framework (HMF)
that treats contrast improvement as a minimization of a cost function. To deal with noise
and black/white stretching, penalty terms are applied during optimization. Manually
adjusting the parameters of HMF allows for varying the degrees of contrast improvement.
An automatic image enhancement method based on gamma correction has recently been
developed [40]: Contrast enhancement using adaptive gamma correction with weighting
distribution (AGCWD).

If there are high peaks in the input histogram, the AGCWD may be overly simplistic
and lead to image blurring in the bright areas. When applied to the entire input image, these
global methods are effective, but they overlook the local details. Approaches based on local
histogram equalization (LHE) are presented as a means of resolving these shortcomings.
The contrast limited adaptive histogram equalization (CLAHE) method proposed by Pizer
et al. [41], is a classic LHE-based image enhancement method that first divides the image
into a large number of continuous and non-overlapping sub-blocks, then enhances each
sub-block independently, and finally employs an interpolation operation to reduce the
block artifacts.

While extreme contrast is possible with the LHE, the final image may be too bright.
Furthermore, LHE-based approaches typically necessitate a greater computational effort
than GHE-based approaches. Another issue with LHE-based approaches is the dramatic
increase in background noise [41–44]. The second class of contrast enhancement methods
conducts image decomposition before performing enhancement, in order to reduce artifacts
and increase subjective quality. Lee et al. [45] suggested that a gradient domain tone
mapping technique can be used. Artifacts may be introduced in non-integrable gradient
fields when obtaining the improved image by solving a Poisson equation on the altered
gradient field. Edge-aware image processing using the Laplacian pyramid (LPM) was
presented by Paris et al. [46].

CNN Architectures

In addition to the data de-noising and augmentation approaches that may be uti-
lized to improve the classification quality of DL, the convolution neural network (CNN)
architecture is one of the most essential characteristics that can considerably increase the
classification solution quality. In recent years, numerous CNN architectures have been
proposed to improve picture classification performance. CCNet [47], VGG16, VGG19 [48],
ResNet50 [49], ResNet101 [50], DenseNet121 [51], MobileNetV2 [28], EfficientNetB1 [52],
NASNetMobile [53], and EfficientNetB6 [54] are examples of effective CNN state-of-the-art
designs.

Although these types of structures have not yet been applied to the classification of
drug-resistant organisms, they have been utilized in a variety of applications. ResNet101
successfully solved the detection of gravelly soil uniformity, and it was superior to all other
architectures [55]. MobileNetV2 is a small, low-latency, low-power model parameterized to
satisfy the resource restrictions of a range of use cases. For instance, Zhang et al. [56] success-
fully employed MobileNetV2 to determine the fish school feeding behavior. NASNetMobile
was proposed by Maharjan [57] to detect COVID-19 infection in posteroanterior chest X-
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rays, whereas Chaganti [58] and Hoorali [59] used EfficientNetB1 and EfficientNetB6 to
classify malware and segment medical images, respectively. Although the abovementioned
designs have not yet been used to solve DR-TB and its associated types of DR, it has been
demonstrated in numerous publications that they are effective solutions. In this article, a
modified version of MobileNetV2, NASNetMobile, EfficientNetB7, and DenseNet121 will
be utilized to determine the TB’s drug response.

Decision Fusion Strategies

The effective fusion methodologies utilized to merge the results of several CNN
architectures will be employed to improve the solution quality of the TB classification.
Decision fusion techniques are the processes that occur when ensemble learning trains
many base learners and aggregates their outputs using specified rules. Effective ensemble
performance is determined by the rule used to aggregate the outputs. The majority of
ensemble models concentrate on the ensemble architecture, and then use naive averaging
to forecast the ensemble output. However, the naive averaging of the models, which
is followed by the majority of ensemble models, is not data-adaptive, and results in a
sub-optimal performance [24] since it is susceptible to the performances of biased learners.

As there are billions of hyper-parameters in the architecture of deep learning, the issue
of overfitting may result in the failures of some base learners. Consequently, techniques,
such as the Bayes optimum classifier and super learner, have been adopted to address these
problems [24]. In the literature, the many methods for merging the outputs of ensemble
models are as follows: (1) Unweighted model averaging, (2) majority voting, (3) Bayes
optimum classifier, (4) stacked generalization, (5) super learner, (6) consensus, and (7)
query-by-committee. The unweighted model average weight of all CNNs employed has
the same weight, while majority voting uses the decisions of all CNNs to count and select
the outcome that the majority of CNNs decide to forecast. Meanwhile, the remaining
technique attempts to identify the optimal weight used to make the model’s decision.

Recently, Gonwirat and Surinta [60] published the differential evolution (DE) ap-
proach for automatically optimizing the weighted parameter discovery. The DE algorithm
is applied to the weighted parameters, and the optimal weight is then assigned to the
ensemble method and stacked ensemble technique. The outcome reveals that the optimal
weight finding technique utilizing DE provides a superior answer to the unweighted model
averaging and majority voting. Pitakaso et al. [61] proposed the novel heuristics artificial
multiple intelligence system (AMIS) to deal with the network flow problem, and the results
suggested that AMIS outperformed DE in locating the superior solution. In this study, we
will employ AMIS-ensemble deep learning (AMIS-EDL) to discover the appropriate weight
to use as the decision fusion approach rather than the conventional approach.

2.2. DBOQS in Healthcare

Powered by artificial intelligence (AI), DBOQSs are gaining popularity in a variety
of businesses, and have substantial application potential in real-world scenarios. How-
ever, medical DBOQSs have received little attention, with the majority of published evi-
dence focusing on technology challenges and with limited application research. Moreover,
healthcare service providers are interested in adopting new technologies to improve their
services [62], and are beginning to adopt medical DBOQSs for answering/asking ques-
tions, creating health records and histories of use, providing information about diseases,
discussing the results of clinical tests, and even taking appropriate actions based on users’
responses [63,64]. Typically, the DBOQS has been utilized to communicate with patients,
in order to maintain the doctor–patient relationship, such as with cancer [65], mental
health [66,67], and COVID-19 patients [68]. It has been demonstrated that the use of DBO-
QSs decreases the workload of medical personnel and increases patient satisfaction in
healthcare [69].

