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Abstract: Background: The occurrence and development of breast cancer has a strong correlation
with a person’s genetics. Therefore, it is important to analyze the genetic factors of breast cancer for
future development of potential targeted therapies from the genetic level. Methods: In this study, we
complete an analysis of the relevant protein—protein interaction network relating to breast cancer.
This includes three steps, which are breast cancer-relevant genes selection using mutual information
method, protein—protein interaction network reconstruction based on the STRING database, and
vital genes calculating by nodes centrality analysis. Results: The 230 breast cancer-relevant genes
were chosen in gene selection to reconstruct the protein—protein interaction network and some vital
genes were calculated by node centrality analyses. Node centrality analyses conducted with the top
10 and top 20 values of each metric found 19 and 39 statistically vital genes, respectively. In order to
prove the biological significance of these vital genes, we carried out the survival analysis and DNA
methylation analysis, inquired about the prognosis in other cancer tissues and the RNA expression
level in breast cancer. The results all proved the validity of the selected genes. Conclusions: These
genes could provide a valuable reference in clinical treatment among breast cancer patients.

Keywords: breast cancer; protein—protein interaction; mutual information; centrality analysis;
survival analysis

1. Introduction

Genes are DNA or RNA fragments that carry genetic information and that can syn-
thesize protein through a transcription—translation process or control the performance of
individual organisms by affecting the synthesis and biology of human beings [1,2]. The
incidence, development, prognosis, and drug resistance of common human diseases, such
as malignant tumors and neurodegenerative diseases, can be attributed to the abnormal
expression of genes [3,4]. For example, the activation of oncogenes could destroy the
stability of the genome and cause cancer, or the inactivation of tumor suppressor genes
could cause the genome to lose its role in inhibiting the growth of cancer cells [5]. Therefore,
accurate identification and regulation of abnormal gene expression levels are one of the
keys methods of treating diseases. In recent years, with the continuous emergence of
clinical application of targeted therapies for different tumors, the treatment of malignant
tumors had been greatly improved. Targeted therapeutic drugs play a very important
role in precision medical treatment by regulating the expression levels of target genes for
disease treatment [6,7].
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Globally, breast cancer causes the highest number of malignant tumors in females,
which seriously affects patients’ survival time and quality of life [8,9]. In the field of breast
cancer treatment, Herceptin, a drug targeting the HER-2 protein, has achieved notable
efficacy in prolonging the survival time of patients in patients with recurrent metastasis
and receiving neoadjuvant therapy. However, the discovery of both driver genes and
targeted genes often depends on the experimental experience of researchers and on the
screening of genes and the running of biological experiments to verify the authenticity
of their hypothesis [10]. This process leads to the low success rate of screening genes. In
addition to being time-consuming, laborious, and resource-intensive, the biggest problem of
this process is that it also leads to failure in the identification of key genes. The expressions
of different genes are not isolated. One gene’s expression can influence the expression
of other genes, whereas it is also influenced by other genes’ expressions in turn [11,12].
The interaction and mutual restriction constitute a protein—protein interaction network
containing tens of thousands or even tens of millions of genes, and this complexity is far
beyond brain’s reasoning ability [13]. By analyzing this network on a graph theory level,
we can identify the key genes of gene-gene interactions, the network of upstream and
downstream gene interactions, and the multi-gene common signaling pathways, providing
valuable information on disease pathogenesis and treatment strategies.

In the area of breast cancer early detection, Computer-Aided Diagnosis [14,15], Ma-
chine Learning [16,17], and Deep Learning [18,19] have all achieved promising progress
and results. However, the development of breast cancer is usually related to genetic factors,
so it is necessary to conduct in-depth research on the genetic domain. The first step of
breast cancer-related gene network analysis is gene selection, which selects the relevant
genes relating to breast cancer. Presently, 90 driver genes in breast cancer have been identi-
fied [20,21]; this set of genes can be considered as the original gene set. After this set, some
other relevant genes should also be selected, and the protein—protein interaction network
should be established based on these two relevant genes sets. The present gene selection
method is usually based on clustering or machine learning, which selects a certain category
of data from the gene database. However, there is not a commonly accepted standard or
evaluation criteria in the relevant gene selection process for clustering or machine learning
based on the methods mentioned above. With this problem in mind, this paper proposed
a breast cancer-relevant gene selection method based on mutual information. Then, we
analyzed the protein—protein interaction network, counted the genes with high centrality in
the network as a vital gene set, and explored and validated the functions of the genes in this
gene set using bioinformatics analysis. The contributions of this paper can be summarized
as follows:

*  The mutual information method is used for the gene selection step, which selects
breast cancer-relevant genes from the whole genome. Using this method, we selected
230 genes as the relevant genes for breast cancer.

