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Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
* Correspondence: vdora@iit.bme.hu

Abstract: Bladder cancer is a common and often fatal disease. Papillary bladder tumors are well
detectable using cystoscopic imaging, but small or flat lesions are frequently overlooked by urologists.
However, detection accuracy can be improved if the images from the cystoscope are segmented in
real time by a deep neural network (DNN). In this paper, we compare eight state-of-the-art DNNs
for the semantic segmentation of white-light cystoscopy images: U-Net, UNet++, MA-Net, LinkNet,
FPN, PAN, DeepLabv3, and DeepLabv3+. The evaluation includes per-image classification accuracy,
per-pixel localization accuracy, prediction speed, and model size. Results show that the best F-score
for bladder cancer (91%), the best segmentation map precision (92.91%), and the lowest size (7.93 MB)
are also achieved by the PAN model, while the highest speed (6.73 ms) is obtained by DeepLabv3+.
These results indicate better tumor localization accuracy than reported in previous studies. It can be
concluded that deep neural networks may be extremely useful in the real-time diagnosis and therapy
of bladder cancer, and among the eight investigated models, PAN shows the most promising results.

Keywords: bladder cancer; white-light cystoscopy; semantic segmentation; convolutional neural
network; transfer learning; guided filtering; unsharp masking

1. Introduction

Bladder cancer is one of the ten most common types of cancer and is also reported to
be a leading cause of death in Western countries [1]. The diagnosis is most often based on
white-light cystoscopy imaging, which is excellent for the detection of papillary bladder
tumors, but small or flat lesions may not be visible clearly enough [2]. Furthermore, the
interpretation of cystoscopy findings can vary from examiner to examiner, since no two
physicians have the same skills and experience [3]. Overall, it is estimated that up to 20%
of tumors are overlooked during white-light cystoscopy [4].

Deep learning (DL) methods are developing rapidly, and as a result, neural network-
based bladder cancer diagnosis is becoming increasingly popular [4–6]. DL solutions can
not only achieve diagnostic accuracy similar to that of experienced specialists [2,7], but
their results are also objective and reproducible [3], as they are based on mathematical
operations. Using neural networks to help diagnose bladder cancer could result in fewer
tumors going undiagnosed, which could save lives. In addition, fewer healthy patients
may need to undergo unnecessary biopsies, which is a process that is invasive, painful,
and expensive.

One of the first studies to examine deep learning-based bladder cancer diagnosis is
the work of Ikeda et al. [8], who used the GoogLeNet model [9] to classify cystoscopic
images. Their network was pre-trained on the ImageNet database [10] of 1.2 million natural
images. Subsequently, using the obtained weights as initial values, the model was fine-
tuned to classify white-light cystoscopic images as cancerous or normal. Their training data
consisted of 1336 normal and 344 tumor images, but the tumor images were augmented
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with random rotation and blurring to have the same number as the normal images. Their
model achieved a sensitivity of 89.7% and a specificity of 94.0% on the test data, with 78 of
the images being true positive, 315 true negative, 20 false positive, and 9 false negative.

Another example is the work of Ali et al. [2], who proposed an artificial intelligence
diagnostic platform that operated on high-quality blue-light cystoscopy images and pre-
dicted cancer malignancy, invasiveness, and grade. In their platform, they implemented
four convolutional neural networks (VGG-16 [11], ResNet-50 [12], MobileNetV2 [13] and
InceptionV3 [14]), which were pre-trained and fine-tuned via transfer learning. Their
dataset consisted of 216 blue-light cystoscopy images of bladder tumors classified accord-
ing to the 2004 World Health Organization (WHO) classification. The prediction results
of the proposed CNN models were compared with each other as well as with the ratings
of two experienced urologists. Results showed that the mean sensitivity obtained by any
of the CNNs was at least 15% higher than that of the two urologists. The highest mean
classification sensitivity, 91.81%, was achieved by the MobileNetV2 model.

Similar results were reported by Yang et al. [7], who examined the ability of three
convolutional neural networks (LeNet [15], AlexNet [16] and GoogLeNet [9]), the EasyDL
deep learning platform [17], and urologist experts to classify bladder cancer on white-light
cystoscopy images. The highest accuracy, 96.9%, was achieved by EasyDL, which was
followed by GoogLeNet with 92.54%. Overall, the deep learning-based methods had an
average accuracy of 86.36%, while urologist experts achieved only 84.09%.