The DBOQS controller was designed to manage mobile communication between the
three CNNs and the users. To detect the health of various crops, including pomegranate
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trees and firecracker plants, Jain et al. [70] utilized a CNN with a customized architecture
hosted on a cloud service and a mobile application for Android smartphones. Picon
et al. [71] and Esgario et al. [72] found three wheat illnesses and four coffee leaf diseases
and pests, respectively, using a mobile application and a CNN with a modified RetNet-50
architecture hosted on a cloud service. Therefore, the mobile DBOQS is applicable to a
variety of real-world issues. Temniranrat et al. [73] were able to detect five common rice
diseases using a CNN with YOLOv3 architecture hosted on a cloud service and LINE, an
instant messaging application that is maintained by its development team [74]. A DBOQS
was placed on an instant messaging application (LINE) to access CNNs hosted on a cloud
service; therefore, the system offered automatic responses and was always accessible.

From the vast amount of literature, we can conclude that it is possible to use DBOQSs
in the field of healthcare image processing, particularly in TB medication response classifi-
cation, where they only receive an image as input and then report the result using a deep
learning model embedded in DBOQS. Using an online DBOQS to inquire about the CXR
owner’s chance of developing DR can alleviate the doctors’ workload. Furthermore, this
study will provide the recommended treatment plan for the selected patients.

3. Materials and Methods

This study seeks to improve the precision of the deep learning technique used to
classify tuberculosis patients’ medication responses. The drug reaction will be divided
into four classes, namely DS, DR, MDR, and XDR. After obtaining an effective algorithm
to classify them, the DBOQS will be utilized to converse with the doctor, in order to
recommend the situation of the patients and the treatment plan for those patients. The
therapy schedule recommended by the WHO is indicated in Figure 1. Consequently, the
study approach, depicted in Figure 2, will be implemented. 

 
Figure 2. The development of drug response classification system (DRCS) (DBOQS). 

3.1. The Revealed Dataset and Compared Methods 
In this experiment, the same dataset was utilized by Karki et al. [11]. The data 
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Figure 2. The development of drug response classification system (DRCS) (DBOQS).

The method used to develop the DRCS consists in three steps: (1) Collecting the
dataset of the CXRs, as well as the efficacies of previous methods from various literatures;
(2) developing the AMIS-EDL algorithm to build the model to classify the drug response;
and (3) developing the DRCS using DBOQS. The following is a detailed explanation of
each step.

3.1. The Revealed Dataset and Compared Methods

In this experiment, the same dataset was utilized by Karki et al. [11]. The data collection
contains 5019 CXR images associated with tuberculosis, of which 3412 are from DR-TB
and 1607 are from DS-TB. It is accessible for download at https://tbportals.niaid.nih.gov
(accessed on 2 August 2022) [75]. The vast bulk of TB portal data were obtained to identify

https://tbportals.niaid.nih.gov
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DR-TB patients from a diverse sample of TB cases. To evaluate the performance, the dataset
was partitioned for training and testing at 80% (n = 4015) and 20% (n = 1015), respectively.
Table 1 displays the number of DS-TB, DR-TB, MDR-TB, and XDR-TB data used for training
and testing.

Table 1. Number of data of each category.

DS-TB DR-TB MDR-TB XDR-TB

Train set 1299 375 1653 688
Test set 308 93 434 169

Total 1607 468 2087 857

Table 1 indicates that the total numbers of DS-TB, DR-TB, MDR-TB, and XDR-TB
have 1607, 468, 2087, and 857 datasets, respectively; or 32.02%, 9.32%, 41.58%, and 17.08%,
respectively. These data will be used to train and test for the accuracy of the proposed
methods, compared with the methodology proposed by Ureta and Shrestha [76], Tulo
et al. [77], Jaeger et al. [24], Kovalev et al. [78], Tulo et al. [12], and Karki et al. [11]. The
details of the compared method are presented in Table 2.

Table 2. Details of the compared method in the existing research.

Research Classes Features Region in CXR AUC Accuracy
F-Measure Accuracy

Ureta and
Shrestha [76] DS vs. DR CNN Whole 67.0 - -

Tulo et al. [77] DS vs. DR Shape Mediastinum + Lungs 93.6%

Jaeger et al. [24] DS vs. MDR Texture, Shape,
and Edge Lung 66% 61% 62%

Kovalev et al.
[78] DS vs. DR Texture and

Shape Lung - - 61.7

Tulo et al. [12] DS vs. MDR Shape Mediastinum + Lungs 87.3 82.4 82.5
Tulo et al. [12] MDR vs. XDR Shape Mediastinum + Lungs 86.6 81.0 81.0
Tulo et al. [12] DS vs. XDR Shape Mediastinum + Lungs 93.5 87.0 87.0

Karki et al. [11] DS vs. DR CNN Lung excluded 79.0 - 72.0
Proposed
method DR vs. DS Ensemble CNN Whole - - -

Proposed
method DS vs. MDR Ensemble CNN Whole - - -

Proposed
method DS vs. XDR Ensemble CNN Whole - - -

Proposed
method

DR vs. MDR vs.
XDR Ensemble CNN Whole - - -

The key performance indicators (KPIs) to evaluate the suggested methods in com-
parison to other methods include area under the curve (AUC), F-measure, and accuracy.
For binary classification issues, an evaluation metric is the receiver operator characteristic
(ROC) curve. The area under the curve (AUC), which serves as a summary of the ROC
curve, is a measurement of a classifier’s capacity to distinguish between classes. The
harmonic mean of recall and precision is used to calculate the F-measure, giving each
the same weight. It enables the evaluation of a model, taking into consideration both
precision and recall using a single score, which is useful for explaining the performance of
the model and when comparing models. The model’s performance across all classes is often
described using its accuracy metric. When every class is equally important, it is useful. It
is determined by dividing the total number of guesses by the number of predictions that
were correct.



Diagnostics 2022, 12, 2980 9 of 30

3.2. The Development of Effective Methods

In this study, three methodologies will be utilized to increase the efficacy of the
classification of the TB drug response. The data preparation techniques, modern CNN ar-
chitectures, and decision fusion techniques are these methodologies. Each can be described
in greater detail, as follows.

3.2.1. The Data Preprocessing Method

Data preprocessing involves transforming or encoding data in order that they may
be easily parsed by a machine. For a model to make accurate and exact predictions, its
algorithm must be able to easily interpret the data’s characteristics. Due to their varied
origins, the bulk of real-world datasets for machine learning are very prone to be missing,
inconsistent, and noisy. The application of data preparation algorithms to these noisy data
would not yield excellent results, since the algorithms would be unable to find patterns
adequately. Two types of image preprocessing algorithms will be adapted for usage with
CXRs, in order to improve the classification accuracy of the proposed model. These two
methods are data augmentation and data normalization.