*  The protein—protein interaction network is built and analyzed based on the selected
genes from the mutual information method. By analyzing the node centrality of the
protein—protein interaction network, we obtained the important genes with important
positions and connectivity in the network.

*  Based on the vital genes, through survival analysis, DNA methylation analysis, and
RNA expression level in breast cancer and the prognosis in other cancers, we found
some genes that reduce the survival rate of breast cancer patients due to different
expression levels and confirmed their biological significance.

2. Methods
2.1. The General Framework

The methods to accomplish relevant breast cancer genes network analysis should
include three steps: gene selection, protein—protein interaction network modeling, and
network analysis. We used the breast cancer gene expression data from the TCGA database,
which includes 678 breast cancer patient samples and 23,760 genes. Firstly, we preprocessed
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the gene expression data, deleted the genes whose invalid values exceeded 50%, and
replaced the missing values with the average value. Then, gene selection was performed
based on the preprocessed gene expression data set. In the gene selection step, we chose
the mutual information method and proposed a more simplified computation. For this
step, we selected 230 genes, including the 90 genes which have been identified as a driver
genes in breast cancer [20,21], as the relevant genes for breast cancer. Then, based on
these 230 genes, the protein—protein interaction network was established based on the
information obtained from the STRING database. After that, we analyzed the protein—
protein interaction network with a centrality analysis of the nodes. The degree centrality
(DC) [22], closeness centrality (CC) [23], betweenness centrality (BC) [24], and eigenvector
centrality (EC) [25] were calculated. Based on these results, 19 and 39 genes that had the
top 10 and top 20 values in the 4 metrics, respectively, were chosen as the vital genes.
Finally, the survival analysis of these 19 genes and 39 genes showed that some differentially
expressed genes affecting the prognosis of breast cancer. The process of the method is
shown in Figure 1.
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Figure 1. The process of the method. The three steps of the process are breast cancer gene selection,
protein—protein interaction network modeling, and network analysis.

Mutual Information Method

The mutual information method is a useful information measurement method in
information theory [26]. Mutual information is usually used to measure the reliability
between two variables, X and Y; therefore, the correlation between two genes can be found
in gene expression data. In gene expression data, a gene is represented by variable X, and
the sample value of the same gene under different conditions can be represented as the
value of variable X.

For a discrete variable X, the entropy H(X) is the average information amount from
all messages received. It can be represented as:

H(X) = — ) p(x)logp(x) 1)

xeX

where p(x) is the marginal possibility distribution function of vector X.
The joint entropy of X and Y can be represented as:

H(X,Y) = — XE Yr’(x,y)lc)gp(x,y) )
xeX,ye

MI can measure the reliability between two variables. Normally, the mutual informa-
tion of two discrete random variables X and Y can be represented in the form of entropy:

I(X,Y) = H(X) + H(Y) — H(X,Y) ®)
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A higher value of mutual information indicates a closer correlation between two
variables, while a lower value of mutual information indicates the anti-correlation between
the two variables.

Here, the entropy is estimated with Gaussian kernel probability density estimator as
follows [27]:

N
P(X;)) =y L

Flw cexp(—3(X; — X)TCH(X; - X;)) (4)

(2r

where C is the covariance matrix of variable X, |C| is the determinant of matrix C, N is the
number of samples, and 7 is the number of variables (genes) in C.

According to Equations (1) and (4), the entropy of variable X can be represented as
follows:

H(X) = log[(2ne)"/?/C[?) = | 1og (27e)"|C 6)
According to Equation (5), Equation (3) can be transformed as:
_ L X CY)]
I(X,Y) = 2log Y] 6)

Here, the computation of mutual information between two variables is simplified by
the computation of the covariance, therefore resulting in an efficient formula for computing
mutual information between two variables.