Further examples of AI-assisted cystoscopic image classification can be found in the
review published by Negassy et al. [18].

Although these results are promising, classification can only assist in cancer diagnosis
but not its treatment, the transurethral resection, during which the precise location of the
tumor is required so that it can be removed.

The accurate segmentation of bladder cancer on cystoscopic images using deep learn-
ing has been reported by Shkolyar et al. in 2019 [4]. They developed CystoNet, a CNN-
based analysis platform that segments bladder tumors on white-light cystoscopy video
frames with a per-frame sensitivity and specificity of 90.9%. The accuracy of tumor local-
ization was not reported. Furthermore, their data mostly consist of papillary urothelial
carcinoma, which is a characteristic, finger-like growth in the bladder lining extending into
the center of the bladder, and it is thus typically well detectable even by the human eye.

Zhang et al. [19] utilized an attention mechanism-based model to segment cystoscopic
images. They have introduced several attention modules into the classical U-Net model and
found that it improves the tumor segmentation performance: the new network achieved a
Dice score of 82.5%, while the classical U-Net was found to obtain only 67% in [5].

Lastly, Yoo et al. [6] deployed a mask region-based convolutional neural network with
a ResNeXt-101-32×8d-FPN backbone to identify and grade bladder tumors on white-light
and narrow-band cystoscopy images. The sensitivity and specificity they achieved were
95.0% and 93.7%, respectively, but the Dice score of localization was only 74.7%.

It can be concluded that there is still room for improvement in terms of bladder
tumor localization accuracy. Since there are examples of classical deep neural networks
(DNNs) achieving excellent results in other image segmentation tasks [20,21], the idea of a
comprehensive comparison between different DNNs for cystoscopic image segmentation
also arises. By identifying a model with good bladder tumor localization accuracy and
real-time speed, the success rate of transurethral resections may be significantly improved.

In this paper, we compare eight DNNs for the semantic segmentation of white-light
cystoscopy images: U-Net [22], UNet++ [23], MA-Net [24], LinkNet [25], FPN [26], PAN [27],
DeepLabV3 [28] as well as DeepLabV3+ [29], and we examine the potential benefits of image
pre-processing. Evaluations cover per-image classification accuracy, per-pixel localization
accuracy, prediction speed, and model size.

The paper is organized as follows. Materials and methods are described in Section 2,
which includes the investigated DNNs, the image pre- and post-processing pipeline, the
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network training, and the measurement setup. The results of the evaluation are presented
in Section 3 and discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Materials and Methods

The task is to produce a high-precision semantic segmentation map that locates bladder
cancer as well as other lesions and artifacts on white-light cystoscopic images. The obtained
segmentation map can be overlaid on the original image (Figure 1) to assist the transurethral
resection of bladder tumors in real time. In this section, we present the DNN models to be
evaluated (Section 2.1), the image processing pipeline (Section 2.2), the network training
(Section 2.3), and the measurement setup that was used for the evaluations (Section 2.4).

(a) input image (b) output image

Figure 1. An example of a segmentation outline overlay. The input image shows a grade 2 bladder
tumor that has been well localized by the DeepLabv3+ [29] neural network.

2.1. The Deep Neural Networks to Be Compared

In the field of image analysis, convolutional neural networks (CNNs) are the most
widely used deep learning solutions [30]. They take advantage of the spatial arrangement of
images, i.e., the fact that information is usually local in images [5], so it may be sufficient to
examine only a part of the image content at a time. CNNs do this by running convolutional
filters over the input image, which share the learnable weights between image parts, thereby
significantly reducing the number of parameters to be optimized. These networks are able
to model complex hierarchical functions and train deep models efficiently [31].

An encoder–decoder architecture is a special type of model design that consists of
two parts: an encoder that compresses the input into a latent space vector, and a decoder
that predicts the output from this intermediate representation. Encoder–decoder CNNs
are particularly suited for the task of image segmentation, as they are able to model the
complex underlying features of the input image in latent space and then produce an output
image of the same size as the input, i.e., a segmentation map containing the classification of
each pixel. In the following, we review the encoder–decoder CNNs that we evaluate in this
paper for cystoscopy image segmentation.