Data Augmentation

By creating synthetic datasets, data augmentation aims to increase the quantity and
variety of the training data. The augmented data can be considered to have been derived
from a distribution that closely resembles the actual distribution. Then, the expanded
dataset can represent features that are more thorough. Image data augmentation techniques
can be applied to a variety of data types, including object identification [79], semantic
segmentation [80], and picture classification [81].

Image manipulation, image erasure, and image mixing are the fundamental image
augmentation techniques. In this research, only image manipulation will be used. Image
transformations, such as rotation, mirroring, and cropping, are the focus of fundamental
image transformations. The majority of these methods modify images directly, and are
simple to implement. Nevertheless, there are downsides. First, it only makes sense to
apply fundamental image modifications if the existing data follow a distribution that
is near the actual data. Second, some basic image manipulation techniques, such as
translation and rotation, suffer from the padding effect. Specifically, following the operation,
some sections of the images will be shifted outside the boundary and lost. Consequently,
various interpolation methods will be used to fill in the missing data. Typically, the region
outside of the image’s border is presumed to be a constant of 0, and will be dark following
alteration. Figure 3 depicts an example of image enhancement employing several types of
enhancement, as described earlier.
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Image Normalizing Algorithm

Four steps of normalizing the CXR input data have been used. These four steps are
shown in Figure 4.
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In Figure 4, the Original CXRs will be processed with adaptive masking (AM), Gaus-
sian blur (GB), CLAHE, and MVSR. AM is the method depicted in Heidari et al. [82]. It can
execute the procedure by removing the sample’s diaphragm. AM begins by determining
the maximum (max) and minimum (min) pixel intensities, followed by the use of threshold
techniques for binary thresholding and morphologic closure. This generates the adaptive
mask that eliminates the aperture from the source image after a bitwise operation. Gaussian
blur (GB) is a filter that operates by calculating a pixel’s value. The filter is based on the
normal distribution, which has the form of a bell curve. The concept is that pixels closest to
the center pixel carry a greater weight than those further away.

The CLAHE algorithm comprises three main components: Tile generation, histogram
equalization, and bilinear interpolation. First, the input image is segmented into pieces.
Each unit is referred to as a tile. The input image depicted in the illustration is separated
into four tiles. Then, each tile is subjected to histogram equalization using a clip limit that
has been specified. Histogram equalization involves five steps: Histogram computation,
excess calculation, excess distribution, excess redistribution, and scaling and mapping
with a cumulative distribution function (CDF). For each tile, a collection of bins is used to
compute the histogram. Histogram bin values exceeding the clip limit are gathered and
dispersed over other bins. Then, the CDF for the histogram values is calculated. Using the
supplied image pixel values, each tile’s CDF values are scaled and mapped. The generated
tiles are stitched together using bilinear interpolation to produce an image with enhanced
contrast.

Mean-variance-Softmax-rescale normalization (MVSR normalization) is based on
four mathematical operations: The mean of the data, variance, Softmax, and rescaling.
According to the probability theory of R. Duncan Luce, sometimes known as Luce’s choice
axiom, the probability of one sample being within the same dataset depends on another
sample. Typically, the Softmax function is employed in the final activation function of
multi-class. In general, the standard deviation (the square root of the variance) is used
to create a link between data points and to quantify the spread or distribution of a data
collection relative to its mean [83], using artificial neural network (ANN) models to build
an output class probability distribution [84]. After calculating the normalized intensity
of the input, the dataset may include both negative and positive fractional values. The
Softmax function was utilized to maintain the impact of negative data and nonlinearity.
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To normalize the raw input data into a higher quality of image for use as the input
data, in order to increase the performance of the TB classification, image normalization
is a crucial component of the image analysis schema. It can improve the original image
by minimizing noise or unnecessary elements. In our research, we aligned the training
and testing photos by enhancing low-contrast, high-noise input images using four distinct
normalization techniques to increase contrast and sharpness. Figure 5 is an example of
when the proposed preprocessing methods are applied.
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3.2.2. CNN Architectures

In this research, we will use four compact CNN architectures in an effort to limit the
amount of time spent on model construction. As a result, we will use four compact CNN
architectures that are nonetheless rather powerful.

MobileNetV2

Sandler et al. [28] introduced MobileNetV2, which uses depthwise separable convolu-
tional (DwConv) layers and the inverted residuals of the bottleneck block to reduce the
weighted parameters of a lightweight network. Depthwise separable convolution is used
as a foundational building block in MobileNetV2. However, it adds linear bottlenecks
between the layers and shortcut links between the bottlenecks to the design. Figure 6
depicts the structure of the MobileNetV2’s system.

The bottlenecks encode the model’s intermediate inputs and outputs, while the inner
layer embodies the model’s capacity to change from lower-level ideas, such as pixels
to higher-level descriptors, such as image categorizations. Finally, as in the case with
conventional residual connections, shortcuts allow for faster training and greater precision.
MobileNetV2 models are faster over the whole latency spectrum with the same precision.
Specifically, the new models use two-fold operations, require 30% fewer parameters, and
are around 30% to 40% faster on a Google Pixel phone than MobileNetV1 models, all while
attaining more accuracy [28].
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EfficientNetB7

EfficientNet was created by Tan and Le [52] to search the hyper-parameters of CNN ar-
chitectures, such as width scaling, depth scaling, resolution scaling, and compound scaling.
In addition, squeeze-and-excitation (SE) optimization was added to the bottleneck block
of EfficientNet, in order to generate an informative channel feature with GAP summation.
Then, correlation features are identified by lowering the dimensions to small sizes and
changing them back to their original size. EfficientNetB1 was developed based on Mo-
bileNetV2; however, its resolutions, channels, and repetition rates vary. EfficientNetB1 is
comparable to MobileNetV2, which replaced Conv1 with 512 feature maps and eliminated
the fourth bottleneck block. Figure 7 depicts the architecture of the EfficientNetB1 overall
architecture, which may be separated into seven blocks. Each block of MBConv’s associated
filter size is displayed.
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DenseNet121

In a conventional feed-forward convolutional neural network (CNN), each convolu-
tional layer, with the exception of the first, obtains the output of the previous convolutional
layer and generates an output feature map that is then transferred to the next convolutional
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layer. Therefore, for “L” layers, there are “L” direct connections, one between each layer and
the following one. However, when the number of layers in the CNN increases, i.e., as they
become deeper, the “vanishing gradient” issue develops. This implies that as the channel
for information from the input to output layers becomes longer, certain information may
“disappear” or become lost; therefore, reducing the network’s capacity to train successfully.
DenseNets solve this issue by changing the traditional CNN design and streamlining the
interlayer connectivity structure; therefore, the moniker “densely connected convolutional
network”. L(L + 1)/2 direct connections exist between “L” levels. In each layer, the feature
maps of all preceding layers are not added together, but rather, they are concatenated
and used as inputs. As a result, DenseNets require fewer parameters than a comparable
standard CNN, which enables feature reuse as redundant feature mappings are removed.