Compared to selecting genes, if we calculate each pair of genes in the whole genome
based on the mutual information method, it will lead to a very large number of calculations.
This would be a waste of time and meaningless, and more importantly, there is no selection
standard. Therefore, we chose the 90 discovered driver genes in breast cancer [20,21] as
the original gene sets, then selected a certain number of genes from the breast cancer gene
expression data as the overall relevant genes for breast cancer. These data were then used
to conduct protein—protein interaction network analysis. The steps of gene selection based
on the mutual information method in Algorithm 1 are as follows.

Algorithm 1 Gene selection based on Mutual Information.
Input: Gene expression data X € {X;}i_; Y € {Y; }?:1
Output: MI values and the according Genes (I}, Y;)
1 forj=1tondo
fori =1tomdo
calculate |C(X;)],

2

3 C(Xi, Y]) ;
4 calculate I(X;, Y;) using Equation (6);
5 if I(X;, Y;) is the max do

6

7

8

9

]
save I(X;, Y;) to I;;
end if
save several (I;, Yj) according to the maximum values of I};

return

The gene expression data are divided into two matrices, X and Y. Matrix X contains
the gene expression data of the 90 driver genes of breast cancer, while matrix Y contains the
rest of the gene expression data. The outcome is listed as a number of records from matrix
Y, which has the highest correlation values (this indicates that they have the highest mutual
information value) with any of the expressions from matrix X. Then, we read one line of
data from matrix Y and compute the mutual information value with each line recorded in
matrix X (lines 1-4). Afterwards, we save the data with the highest mutual information
value in [; (lines 5-7). After completing all mutual information computation in matrix Y,
we send the highest I; records and their corresponding Y; to (I;, Y;) and display the final
results (lines 8-9).
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2.2. Node Centrality

In the network analysis, centrality is an index to judge and quantify the importance
of nodes [28]. Thus, we chose four aspects, namely, degree centrality (DC) [22], closeness
centrality (CC) [23], betweenness centrality (BC) [24], and eigenvector centrality (EC) [25],
to evaluate the nodes in our gene regulatory networks. The nodes in the networks represent
the 340 selected genes.

DC is a simple measurement that counts how many neighbors a node has and describes
the direct influence of the nodes in the networks. It can be defined as follows:

ki
N-1

DC; = )

Closeness is based on the length of the average shortest path between a vertex and all
vertices in the networks. CC describes how easy it is for a node to reach other nodes in the
networks. The CC of nodes can be represented by the equation below:

CC; = 7NN ®)
Z]':l dij

where d;; is the distance between node i and node j.

BC counts the fraction of shortest paths going through a given node. It describes the
control ability of a node through which node pairs transmit information along the shortest
path in the networks. More precisely, the BC of a node i can be described as follows:

i
BC= Y ©)
stitt 8st

where 7, is the number of shortest paths from node s to node f going through node i, and
gst is the total number of shortest paths from s to ¢.

The importance of a node depends on both the number and importance of its neighbors.
EC is used to describe this property:

1 N
Xi = — Zai]-xj (10)
A i=1

where a;; = 1 if vertices i and j are connected by an edge and 4;; = 0 if they are not; A is the
largest eigenvalue of }a;;.

3. Results

In the gene selection step, the mutual information values calculated by the other
remaining genes and driver genes are shown in Figure 2a. The scatter points in the figure
are the calculated mutual information values of each genes, and the red lines are the fitting
curves of these values. The derivative of the fitting function is obtained according to the
trend of the calculated results, and « = —0.0005 is taken as the threshold value in the
obtained results in Figure 2b. Through the set threshold, 140 genes with high mutual
information value, that is, strong correlation with a driver gene, were selected.
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Figure 2. The results of gene selection step. (a) Mutual information values. The calculated values of
all other remaining genes and driver genes, which, in function y, is the fitting curve equation, and R?
is the coefficient of determination, meaning the higher the fitting degree, the closer to 1. (b) Threshold.
All values are derived based on the obtained fitting curve function y in (a) and sorted according to
the resulting values.