U-Net [22] is a convolutional neural network designed specifically for biomedical im-
age segmentation. It gets its name from the fact that the model consists of a downsampling
part (encoder) and an upsampling part (decoder), which form a U-shaped architecture.
The encoder of U-Net applies successive 3× 3 convolutions, each followed by ReLU ac-
tivation [32] and maximum pooling. While the spatial resolution is reduced, the feature
dimension of the image is simultaneously increased to aggregate high-level semantic in-
formation. The resulting latent representation is then upsampled in the decoder to obtain
a precise segmentation map. To improve performance, skip connections are introduced
between encoder blocks and their corresponding decoder parts. This helps to propagate
information from early layers that still retain fine input details to deeper layers that lose
these details due to successive downsampling.

UNet++ [23] is a new variant of the U-Net architecture. It is based on the hypothesis
that when the encoder and decoder feature maps are semantically similar, the optimizer
has an easier optimization problem to solve. Therefore, skip connections are redesigned to
include a dense convolution block in which the number of convolutional layers depends
on the pyramid level. Basically, this dense convolution block brings the semantic level of
the feature maps of the encoder closer to that of the decoder.
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UNet++ was reported to give better accuracy than U-Net in multiple medical image
segmentation tasks, such as nuclei segmentation in microscopy images, liver segmentation
in abdominal CT scans, and polyp segmentation in colonoscopy videos [23].

MA-Net (Multi-scale Attention Network) [24] is a variant of U-Net that introduces
self-attention to its architecture. It uses two blocks: the Position-wise Attention Block (PAB)
and the Multi-scale Fusion Attention Block (MFAB). The PAB extracts spatial dependencies
between pixels by a self-attention mechanism, while the MFAB captures channel depen-
dencies between any feature map by attention-based multi-scale semantic feature fusion.
MA-Net was originally designed for liver and tumor segmentation and has been shown to
perform superiorly to U-Net and UNet++ in the segmentation of liver CT scans [24].

LinkNet [25] is an encoder–decoder type CNN that aims to achieve not only good
segmentation accuracy but also a small size, i.e., few learnable parameters. This is obtained
by introducing residual skip connections that bypass information from the input of each
encoder block to the output of its corresponding decoder block. Unlike U-Net skip con-
nections, where layers are concatenated, here, the features are summed, which does not
increase the number of input channels and thus the number of parameters needed in the
following decoding blocks [33]. This results in a small and efficient neural network.

FPN (Feature Pyramid Network) [26] is a feature extractor that builds high-level
semantic feature maps at multiple scales, i.e., a feature pyramid [34]. This process does
not depend on the backbone CNN, so it can be considered a generic solution. The con-
struction of the feature pyramid involves a bottom–up pathway and a top–down pathway.
The bottom–up pathway is the feed-forward computation of the backbone CNN, which
creates the feature map hierarchy with a scaling step of 2. The top–down pathway down-
propagates the lower spatial resolution but semantically higher level information from the
upper levels of the pyramid. The features of the two pathways are fused via lateral connec-
tions. When the task is image segmentation, the different levels of the feature pyramid are
used for predicting masks at different scales.

PAN (Pyramid Attention Network) [27] is a convolutional neural network designed to
exploit global contextual information in semantic segmentation. First, a feature pyramid
is generated using ResNet-101 [12] (encoding). Then, a Feature Pyramid Attention (FPA)
module is used to gather dense pixel-level attention information. FPA is a center block
between the encoder and decoder that fuses features from under three different pyramid
scales and combines them with global average pooling to improve performance. Finally,
a Global Attention Upsample (GAU) module on each decoder layer provides high-level
features as guidance for low-level information to generate the final segmentation map.

DeepLabv3 [28] is an improvement upon the DeepLabv2 semantic segmentation
architecture [35] (which itself can be traced back to the original DeepLab model [36]). To
address the problem of segmenting objects at multiple scales, modules are designed to
perform atrous convolutions in cascade or in parallel, capturing multi-scale context using
multiple atrous rates. In addition, the Atrous Spatial Pyramid Pooling (ASPP) module
of DeepLabv2 has been augmented with image-level features that encode global context
and increase performance. Unlike DeepLabv2, the new model no longer needs DenseCRF
post-processing to segment objects precisely.