When the sizes of feature maps vary, it is not possible to use the concatenation method.
Nevertheless, a crucial component of CNNs is the down sampling of layers, which mini-
mizes the size of feature maps via dimensionality reduction, in order to increase compu-
tation speeds. To achieve this, DenseNets are subdivided into DenseBlocks, where the
dimensions of the feature maps remain constant inside a block, but the number of filters
between blocks varies. Transition layers are the layers between the blocks that lower the
number of channels by half. For each layer, the above equation is solved.

An example of a deep DenseNet with three dense blocks is displayed in Figure 8;
within the dense block, the feature maps are all the same size, in order that the features
can be concatenated, while the transition layers between neighboring blocks conduct
down sampling via convolution and pooling procedures. DenseNet121 comprises 7 × 7

convolutions and 3 × 3 max pooling. It has b1× 1
3× 3

c × 24 dense blocks (3) and b1× 1
3× 3

c × 16

dense blocks, (4) while for other dense blocks, it has the same as DenseNet169, DenseNet201,
and DenseNet264.
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NASNetMobile

The Google brain team created the neural architecture search network (NASNet),
which has two key functions: Normal cell and reduction cell. In order to achieve a higher
map, NASNet initially applies its operations to the small dataset before transferring its
block to the large dataset. For optimal regularization, the speed of NASNet is increased
via a customized drop path known as the scheduled drop path. In the original NASNet
architecture, where the number of cells is not predetermined, normal and reduction cells
are used [85], with the normal cells determining the feature map size and the reduction
in the cells returning the feature map with its height and width decreased by a factor of
two. A recurrent neural network (RNN)-based control architecture in NASNet predicts the
entire network topology using two initial hidden states. The controller architecture uses an
RNN-based LSTM model with Softmax prediction for convolutional cell prediction and re-
cursively produced network motifs. NASNetMobile accepts images with a resolution of 224
by 224 pixels, whereas NASNetLarge accepts images with a resolution of 331 by 331 pixels.
NASNetMobile leverages the pre-trained ImageNet network weights for transfer learning,
in order to recognize the objects. Figure 9 shows the architecture of NASNetMobile.
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All the architectures that are previously explained will be used in both heterogeneous
and homogeneous manners in the ensemble deep learning, as shown in Figure 10.
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3.2.3. Decision Fusion Strategy

The decision fusion strategy (DFS) combines the classification decisions of many clas-
sifiers into a single conclusion about the event. When it is challenging to combine all of the
CNN’s results, several classifiers are frequently employed with multi-modal CNN. Several
viable DFSs for application in deep learning ensembles, including the unweighted model
average, majority voting, and various weight optimization techniques, were discussed
in [86]. The designed methodologies for this investigation will employ three approaches.
These methods are the unweighted model average and majority voting, as described in
Johnson et al. [87], together with our proposed DFS, which is the AMIS-DFS developed by
Pitakaso et al. [61].

Unweighted Model Average

The most prevalent method for fusing decisions in the literature is the unweighted
average of the outputs of the base learners in an ensemble. The final prediction of the
ensemble model is obtained by averaging the results of the base learners. Since deep
learning architectures have a high variance and a low bias, a simple averaging of the
ensemble models improves the generalization performance by reducing the variance among
the models. The averaging of the base learners is conducted directly on the outputs of the
base learners, or on the predicted probabilities of the classes using the Softmax function [88]
illustrated in Equation (1).

Pj
i = so f tmaxi(OI) =

o J
I

∑K
k=1 exp

(
o
∣∣K j

) (1)

where Pj
i is the probability of the i-th unit on the j-th base learner, o J

I is the output of the ith
unit of the j-th base learner, and K is the number of classes.

Majority Voting

Similar to unweighted averaging, majority voting aggregates the base learners’ out-
puts. In contrast, majority voting counts the votes of the base learners and predicts the
final labels as the label that received the majority of votes. In contrast to unweighted
averaging, majority voting is less skewed towards the outcome of a certain learner, since
the influence is offset by a majority vote count. However, if the majority of similar or
dependent base learners favors a certain event, that event will predominate in the ensemble
model. In majority voting, Kuncheva et al. [89] found that pairwise dependence among the
base learners plays a significant influence, whereas for the categorization of images, the
prediction of shallow networks is more diversified than those of deeper networks [90].

Optimization of Weight Using AMIS-DFS

The principle underlying AMIS is to use a system with many artificial intelligences
to aid in discovering optimal solutions. “Intelligence box or IB” refers to a collection of
computing methods or algorithms with unique properties. AMIS is a heuristic based
on population. A population member is known as a work package (WP). Each WP will
independently enhance its solution using the chosen IB. AMIS will generate a baseline set
of work packages (WP), WP will select IB to improve its own solution in each iteration,
update its heuristics’ information, and repeat this cycle until the termination condition is
met. The AMIS can be elaborated upon as follows.
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Initial Work Package Generation

At random, initial work packages (WP) will be generated. In this phase, the NP
number of WPs is displayed. The number of CNN defines dimension D of the WP. The first
set of WP is illustrated in Table 3. Let Xijt stand for the first set of WPi (i = 1 in this case),
element j iteration t.

Table 3. Initial WP when D = 10 and i = 5.