Based on the selected breast cancer-related gene set in the gene selection step, the
interactions of 230 genes were queried in the STRING database, and the protein—protein
interaction network of these genes was reconstructed. The reconstruction results are shown
in Figure 3.

The corresponding degree centrality, closeness centrality, betweenness centrality, and
eigenvector centrality values of the 230 genes are shown in Figure 4. For convenience, the
genes were numbered from 1 to 230. There are several genes with a high value, and the
remaining ones are generally lower in Figure 4. Thus, the higher-value genes with higher
metrics are more valuable and important to analyze in the protein—protein interaction
network.

Based on the results of Figure 4, we summarized the top 10 genes with the highest
value among the 230 genes. First, the genes were sorted by the value from largest to
smallest. Then, the top 10 genes with the largest values were selected and shown in Table 1.
There are 19 genes in Table 1, including 10 driver genes and 9 selected genes.

Table 1. Top 10 genes in four metrics of node centrality.

Metrics Top 10 Genes

Degree Centrality TP53, CCNA2, CDK1, CCNB1, BUB1, TOP2A, BRCA1, BUBI1B,
KIF11, NCAPG

Closeness Centrality TP53, BRCA1, CCNA2, MYC, CCND1, CDK1, AKT1, CCNB1,
CDKN2A, TOP2A

Betweenness Centrality TP53, BRCA1, CCNA2, CDK1, CREBBP, SMAD4, AKT1, CCND1,
ESR1, CCNB1

Eigenvector Centrality CCNAZ2, CDK1, BUB1, CCNB1, TOP2A, KIF11, BUB1B, NCAPG,
KIF20A, CENPE

In addition, a total of 39 of the top 20 genes with the highest value among the 230 genes
are also summarized and shown in Table 2, including 19 driver genes and 20 selected genes.
These calculated 19 and 39 genes are called the top 10 and top 20 vital genes.
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Table 2. Top 20 genes in four metrics of node centrality.
Metrics Top 20 Genes
Degree Centrality TP53, CCNA2 CDK1, CCNB1, BUB1, TOP2A, BRCA1, BUB1B,

KIF11, NCAPG, CCNB2, KIF23, CENPE, KIF20A, KIF4A, ASPM,
TPX2, DLGAP5, CCND1, KIF15

Closeness Centrality TP53, BRCA1, CCNA2, MYC, CCND1, CDK1, AKT1, CCNB1,
CDKN2A, TOP2A, BUB1, ATM, ESR1, CREBBP, PTEN, EGFR,
RAD51, BUB1B, MDM2, ERBB2

Betweenness Centrality TP53, BRCA1, CCNA2, CDK1, REBBP, SMAD4, AKT1, CCND1,
ESR1, CCNB1, MYC, PTEN, STAG2, CNOT3, TOP2A, PIK3CA,
HRAS, ATM, BUB1, KIF23

Eigenvector Centrality CCNA2, CDK1, BUB1, CCNB1, TOP2A, KIF11, BUB1B, NCAPG,
KIF20A, CENPE, KIF4A, ASPM, CCNB2, TPX2, MELK, DLGAPS,
KIF23, KIF15, CEP55, NUSAP1

PUM1 BicCt

RAB40C TTC37 suT2

PIK3C2A

PIK3C3

CENPO

—NoTcHE— FOXP!
OXATy

il

EBF1
PROM1 \\

- RONX1T1
- \__/

SMADS

| .r‘-

TMEM259

Figure 3. The protein—protein interaction network of breast cancer-relevant genes. Node represents
gene, and edge represents the interaction between two genes.
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Figure 4. Node centrality analysis of 230 genes. The abscissa is a gene, which is represented by a number,
and the ordinate is the result value of a gene calculated by the corresponding node centrality metric.
(a) Degree centrality; (b) Closeness centrality; (c) Betweenness centrality; (d) Eigenvector centrality.

The 3650-day (10-year) survival analysis statistics of these 19 vital genes of the top 10
were carried out, and five genes have a log rank p < 0.05, which are CDK1, CCNB1, BUB1,
BUB1B, and KIF20A. The survival curves of these genes are shown in Figure 5.