DeepLabv3+ [29] extends DeepLabv3 by a simple yet effective decoder module that
improves segmentation results, especially at object boundaries. This architecture is the first
to combine spatial pyramid pooling with the encoder–decoder structure. Furthermore,
inspired by Xception [37], depthwise separable convolution is applied to both the ASPP
module and the decoder, resulting in an even faster and higher-precision model.

2.2. The Image Processing Pipeline

The goal is real-time assistance in the transurethral resection of bladder tumors. The
camera stream from the cystoscope is usually of poor quality, which can hinder the per-
formance of the neural network and the operating urologist. Therefore, we execute image
enhancement as a pre-processing step, which may be configured or turned off by the
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urologist. After the neural network predicts the segmentation map, the outline polygons of
the detected objects are extracted and overlaid on the original image to draw the doctor’s
attention to possible lesions. Overall, our image processing pipeline consists of three phases:

1. Pre-processing: noise reduction, contrast enhancement, and data standardization.
2. Segmentation: a deep neural network predicts the segmentation map.
3. Post-processing: outline polygons are extracted from the segmentation map and over-

laid on the original image to show doctors the detected lesions.

A flowchart of the segmentation pipeline is displayed by Figure 2.

Start

Fetch camera image

Reduce noise with guided filtering

Enhance contrast with unsharp masking

Resize and standardize data

Feed input image into neural network

Segment image using neural network

Get resulting segmentation map

Extract lesion outlines

Overlay lesion outlines on input image

Show final output image

Continue?

End

Yes

No

Figure 2. Flowchart of the cystoscopic image segmentation pipeline.

2.2.1. Pre-Processing

Cystoscopic images may be blurred and have low contrast depending on the actual
cystoscopic camera and the circumstances of the image capture. To obtain a solution that
is robust to these phenomena, image pre-processing is needed during the training and
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recognition, which prepares the input images to allow the neural network for efficient
lesion detection. For this reason, noise reduction and contrast enhancement have been
incorporated into the training and detection pipelines. Noise reduction is performed by
guided filtering [38], since it provides high-quality edge-preserving smoothing at real-time
rates. The guide for filtering was the input image itself. Contrast enhancement is achieved
by unsharp masking [39,40], the essence of which is to sharpen the input image by adding
its estimated high-frequency components, i.e., its unsharp mask to itself:

R = P + λU, (1)

where R is the output image, P is the input image, λ is the degree of enhancement, and
U is the unsharp mask, which is obtained by subtracting the low-pass filtered version of
the input image from itself, i.e., U = P− Pfiltered. In our solution, the low-pass filtered
version could simply be set to the output of the guided filter. In this case, however, the
color channels would be sharpened separately, causing the hues of the pixels to change,
which results in color noise. To preserve the hues of the pixels, we apply unsharp masking
only to the luminance channel, i.e., our enhancement formula is

Ri = Pi

(
1 + λ

(
1− lum(Pfilteredi)

lum(Pi)

))
, (2)

where lum(Pi) is the luminance of pixel Pi. For simple calculations, we approximate the
luminance as the average of the red, green, and blue intensities.

In the last stage of pre-processing, the enhanced image is cropped to remove any
margins and then resized to 160× 160 pixels, which was found to be the optimal input size
for the neural network. Afterwards, data are standardized to have a mean of zero and a
standard deviation of one, which improves the stability and accuracy of the predictions.

Figure 3 displays the output of pre-processing using different guided filter and unsharp
masking parameters. In our system, both the guided filter radius r and the unsharp masking
strength λ are adjustable real numbers between 0 and 5 (0: no effect, 5: strong effect, i.e.,
strong blurring in the case of filtering or strong sharpening in the case of unsharp masking).

r = 0

r = 3

r = 5

λ = 0 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5

Figure 3. Pre-processing outputs using different guided filter radii r and unsharp masking strength λ

values. The original input image is shown in the top left corner (r = 0, λ = 0).

2.2.2. Segmentation

The pre-processed image is fed into a deep neural network that predicts the class of
each pixel. Eight models were compared for the segmentation task at hand, which are
listed in Section 2.1. All models used the MobileNetV3-Large network [41] as an encoder,
which is an efficient, lightweight CNN designed to perform well with limited computing
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resources or strict time constraints. Since we aim to provide a real-time tool to assist bladder
tumor resection, the small size and low latency of the model are key factors.