NP\D 1 2 3 4 5 6 7 8 9 10

1 0.64 0.82 0.61 0.93 0.40 0.99 0.70 0.68 0.36 0.08
2 0.58 0.28 0.99 0.79 0.26 0.60 0.09 0.20 0.09 0.85
3 0.48 0.90 0.04 0.95 0.85 0.29 0.09 0.08 0.93 0.49
4 0.34 0.69 0.91 0.12 0.33 0.97 0.20 0.73 0.14 0.61
5 0.88 0.25 0.28 0.32 0.51 0.75 0.06 0.73 0.10 0.93

At iteration t, the weight that will be used to classify the drug response for a CXR can
be determined using Equation (2). Figure 11 depicts the framework for calculating the total
weight using the value of element j of WPi at iteration t.
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Let YAVG be the average value of the prior classification value for a specific i and t.
YAVG can be determined with Equation (2).

YAVG = ∑J
j=1 WjYj (2)

When Wj equals Xijt as determined via the AMIS procedure, i is the number of WP, j
is the number of CNN or the number of WP elements, and t is the iteration counter.

Performing the WP Execution Process

In this phase, the WP will select the improvement box (IB) to enhance the quality of
the current solution, executing the WP improvement process repeatedly without relying
on past results. During each iteration, the WP is accountable for selecting the IB that will
increase the quality of its solution. In this study, the following intelligence boxes are utilized.
Equations (3) through (10) are used to perform the various IBs. When it is time to execute
all WPs in iteration t, each WP will choose its preferred intelligence box (IB) using Equation
(3). Equation (3) is based on the idea that the quality of earlier solutions to WPs influences
the desirability of choosing the IB.

Zijt = ρXrjt + F1
(

Bgbest
j − Xrjt

)
+ F2

(
Xmjt − Xrjt

)
(3)

Zijt = Xrjt + F1
(

Bgbest
j − Xrjt

)
+ F2

(
Bpbest

hj − Xrjt

)
(4)

Zijt = Xrjt + F1
(
Xmjt − Xnjt

)
(5)
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Zijt = Xrjt + Rij
(
Xrjt − Xnjt

)
(6)

Yijt = Rij (7)

Zijt =

{
Xijt i f Rij ≤ CR
Rijt otherwise

(8)

Zijt =

{
Xijt i f Rij ≤ CR
Xnjt otherwise

(9)

YZjt =

{
Xijt i f Rij ≤ CR
RijXijt otherwise

(10)

Xijt+1 is the value of WP i element j in iteration t + 1, whereas r, m, and n are members

of the set of WP (1 to I) that are not equal to i. Bgbest
j is the global best WP, which has the

best solution compared to all other created WPs. Rij is a random number of WP i element j.
F1 and F2 are the scaling factors, which are defined as 3 (as recommended by the result
of [61]), and CR is the crossover rate, which [61] suggests is equal to 0.8. Rijt is the randomly
produced WP of WP i element j in iteration t.

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1

∑B
b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1

(11)

For each iteration t, the probability to select IB b is denoted by Pbt. Assume that Nbt−1
is the number of WP picking IB b in the previous iterations; Abt−1 is the average objective
value of all WP picking IB b in the previous iterations, Ibt−1 is a reward value that increases
by 1 if IB b finds the optimal solution in the last iteration and an added value of 0; otherwise,
B is the total number of IB, F = 2 is the scaling factor, and K = 1 is the improvement factor.
Xijt+1 was updated using Equation (12).

Xijt+1 =

{
Zijti f f

(
Zijt

)
≤ f

(
Xijt

)
∧ update f

(
Xijt

)
= f

(
Zijt

)
Xijt+1 otherwise

(12)

Updating the Heuristics Information

Some heuristics data need to be updated before they can be used in subsequent
iterations. The new regulation is shown in Table 4.

Table 4. Updated role of heuristics information.

Variables Update Method

Nbt
Sum of work packages (WPs) that have selected IB b from iteration 1

through iteration t
Abt The average objective value selected by IBs

(
∑

Nbt
i=1 f
Nbt

)
Ibt

Ibt = Ibt−1 + G
When

G =

{
1 i f ∧ only i f black box b has the global best solution at iterationt

0 otherwise
Bgbest

j
Update current global best WP

Bpbest
hj

Update IB’s best WP

Rijt Pick a random positional value across all WPs

The work package must be carried out in full until the prerequisites for its completion
have been met.

Repeat the step from WP generation to heuristic information update until the prereq-
uisites for halting have been met using this step. In this case, the stopping criterion is the
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elapsed processing time or the maximum number of iterations. The AMIS pseudocode is
shown in Algorithm 1.

Algorithm 1: Artificial Multiple Intelligence System (AMIS)

input: Population size (NP), problem size (D), mutation rate (F), recombination rate (R), number
of intelligence box (NIB)
output: Best_Vector_Solution
begin

Population = Initialize set of WPs
IBPop = Initialize InformationIB (NIB)
encode Population to WP

while the stopping criterion is not met do
for i = 1: NP

//selected Intelligence box by RouletteWheelSelection
Selected_IB = RouletteWheelSelection (IBPop)

if (selected_IB = 1) then
new_u = using Equation (3)

else if (selected_IB = 2)
new_u = using Equation (4)

else if (selected_IB = 3)
new_u = using Equation (5)

else if (selected_IB = 4)
new_u = using Equation (6)

else if (selected_IB = 5)
new_u = using Equation (7)

else if (selected_IB = 6)
new_u = using Equation (8)

else if (selected_IB = 7)
new_u = using Equation (9)

else if (selected_IB = 8)
new_u = using Equation (10)

if (CostFunction(new_u)) ≤ (CostFunction (Vi)) then
Vi = new_u

//Loop for updating the intelligence box’s heuristics data
for j = 1: NIB

interpreting WP to discover the real problem
end For Loop-end update heuristics information

end for Loop
end

return Best_Vector_Solution
end

Figure 12 demonstrates that when data are obtained from their source, they will be
preprocessed using two types of preprocessing methods: (1) Image augmentation methods
and (2) data normalizing methods. Thereafter, four types of CNN architectures will be used
as the EDL tool. These are EfficientNetB7, DenseNet121, MobileNetV2, and NASNetMobile.
Finally, the model will employ three decision fusion strategies: (1) Unweighted model
averaging (UMA), (2) majority voting (MV), and AMIS-EDL. Therefore, 60 proposed models
will be generated, as shown in Table 5.
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Table 5. Conclusions of 36 proposed models for drug response classification of TB patients.