The 3650-day (10-year) survival analysis statistics of the 39 vital genes of the top 20
were carried out, and 12 genes with a log rank p < 0.05 were obtained, including CDK1,
CCNB1, BUBI, BUB1B, KIF23, CCNB2, KIF20A, KIF4A, MELK, RAD51, HRAS, and CEP55.
Because the genes in top 20 genes must contain that the top 10 genes, so that the 5 genes
with significant differences in survival rate among the top 10 genes must also be included in
the 12 genes in this experiment. Therefore, we only list the survival curves of the remaining
7 genes in the top 20, and the survival curves of these 7 genes are shown in Figure 6.

The DNA methylation analysis [29,30] also concluded that 11 of the top 10 genes in
Table 1, which are CCNA2, CCNB1, TP53, BRCA1, TOP2A, CCND1, AKT1, CREBBP, SMAD4,
ESR1, and CENPE, had a higher level of DNA methylation in breast cancer. The detailed
CpGs in Figure 7 show that the following genese displayed higher expression levels in breast
cancer: ¢g07263562 of CCNA2; cg13849825, cg13647309, cgl17668562 of CCNB1; cg10792831,
cg16397722 of TP53; cg07054526, cg16029534 of BRCA1; cg22935319 of TOP2A; cg11234767,
cg15974867 of CCND1; cg02072813, cg06934468, cg10100767, cg01694276, cg20923444 of
AKTT1; cg16560077, cg01963870, cg27390443, cg27318635, cg03140190, cg05898629 of CREBBP;
cg00400189 of SMAD4; cg12209876, cg03732055, cg09414638 of ESR1; cg21346648, cg24651824,
€g27443373 of CENPE.

Based on the 39 genes which are the vital genes of the top 20 in Table 2, we searched
the RNA expression of these genes in breast cancer on the proteinatlas database [31-33].
All 39 genes were expressed in breast cancer (FPKM > 1). In addition, we also searched
for prognostic markers of these genes in other cancer tissues and found that 34 genes had
significant functions (p < 0.001). The results are shown in Table 3, where (—) indicates that
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the gene has an unfavorable prognostic marker in the analyzed cancer, and (+) indicates
that the gene is a favorable prognostic marker in the analyzed cancer.
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Figure 5. The gene survival curves of the top 10 genes. The blue line indicates that the expression
value is higher than the median, and the red line indicates that the expression value is lower than the
median. P-value is the result of log-rank test (p < 0.05 means the result has the significant). (a) CDK1;
(b) CCNB1; (c) BUBI; (d) BUB1B; (e) KIF20A.
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Figure 6. The remaining 7 genes’ survival curves of the top 20 genes. (a) KIF23; (b) CCNB2; (c) KIF4A;
(d) MELK; (e) RAD5I; (f) HRAS; (g) CEP55.
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Figure 7. Heatmap of DNA methylation expression levels of top 10 genes in breast cancer using the
MethSurv platform. Methylation levels (1 = fully methylated; 0 = fully unmethylated) are shown
as a continuous variable from a blue to red color. Rows correspond to the CpGs, and the columns
correspond to the patients. (a) CCNA2; (b) CCNB1; (c) TP53; (d) BRCA1; (e) TOP2A; (f) CCND1;
(g) AKT1; (h) CREBBP; (i) SMAD4; (j) ESR1; (k) CENPE.
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Table 3. Prognostic marker information in cancer tissue of the top 20 genes.

Gene

Prognostic Marker in Cancer

CCNA2

renal cancer(—); pancreatic cancer(—); liver cancer(—); lung cancer(—); endometrial
cancer(—)

CDK1

renal cancer(—); liver cancer(—); pancreatic cancer(—); lung cancer(—); cervical
cancer(+)

CCNB1

renal cancer(—); liver cancer(—); lung cancer(—)

TOP2A

renal cancer(—); liver cancer(—); pancreatic cancer(—); lung cancer(—)

BUB1

liver cancer(—); pancreatic cancer(—); endometrial cancer(—); lung cancer(—)

TP53

endometrial cancer(+); prostate cancer(—)