A total of 7 classes are distinguished in the image:

1. Normal tissue;
2. Bladder cancer;
3. BCG cystitis;
4. TURBT scar;
5. Ureteric orifice;
6. Air bubble;
7. Image artifact (instrument, scope, overlay text, etc.).

The output of the neural network is a seven-element vector for each pixel of the input
image, where the ith element corresponds to the confidence level of the network in that the
given pixel belongs to the ith class. Pixels are classified in the category with the highest
confidence level.

2.2.3. Post-Processing

In the post-processing phase, the polygon outlines of the detected lesions are extracted
from the segmentation map and drawn on the original cystoscopic image (Figure 1). The
color of the polygon indicates the class of the lesion; e.g., bladder cancer is marked by cyan,
while artifacts are marked by green.

To obtain the outlines of the detected lesions, the boundaries of the homogeneous
regions of the segmentation map must be determined. A pixel is at a boundary if one of its
neighbors belongs to a different class than itself. However, merely collecting the boundary
pixels can result in a noisy and complicated outline. To simplify the boundary, pixels where
the curvature would be too high are removed. The easiest way to achieve this is to count
how many pixels belong to another class in the eight-neighborhood of the given pixel, and
if we obtain a number greater than four, the pixel is removed. Note that this procedure
reduces the area of the polygon; therefore, the number of its repeated applications should
be limited.

The polygon outlines of the regions of a given class are formed according to the
following iterative algorithm. First, an arbitrary pixel is selected from the boundaries of
that class, i.e., we find a pixel that belongs to the given class but at least one of its neighbors
does not. In each subsequent step, we search for the next boundary pixel until we return to
the starting point, thus closing the loop. During the search, we first examine the immediate
neighborhood of the currently selected pixel, beginning with the direction taken in the
previous step. If we find a boundary pixel of the same class, the pixel is added to the
polygon as a vertex, and is also removed from the segmentation map so that it is not
re-selected later. If no other boundary pixels are found in the immediate neighborhood
of the current one, which happens if there is a loop in the outline, we start examining the
pixels that are farther away, i.e., at a distance of two pixels. For performance reasons, the
search distance is maximized to five pixels. If there are no other boundary pixels in the
five-pixel-wide neighborhood, the polygon is considered to be noise and discarded.

The presented algorithm produces a single, closed outline. In cases where multiple
regions belong to the given class, the procedure should be repeated until all boundary
pixels are removed.

Prediction errors can result in unrealistically small polygons that need to be identified
and discarded. We calculate the area of the polygon of vertices~r1, . . . ,~rn as

A =
1
2

∣∣∣∣∣ n

∑
i=1

~ri ×~ri+1

∣∣∣∣∣,
where~rn+1 =~r1. If the resulting area A is small, e.g., smaller than 0.25% of the total area of
the image (64 pixels in the case of a 160× 160 pixel input), then the polygon is discarded.
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2.3. Network Training

To improve segmentation accuracy, transfer learning [42] is used. That is, the neural
networks are pre-trained on the ImageNet database [10] before being trained on cystoscopic
images. This way, the networks learn a general model of the visual world that can facilitate
the interpretation of cystoscopic images.

There are relatively few samples in our dataset for three of the seven classes (ureteric
orifice, TURBT scar, BCG cystitis), as a result of which the networks have difficulty learning
them. To address this class imbalance, we use focal loss [43], which is a modification of the
standard cross-entropy loss that focuses training on hard samples. The focal loss dynami-
cally scales the cross-entropy loss by a scaling factor that decays to zero as confidence in the
correct class increases. This scaling factor automatically downweights the contribution of
easy samples during training and focuses the model on samples it finds harder to classify.

To present the formal definition of the focal loss, let us start from the cross-entropy
(CE) loss for binary classification (For simplicity, we only discuss binary classification, but
extension to the multiclass case is straightforward [43]):

CE(p, y) =

{
− log(p) if y = 1,
− log(1− p) otherwise,

where y ∈ {±1} denotes the ground truth class and p ∈ [0, 1] is the probability estimated
for the class with label y = 1. To simplify the notation, let us introduce

pt =

{
p if y = 1,
1− p otherwise,

in which case CE(p, y) = CE(pt) = − log(pt).
Focal loss adds a modulating factor (1− pt)γ to the cross-entropy loss, where γ ≥ 0 is

a tunable focusing parameter. That is, focal loss is defined as

FL(pt) = −(1− pt)
γ log(pt). (3)

It can be observed that as the confidence in the correct class increases, i.e., pt → 1, the
modulating factor converges to 0, and the loss for well-classified samples is downweighted.
In contrast, if a sample is misclassified and pt is small, the factor is approximately equal to
1, and thus, the loss is unaffected.