Model
Preprocessing CNN Architectures Decision Fusion Strategy

Data Aug-
mentation

Data Nor-
malizing EfficientNetB7 DenseNet121 NASNetMobile MobileNetV2 UMA MV AMIS-

EDL

N-1 X
N-2 X X
N-3 X X
N-4 X X
N-5 X X
N-6 X X
N-7 X X
N-8 X X
N-9 X X
N-10 X X
N-11 X X
N-12 X X
A-1 X X X
A-2 X X X
A-3 X X X
A-4 X X X
A-5 X X X
A-6 X X X
A-7 X X X
A-8 X X X
A-9 X X X
A-10 X X X
A-11 X X X
A-12 X X X
D-1 X X X
D-2 X X X
D-3 X X X
D-4 X X X
D-5 X X X
D-6 X X X
D-7 X X X
D-8 X X X
D-9 X X X
D-10 X X X
D-11 X X X
D-12 X X X
AD-1 X X X X
AD-2 X X X X
AD-3 X X X X
AD-4 X X X X
AD-5 X X X X
AD-6 X X X X
AD-7 X X X X
AD-8 X X X X
AD-9 X X X X

AD-10 X X X X
AD-11 X X X X
AD-12 X X X X
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Table 5. Cont.

Model
Preprocessing CNN Architectures Decision Fusion Strategy

Data Aug-
mentation

Data Nor-
malizing EfficientNetB7 DenseNet121 NASNetMobile MobileNetV2 UMA MV AMIS-

EDL

M-1 X X X X X
M-2 X X X X X
M-3 X X X X X
M-4 X X X X X X
M-5 X X X X X X
M-6 X X X X X X
M-7 X X X X X X
M-8 X X X X X X
M-9 X X X X X X

M-10 X X X X X X X
M-11 X X X X X X X
M-12 X X X X X X X

3.3. DBOQS Design

The DBOQS was developed to provide the medical team with an answer to the
question of whether or not the patient has the probability of receiving the DR. Figure 13
depicts the framework of the DBOQS that we designed for this project.
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From Figure 13, when a doctor (user) wants to use the DBOQS to inquire about the
drug response of the TB patients, the doctor must enable the LINE Application on their
mobile phone to scan the QR code to add DBOQS as a friend for the first time. Then, the
doctors can register and use the DBOQS, which has a basic menu for the doctor to use. Once
the doctor has selected an item from the menu (Message input), the LINE Application will
send a message request to the LINE platform that provides the DBOQS service for checking
the message event received from the LINE Application. Once completed, they will send a
message reply to the LINE platform, and the LINE platform will send the message back
to the LINE Application for the doctor to read the message. For the administrator who
developed the model, the model obtained from Section 3.2 will be the model that will be
used in the DBOQS. Moreover, information with regard to the treatment program will be
inputted as the information given to the user.

The DBOQS or the LINE Messaging API was collaboratively applied with CNN
through the Flask API for assisting with the diagnosis of DR-TB. Once DBOQS receives
an X-ray image that is sent by the user, the DBOQS will transmit the image to the DBOQS
server’s webhook, and then the image is sent to the deep learning model. The deep
learning models will predict the disease in the submitted image. Drug recommendations for
predictable diseases are then extracted, and predictable disease outcomes and explanations
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are sent in text via the LINE Messaging API and LINE platform. This system can work for
24 h per day in real-time.

4. Computational Results

In this section, the computational results will be divided into two main parts, which
are: (1) The test to reveal the effectiveness of the proposed methods, and (2) the result of
developing DBOQS for the drug response classification.

4.1. Revealing the Effectiveness of the Proposed Models

This section will be divided into two sub-sections, which are: (1) Comparing the
efficiency among all proposed models, in order to have multi-class classification and (2)
comparing the classification of the proposed model with an existing method that has binary
classification. All comparisons will use the same dataset, as explained in Section 3.1.

4.1.1. Comparing the Effectiveness of the Proposed Models

All 60 methods will be evaluated in multi-class classification quality using the classifi-
cation of four classes, and the results of all 60 methods are shown in Table 6.

Table 6. Multi-Class Classification Result.

Methods AUC F-Measure Accuracy Methods AUC F-Measure Accuracy

N-1 76.1 71.5 73.2 D-7 80.7 75.5 77.0
N-2 75.9 72.1 74.7 D-8 78.5 73.5 75.6
N-3 76.9 73.1 75.4 D-9 83.4 78.2 80.4
N-4 76.4 70.5 71.4 D-10 79.5 75.2 76.4
N-5 74.9 71.6 72.2 D-11 79.5 76.5 78.4
N-6 77.4 73.8 75.6 D-12 81.1 75.5 77.5
N-7 72.5 69.4 70.8 AD-1 85.4 80.7 83.2
N-8 74.8 70.4 71.2 AD-2 85.6 82.3 84.6
N-9 76.5 71.4 74.2 AD-3 86.9 83.5 85.2
N-10 77.9 73.5 75.2 AD-4 84.6 82.5 83.4
N-11 77.3 72.5 75.3 AD-5 83.8 80.3 81.3
N-12 76.3 73.1 74.2 AD-6 83.0 81.0 82.1
A-1 78.7 75.7 77.6 AD-7 83.4 81.8 82.1
A-2 80.2 77.6 78.3 AD-8 83.2 81.0 82.4
A-3 80.6 78.1 79.0 AD-9 84.5 80.7 81.4
A-4 77.5 71.3 74.4 AD-10 84.1 81.6 82.4
A-5 76.3 71.9 73.2 AD-11 84.5 82.2 82.3
A-6 76.8 73.5 75.2 AD-12 86.7 87.5 82.3
A-7 76.4 72.5 74.0 M-1 84.5 82.3 83.5
A-8 77.8 73.5 74.5 M-2 84.5 81.2 82.8
A-9 78.3 75.0 76.7 M-3 84.8 83.2 84.6

A-10 78.4 74.9 75.3 M-4 85.3 82.3 83.6
A-11 79.3 75.5 76.1 M-5 86.5 83.5 84.5
A-12 78.9 75.0 76.6 M-6 84.9 82.7 83.6
D-1 82.4 77.7 78.8 M-7 86.5 84.1 85.4
D-2 80.2 77.9 79.0 M-8 86.4 81.6 82.4
D-3 84.4 81.2 82.0 M-9 87.1 85.2 86.6
D-4 80.1 77.8 79.7 M-10 88.4 85.8 86.1
D-5 81.4 78.7 79.4 M-11 88.5 85.5 86.2
D-6 82.5 79.4 80.6 M-12 88.9 85.6 87.6

All experiments are conducted, and the results presented in Table 6 are summarized in Table 7.
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Table 7. Percentage average accuracy value of using different strategies of the data presented in
Table 6.