BUBIB

liver cancer(-); pancreatic cancer(—); lung cancer(—)

CCND1

pancreatic cancer(—); head and neck cancer(—)

KIF23

liver cancer(—); pancreatic cancer(—); endometrial cancer(—)

MYC

renal cancer(—); urothelial cancer(—); ovarian cancer(—)

KIF11

renal cancer(—); liver cancer(—); pancreatic cancer(—); lung cancer(—)

NCAPG

liver cancer(—); pancreatic cancer(—); endometrial cancer(—)

CCNB2

renal cancer(—); pancreatic cancer(—); melanoma(-); liver cancer(—); lung
cancer(—)

KIF20A

renal cancer(—); liver cancer(—); pancreatic cancer(—); lung cancer(—)

KIF4A

liver cancer(—); pancreatic cancer(—);

ASPM

liver cancer(—); endometrial cancer(—); pancreatic cancer(—); lung cancer(—)

TPX2

renal cancer(—); liver cancer(—); endometrial cancer(—); pancreatic cancer(—); lung cancer(—)

DLGAP5

liver cancer(—); pancreatic cancer (—); endometrial cancer(—); lung cancer(—)

KIF15

colorectal cancer(+)

ESR1

endometrial cancer(+)

CREBBP

renal cancer(+)

PTEN

renal cancer(—)

AKT1

renal cancer(+); ovarian cancer(+)

SMAD4

renal cancer(+)

CDKN2A

endometrial cancer(—); renal cancer(—); liver cancer(—); head and
neck cancer(+)

CNOT3

liver cancer(—); renal cancer(—)

MELK

renal cancer(—); liver cancer(—); lung cancer(—); pancreatic cancer(—)

EGFR

urothelial cancer(—)

RAD51

breast cancer(—); liver cancer(—)

HRAS

liver cancer(—)

MDM2

endometrial cancer(+); cervical cancer(+)

CEP55

renal cancer(—); liver cancer(—); pancreatic cancer(—); lung cancer(—); stomach can-
cer(+)

ERBB2

renal cancer(+); endometrial cancer(—); pancreatic cancer(—);

NUSAP1

renal cancer(—); pancreatic cancer(—)

4. Discussion

In this study, we have selected 90 genes that have previously been proven to play
important roles in the biological behavior of breast cancer [20,21]. The functions of these
genes have been verified by molecular biology, laboratory animal science, and other meth-
ods, which are major breakthroughs in breast cancer occurrence investigations, as well as
in investigations into the development, prognosis, and drug resistance of breast cancer.
By identifying the interaction network of abnormal genes, it is possible to understand all
kinds of cell signals from extracellular signals to nucleus ones. This leads us to trying to
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understand the whole process of changes in biological behavior, so we can better identify
the key regulatory nodes of the transduction pathway and so we can point out potential
candidate target genes for the development of new targeted drugs. We seek the genes that
are most closely associated with the expression of these 90 genes in the whole genome and
determine the scope of the problem in 140 genes by defining a threshold and filtering out
the rest. Thus, we can determine the interaction environment of these 90 important genes
and other vital genes in the protein—protein interaction network. We limited the scope of
gene fishing in order to focus on these 90 genes and their interactive genes and to reduce
difficulties in performing the functional analysis and verification of subsequent genes.

By querying the interactions of these selected genes in the STRING database, a protein—
protein interaction network was obtained. From this protein—protein interaction network,
we can see that the interaction between genes is complex: some genes are closely related
to other genes, while the relationship between other genes is sparse. This is very similar
to the interaction relationship of the whole genome network, so we can assume that the
selected genes are a summary network diagram centered on driver genes, that is to say, the
interaction relationship between genes may be indirectly connected. The direct or indirect
relationships between these selected genes are also very likely to exist in the upstream and
downstream of driver genes or metabolic pathways. One of the purposes of selecting these
genes is to construct a metabolic pathway from target genes to driver genes or pathogenic
genes and then provide some valuable gene sets or target genes for drug research and
development or clinical treatment.