The focal loss has an α-balanced version, which was reported to give slightly better
results than the original form [43]. In this version, a hyperparameter α ∈ [0, 1] is introduced
as a weighting factor for the positive class, while (1− α) is used to weight the negative
class. Defining αt analogously to pt, the α-balanced version of the focal loss is calculated as

FL(pt) = −αt(1− pt)
γ log(pt). (4)

In our solution, the α for a given class is inversely proportional to the relative frequency
of occurrence of the class in the training set. That is, the more pixels are labeled by that
class in the training set, the lower value its α weight will have.

2.4. Measurement Setup
2.4.1. Data

We used a private dataset consisting of 2578 cystoscopy images manually annotated
by medical professionals. Data were split into train, validation, and test sets with a ratio
of 90:5:5, i.e., 2320 of the images were put in the train set, 129 were put in the validation
set, and 129 were put in the test set. The number of image samples was increased by
augmenting the dataset with the two pre-processing techniques presented in Section 2.2.1:
noise reduction by guided filtering and contrast enhancement by unsharp masking. In
total, each image was saved in four different versions (Figure 4):
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1. Original: no enhancement;
2. Filtered: only guided filtering (r = 5);
3. Sharpened: only unsharp masking (λ = 5);
4. Enhanced: both guided filter and unsharp masking.

This way, the number of image samples was quadrupled, so the total training set
consisted of 9280 images, the validation set consisted of 516 images, and the test set
consisted of 516 images.

(a) original (b) filtered (c) sharpened (d) enhanced

Figure 4. Four different pre-processing outputs of the same input image. In (a), the image was only
cropped. In (b), guided filtering was applied to reduce noise, with radius r set to 5. In (c), unsharp
masking was applied to sharpen the image, with strength λ set to 5. In (d), both guided filtering and
unsharp masking were applied (r = 5, λ = 5).

The training set was also augmented on-the-fly using the following transformations:

• Random changes in intensity (hue, brightness, contrast, saturation, value, gamma);
• Gaussian noise;
• Gaussian blur;
• Sharpening by the imgaug [44] library;
• Horizontal and vertical flipping;
• Rotating;
• Dropping out random 8× 8 pixel squares.

These augmentations were different in every epoch; therefore, the network was never
trained on the exact same image twice.

2.4.2. Implementation

The neural networks were implemented in Python, using the PyTorch framework [45]
and the Segmentation Models library [46]. Training was performed for 1000 epochs by
the Adam optimizer [47] with a learning rate of 7 · 10−5 and a batch size of 64. The loss
function was the α-balanced focal loss described in Section 2.3, with γ = 2 and the α of each
class pre-calculated from the statistics of the dataset. The parameters of the segmentation
models were not changed from the default settings of the Segmentation Models library. All
calculations were run on an NVIDIA GeForce RTX 2080 SUPER GPU [48].

2.4.3. Evaluation Metrics

Per-pixel Dice coefficient
The segmentation maps generated by the neural networks were evaluated using the

Dice similarity coefficient [49]. Given the set T of pixels belonging to a given class c, and
the set P of pixels predicted by the network to belong to class c, the Dice coefficient is
calculated as

DICE =
2 |T ∩ P|
|T|+ |P| , (5)

where | · | denotes the cardinality of a set and ∩ denotes the intersection of two sets. This
calculation is performed for each class, and the results are averaged. The higher the Dice
coefficient, the closer the predicted segmentation map is to the real one, i.e., the better the
localization accuracy of the lesions is.
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Per-image F-score
The main hazards are producing a false negative or false positive classification for the

input image. For example, if an image is declared cancer-free while in truth it shows a
cancerous region, the patient may go undiagnosed and not receive the necessary treatment.
Conversely, if an image is declared to show cancer when it is in truth either fully normal or
has only benign features, the patient may receive unnecessary treatment, which is expensive
and could pose health risks. Therefore, we group classes as