Preprocessing Techniques CNN Architectures Decision Fusion Strategies

No
Prepro-
cessing

Data
Augmen-

tation
Data Nor-
malizing

Use
All EfficientNetB7 DenseNet121 NASNetMobile MobileNetV2 Use

All UMA MV AMIS-
EDL

74.96 80.5 81.7 82.7 80.6 79.2 78.7 79.4 84.8 78.7 78.7 80.1

From the results obtained in Table 6, we can see that M-12 obtained the best results
of all key performance measurements. The confusion matrices of the classification are
shown in Figure 14. The confusion matrices reveal that when employing a multi-class
classification model to categorize DS-TB, the majority of incorrect results fall into the MDR-
TB class, whereas the other two classes have the same percentage of incorrect results. There
is no major difference between the remaining classification ambiguity. Using the binary
classification approach, DS-TB has the highest proportion of incorrect predictions when
compared pairwise with other classes. However, the classification of MDR-TB and XDR-TB
is the most perplexing, with 15.43% of incorrect classifications.
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Figure 14. Confusion matrices of the classification result shown in Table 4.

From Table 7, using no preprocessing technique yields a worse solution than using all
the preprocessing techniques (10.05%). Using all the CNN architectures in the ensemble
yields a result that is 6.42% better than using the same CNN architecture in the ensemble.
Finally, using AMIS-EDL yields a result that is 1.17% better than using UMA and MV
as the decision fusion strategy. Utilizing all data augmentation approaches and data
normalization in conjunction with all CNN architectures (heterogeneous) and AMIS-EDL
as the decision fusion mechanism will be our plan for the next experiment.

4.1.2. Comparing the Effectiveness of the Proposed Model with Existing Methods

In this experiment, we perform a comparison of the best method found in Section 4.1
with the existing heuristics. The comparison will be performed as the binary classification,
and the result is shown in Tables 8–11.
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Table 8. The accuracy of the proposed methods with the existing heuristics to classify DR-TB and
DS-TB.

Methods Classes Features Region in CXR Accuracy

AUC F-Measure Accuracy

Ureta and Shrestha [76] DS vs. DR CNN Whole 67.0 - -
Tulo et al. [77] DS vs. DR Shape Mediastinum + Lungs - 93.6 -

Kovalev et al. [78] DS vs. DR Texture and Shape Lung - - 61.7
Karki et al. [11] DS vs. DR CNN Lung excluded 79.0 - 72.0

Proposed method DS vs. DR Ensemble CNN Whole 97.9 93.8 94.8

Table 9. The accuracy of the proposed methods with the existing heuristics to classify DS-TB and
MDR.

Methods Classes Features Region in CXR Accuracy

AUC F-Measure Accuracy

Jaeger et al. [24] DS vs. MDR Texture,
Shape, and Edge Lung 66 61 62

Tulo et al. [12] DS vs. MDR Shape Mediastinum + Lungs 87.3 82.4 82.5
Proposed method DS vs. MDR Ensemble CNN Whole 89.5 88.0 88.5

Table 10. The accuracy of the proposed methods with the existing heuristics to classify DS-TB and
XDR.

Classes Features Region in CXR Accuracy

AUC F-Measure Accuracy

Tulo et al. [12] DS vs. XDR Shape Mediastinum + Lungs 93.5 87.0 87.0
Proposed method DS vs. XDR Ensemble CNN Whole 95.1 88.7 89.1

Table 11. The accuracy of the proposed methods with the existing heuristics to classify MDR and
XDR.

Classes Features Region in CXR Accuracy

AUC F-Measure Accuracy

Tulo et al. [12] MDR vs. XDR Shape Mediastinum + Lungs 86.6 81.0 81.0
Proposed method MDR vs. XDR Ensemble CNN Whole 88.7 82.5 84.9

Comparing the classification of DS-TB and DR-TB based on the results in Table 8,
the AUCs of the proposed model are 43.13% and 21.39% better than those of Ureta and
Shrestha [75], and of Karki et al. [11]. Using F-measure as the criterion, the proposed
model is 1.09% better than the model of Tulo et al. [76]. When classifying between DS-TB
and DR-TB, we can conclude that the suggested method is 30.01% more accurate than
the alternative methods. Comparing the classification results of DR-TB and MDR-TB
between the proposed approaches of Jaeger et al. [24] and Tulo et al. [12], utilizing all KPIs,
the proposed method provides a superior answer by 2.52–46.27% (using the information
provided in Table 9). The classification results of DR-TB and XDR-TB utilizing the data
presented in Table 10 demonstrated that the proposed approach is 1.71–5.52% superior
to the method of Tulo et al. [12]. Finally, Table 11 reveals that the proposed approaches
produce solutions that are 2.43% to 6.67% more accurate than the method of Tulo et al.
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4.2. The DBOQS Result

DBOQS has been developed using the concept explained in Section 3.3, and the model
developed in Section 4.1, which is model AD-10, will be used as the model for DBOQS. The
treatment program suggested is the WHO recommendation program, as we mentioned in
Section 1. An example of the Q and A results of DBOQS is shown in Figure 15.
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We perform the experiment in DBOQS, and input the CXR 443 images (randomly
selected from the test and train dataset) to identify its accuracy and other performance
measures; the results are shown in Table 12.

Table 12. The DBOQS accuracy results.

Number of
Input

Images

Number of
Correct Clas-

sification

%Correct
Classifica-

tion

Number of
Wrong Clas-

sification

%Wrong
Classifica-

tion

DS 104 94 90.38 10 9.62
DR 121 109 90.08 12 9.92

MDR 115 105 91.30 10 8.70
XDR 103 94 91.26 9 8.74
Total 443 402 90.74 41 9.26

The results in Table 12 indicate that the proper categorization rate is 90.74%, which
is not significantly different from the results in Section 4.1. DS, DR, MDR, and XDR had
respective accurate answers of 90.38%, 90.08%, 91.30%, and 91.26%. It is demonstrated that
each class has a classification accuracy of at least 90%, a level that is sufficient for clinicians
to place their trust in the classifications.