After completing the previous steps, we conducted sorting assignments for the
230 genes based on the four metrics, which are degree centrality, closeness centrality,
betweenness centrality, and eigenvector centrality, and the top 10 and top 20 genes in each
metric were selected. The main purpose of this task is to find the centralized nodes, the
most important pathways, and the closest networks among these genes. Finally, 19 genes
and 39 genes were counted in the top 10 and 20 genes, respectively, of the four metrics. The
vital genes of the top 20 genes selected by node centrality analysis were verified on the
proteinatlas database using multiple verification methods, which confirmed that all the
selected genes had RNA expression in breast cancer. Moreover, by further exploring the
prognostic marker information of these genes in other cancer tissues, we can see that most
of these genes have poor prognosis in some other genes. In other words, the abnormal
expression of these genes may lead to the recurrence and metastasis of diseases. At the
same time, some genes also show good prognosis in several cancers, which also provides
more information for clinical treatment and research of cancer diseases. Therefore, most of
these vital genes obtained by node centrality analysis are genes with significant prognostic
functions. This shows the effectiveness of the network analysis method we chose.

Finally, based on the statistics of 19 and 39 vital genes from node centrality analysis,
the survival analysis experiments were carried out. Among them, 5 of 19 genes have
significant expression levels with log rank p values < 0.05, indicating that these 5 genes
will have an impact on the prognosis of breast cancer when they are highly expressed. In
addition, 11 of the 39 genes will reduce the survival rate when they are highly expressed,
while 1 gene will affect the prognosis of breast cancer when it is under-expressed. Among
these genes are BUB1B and HRAS, which have previously been proven to play important
roles in the biological behavior of breast cancer, and the other genes are all genes we fished
out. This shows that our gene fishing and network analysis method not only focuses on
biologically significant genes, but also selects other genes that are closely related to them
and which will have an important impact on the occurrence, development, and treatment
of breast cancer. It shows that our method of gene fishing is effective and efficient, and
our method of network analysis can find some gene nodes that play an important role in
disease treatment in the network and cannot be observed by biological experiments or
human eyes.

In the future, we should pay more attention to the signal transduction pathways of
genes, try to simulate the upstream and downstream and metabolic pathways of gene
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regulatory networks, and screen out gene sets that are more in line with direct regulation
and indirect regulation by decaying the degree of association layer by layer. By doing so, we
can include more related genes and incorporate them into the networks, which would help
us to observe the more comprehensive networks and analyze some bypasses of important
signal transduction pathways. Because of the high conservatism of signal transduction
pathways in human tissue cells, there are similar or highly similar signal transduction
networks in the diseases of different systems. Due to the current difficulty of reaching the
desired level of tissue and organ specificity in the application of drugs, there are often some
adverse multi-system reactions with various degrees in disease treatment. Based on the
multi-gene common signaling pathway, we can analyze the main path and the bypass state
of the signal transduction pathway after drug action, and analyze the changes and degrees
of related gene expression to predict the types, possibilities, and severity of adverse drug
reactions in drug development, clinical trials, and clinical applications. This could become
a reference for measuring the benefits and risks of drugs. Meanwhile, bypassing the signal
pathway could be truncated to avoid the adverse effects caused by the bypass. It would
be a basis for the prevention and effective control of adverse drug reactions and would be
helpful in clinical decision making in the future.

5. Conclusions

Like many other cancers, the development of breast cancer is also related to genetic
factors. By looking into the relationship of genetics with the development cancer, it is
possible to regulate and control the expression of oncogenes, which may have profound
influence in cancer prevention and treatment. This is the most economical and practical
way for both patients and doctors to make full use of the existing drugs targeting the
regulation of gene expression. We have selected some of the relevant genes from breast
cancer and conducted protein—protein interaction network analyses. First, we used the
mutual information method to select the relevant genes in addition to the driver genes in
breast cancer, which were determined previously. Second, by modeling the protein—protein
interaction network using the STRING database, we were able to obtain a clear picture
of the relationship between genes. Finally, for our analysis, we chose genes with higher
values of node centrality as the vital genes, then conducted survival analysis and DNA
methylation analysis in breast cancer and prognosis analysis in other cancers using these
vital genes. Through analyzing the protein—protein interaction network, we found some
genes related to poor prognosis and higher methylation due to different expressions in
breast cancer.
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