1. Malignant: bladder cancer;
2. Benign: TURBT scar, BCG cystitis;
3. Healthy: normal, ureteric orifice, air bubble, image artifact;

and counted images in the following categories:

• True Positive Malignant: the classification indicates a malignant region, and the image
indeed has such a region;

• True Negative Malignant: the classification indicates no malignant region, and the image
indeed has no such region;

• False Positive Malignant: the classification indicates a malignant region, but the image
has no such region;

• False Negative Malignant: the classification indicates no malignant region, but the image
has such a region;

• True Positive Benign: the classification indicates a benign feature (but no malignant
region), and the image indeed shows a benign feature (and no malignant region);

• True Negative Benign: the classification indicates healthy tissue (neither malignant nor
benign feature), and the image indeed shows healthy tissue;

• False Positive Benign: the classification indicates a benign feature (but no malignant
region), but the image shows healthy tissue;

• False Negative Benign: the classification indicates healthy tissue (neither malignant nor
benign feature), but the image has a benign feature.

From these categories, the following metrics can be derived to describe the per-image
classification accuracy:

1. Precision: the fraction of patients with a true lesion (malignant or benign) among those
who were identified to have the lesion:

precision =
TP

TP + FP
.

2. Recall (= Sensitivity): the fraction of patients identified with a lesion (malignant or
benign) among those who truly have a lesion:

recall =
TP

TP + FN
.

3. F-score: a measure combining the precision and recall of the classification system. It is
defined as the harmonic mean of the model’s precision and recall:

Fscore =
2

1
precision + 1

recall
=

TP
TP+ 1

2 (FP+ FN)
.

The primary objective is to maximize the F-score for the malignant category, as a
misclassification of bladder cancer can have serious consequences. In contrast, benign
features usually do not require treatment; at most, they are monitored for a certain period
of time. Therefore, the classification accuracy of benign features is only secondary. The
per-pixel localization accuracy (i.e., the Dice coefficient) serves as a tertiary aspect.
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3. Results
3.1. Per-Pixel Dice Coefficient

The Dice coefficient was evaluated for each image in the test set. Table 1 presents the
mean Dice scores averaged on the test images. The results show that all models were able
to achieve a 91–92% mean Dice score, which is very promising, especially given that our
dataset was relatively poorly balanced. The highest mean Dice score (92.91%) was obtained
by the PAN [27] architecture.

Table 1. Mean Dice scores achieved by the different models on the test set.

Model Mean Dice Score [%]

U-Net 92.54
UNet++ 92.73
MA-Net 91.78
LinkNet 89.66
FPN 92.69
PAN 92.91
DeepLabv3 91.57
DeepLabv3+ 92.47

Figure 5 displays the segmentation maps generated by the different models for a grade
2 papillary bladder cancer. All models were able to detect the tumor, although the resulting
shapes were generally simpler and more ellipsoidal than the zigzag-edged ground truth
mask. The highest Dice score for this image (98.67%) was achieved by the U-Net model.

input image ground truth mask

(a) U-Net (b) UNet++ (c) MA-Net

(d) LinkNet (e) FPN (f) PAN

(g) DeepLabv3 (h) DeepLabv3+

Figure 5. Segmentation maps predicted by the different models for an input image with a grade
2 papillary bladder tumor. Dice scores: (a) 98.67%, (b) 97.13%, (c) 97.34%, (d) 98.43%, (e) 97.34%,
(f) 97.44%, (g) 97.96%, and (h) 98.59%.
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3.2. Per-Image F-Score

Tables 2 and 3 present the per-image classification accuracy of the trained models
evaluated on the test set. The highest F-score for the malignant category was achieved by
the PAN model, which was closely followed by the U-Net and the UNet++ networks. For
the benign category, the highest F-score was achieved by DeepLabv3, which was closely
followed by PAN.

F-scores were also evaluated separately on the image subsets of the four different pre-
processed versions (original, filtered, sharpened, enhanced) in order to investigate which
pre-processing method improves the classification accuracy the most. This measurement
was performed using the PAN model. Results are shown in Tables 4 and 5. It can be
observed that the enhanced pre-processing method leads to the best lesion detection ability
for both the malignant and benign categories.

Table 2. Per-image classification accuracy analysis for the malignant category, evaluated on the test
dataset. The highest F-score was achieved by the PAN model.