In the next experiment, we let 30 doctors try our DBOQS and evaluate them via a
questionnaire; the results of the questionnaire are presented in Table 13. The scores from
the doctors were averaged. A score equal to 1 indicated that the doctors did not agree with
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the question; when the score was 10, this indicated that the doctor strongly agreed with the
question.

Table 13. Questionnaire result from 30 doctors who were trying to use DRCS.

Questionnaire on Images Level of Agreement
(Strong Agreement Level Is 10)

DBOQS has fast responses. 9.51
DBOQS can classify the drug response correctly. 9.58

DBOQS may simplify the drug response diagnosis
process. 9.97

DBOQS can reduce your workload. 9.86
You will use the DBOQS to aid in your drug response

diagnosis. 9.74

What score will you assign the DBOQS with regard to
your trust level? 9.51

What score will you assign the DBOQS with regard to
your preferences? 9.97

Table 13 shows that users rated the DBOQS 9.51 out of 10 for its response time,
suggesting that they found it to be extremely helpful. With a mean score of 9.58, people
agreed that the DBOQS provides the correct answer when asked about drug resistance.
With a score of 9.97 and 9.86, respectively, they believed that the DRCS would make it
simpler to diagnose the drug reaction and lessen their burden. After the testing phase of
the study, participants rated their trust in and willingness to utilize the DRCS as high as
9.51 and 9.97, respectively.

5. Discussion

The developed approach in this study is one of the first to classify TB patients into
four distinct groups based on their responses to the treatment. DS-TB, DR-TB, MDR, and
XDR are the subtypes that are currently known. Since there are many possible ways to
classify a patient’s reaction to a medicine, a multi-class classification model was used. Two
additional studies, Karki et al. [11] and Tulo et al. [12], also divide TB patients into four
groups, but they achieve this using a binary classification system (BC). Every time BC is
used, it will always provide a 0 or a 1 for the outcome, such as when comparing DS and
DR. Furthermore, our algorithms can be classified into four classes simultaneously, making
this classification model more user-friendly. Once we know the type of TB, we can more
quickly plan the patient’s treatment schedule.

Additionally, the AMIS-EDL model was created to enhance the quality of the solutions
provided using pre-existing models. Computational results demonstrate that AMIS-EDL
outperforms the current approaches, including the ones proposed by Karki et al. [11] and
Tulo et al. [12]. This is due to the fact that the AMIS algorithm, as developed by Pitakaso
et al. [61], has been shown to be effective. For example, it can obtain better results than
the genetic algorithm and the differential evolution algorithm, two of the most popular
current heuristics. The suggested model outperforms the conventional DL method, which
relies on the unweighted model average (UMA) and majority voting (MV) by a profit of
31.25%. This follows the reasoning of Gonwirat and Surinta [91], who similarly concluded
that metaheuristics, such as AMIS, can enhance the quality of solutions obtained using DLs
employing the conventional UMA and MV.

The user has confidence in the DRCS’s ability to generate a credible result of 95.1%,
according to the computational result. As a result of the DBOQS’s role, the medical staff
usually do not give it a sufficient amount of chance for employment in medical care due
to low trust and the appearance of unreliability. Medical staff were overstretched due
to the increasing need for hospital care during the COVID-19 pandemic. The accuracy
and dependability of a DBOQS are key factors in increasing the likelihood that medical
professionals will choose to utilize it as an aid. This is why our system has a good chance
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of being adopted and utilized by medical experts to aid in the diagnosis and treatment
planning of tuberculosis.

As we know from the results, the DRCS has more than 90% accuracy, and it can
improve precision from traditional and existing methods by 1.17% to 43.43%. Therefore,
when the accuracy is high and the workload is high, it would be good for the medical staff
to use the DRCS for reducing their workload, and it would increase the service quality of
the medical staff, as well.

6. Conclusions and Outlook

This article develops effective methods for classifying DS-TB, DR-TB, MDR, and XDR
patients. Using ensemble deep learning, the desired outcome has been predicted. We se-
lected four small and effective CNN architectures for deep learning; namely, MobileNetV2,
EfficientNetB7, NASNetMobile, and DenseNet121. In addition, image augmentation and
a normalization technique were incorporated into the model to improve the quality of
the proposed methods. Finally, unweighted ensemble averaging, majority voting, and
AMIS-EDL were used to discover the optimal weight parameters for the ensemble deep
learning system. The proposed methods were compared to the performances of several
types of methods addressed in previous studies.

The computational findings demonstrate that, among the deep learning architectures
offered, EfficientNetB7 offers the most effective solution. It improves the solution by 1.76–
2.41% compared to the others. The best architecture for classifying the DR is the one that
combines all the architectures into a single model. The optimum architecture for classifying
DR utilizes all the CNN architectures inside a single classification model. Using multiple
CNN architectures can enhance the quality (accuracy) by 5.21–7.75%. The preprocessing
techniques increase the quality of the answer by an average of 10.41% when compared to
methods that do not use preprocessing. In comparison to other fusion methods, AMIS can
improve the solution quality by 1.17%.

In comparison to the method described by Karki et al. [11], the solution quality
can be enhanced by 31.25%. Compared to the other approaches proposed in a previous
study, the proposed method can provide solutions that are 2.87–7.15% better than Tulo
et al. [12], 48.58% better than Jaeger et al. [24], 53.16% better than Kovalev et al. [77], and
43.13% better than Ureta and Shrestha [75]. We can conclude, based on this result, that the
proposed method surpassed all of the other methods proposed in the literature in terms
of producing more exact classifications. The computational results demonstrate that the
DBOQS developed for use in the DRCS can predict drug responses with an accuracy of
more than 90% in every group of drug response, and the overall accuracy is 90.74%. Overall,
with a result of 9.51 points out of 10 points, the clinicians who used the developed system
had faith in it, and 99.7% of the doctors planned to keep using it as a secondary diagnostic
tool in the future.

It is necessary to further develop the DRCS in order that it can: (1) Classify the various
forms of drug resistance; (2) recommend a treatment regimen; (3) monitor the patient’s
progress after beginning the recommended regimen; and (4) collect data from the user in
order to analyze and recommend a subsequent treatment plan. Despite this, data mining
and two-way communication DBOQSs are vital for the DRCS to make informed decisions
and to provide meaningful advice to medical professionals when necessary.
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