Model TP TN FP FN Sensitivity Precision F-Score

U-Net 187 290 34 5 97.3958 84.6154 90.5569
UNet++ 187 291 33 5 97.3958 85.0000 90.7767
MA-Net 178 282 42 14 92.7083 80.9091 86.4078
LinkNet 181 281 43 11 94.2708 80.8036 87.0192
FPN 172 295 29 20 89.95833 85.5721 87.5318
PAN 182 298 26 10 94.7917 87.5000 91.0000
DeepLabv3 182 289 35 10 94.7917 83.8710 88.9976
DeepLabv3+ 180 294 30 12 93.7500 85.7143 89.5522

Table 3. Per-image classification accuracy analysis for the benign category, evaluated on the test
dataset. The highest F-score was achieved by the DeepLabv3 model.

Model TP TN FP FN Sensitivity Precision F-Score

U-Net 49 212 11 18 73.1343 81.6667 77.1654
UNet++ 50 208 10 23 68.4932 83.3333 75.1880
MA-Net 36 208 6 32 52.9412 85.7143 65.4545
LinkNet 52 193 20 16 76.4706 72.2222 74.2857
FPN 46 209 8 22 67.6471 85.1852 75.4098
PAN 54 216 8 20 72.9730 87.0968 79.4118
DeepLabv3 54 209 12 14 79.4118 81.8182 80.5970
DeepLabv3+ 47 216 9 22 68.1159 83.9286 75.2000

Table 4. Malignant category F-scores evaluated all the test images and on the image subsets of the
four different pre-processed versions (original, filtered, sharpened, enhanced), using the PAN model.
The highest F-score was achieved on the enhanced data subset.

Model TP TN FP FN Sensitivity Precision F-Score

all 184 302 22 8 95.8333 89.3204 92.4623
original 46 75 6 2 95.8333 88.4615 92.0000
filtered 46 75 6 2 95.8333 88.4615 92.0000
sharpened 46 75 6 2 95.8333 88.4615 92.0000
enhanced 46 77 4 2 95.8333 92.0000 93.8776
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Table 5. Benign category F-scores evaluated all the test images and on the image subsets of the four
different pre-processed versions (original, filtered, sharpened, enhanced), using the PAN model. The
highest F-score was achieved on the enhanced data subset.

Model TP TN FP FN Sensitivity Precision F-Score

all 64 213 12 13 83.1169 83.2105 83.6601
original 16 53 3 3 84.2105 84.2105 84.2105
filtered 15 53 3 4 78.9474 83.3333 81.0811
sharpened 16 53 3 3 84.2105 84.2105 84.2105
enhanced 17 54 3 3 85.0000 85.0000 85.0000

3.3. Speed

The CNN should predict segmentations fast enough to be applied in real time on video
streams during the transurethral resection of bladder tumors. To see if this is accomplished,
we have measured the time required to calculate a single prediction, averaged from 100,000
runs on a NVIDIA GeForce RTX 2080 SUPER GPU [48]. The frame loading time or the time
needed to fetch the image from the camera is not included, since it depends on the actual
format, disk, and camera used. Measurement results are presented in Table 6.

The highest prediction speed (6.72 ms) was achieved by the DeepLabv3+ model. Note
that even the slowest model (MA-Net) took less than 9 ms to make a prediction.

The pre- and post-processing of images requires some additional time. Guided filtering
takes on average 2 ms and unsharp masking takes another 0.02 ms to perform on an NVIDIA
GeForce GTX 960M GPU [50]. The extraction of polygon contours from the segmentation
map takes an average of 0.06 ms, but the exact speed depends on the number of detected
lesions and the complexity of their contours. Note that even with pre- and post-processing,
a frame rate of 93–114 fps is attainable.

Table 6. The mean prediction time of the different models on a single image, calculated from 100,000
runs on a NVIDIA GeForce RTX 2080 SUPER GPU [48].

Model Mean Runtime (ms)

U-Net 7.11
UNet++ 8.04
MA-Net 8.74
LinkNet 6.96
FPN 7.36
PAN 7.46
DeepLabv3 6.76
DeepLabv3+ 6.73

3.4. Model Size

The neural network is preferred to have a small size so that it does not occupy much
storage space, it is fast to load (requires low bandwidth and has low memory latency), and
it does not pose a problem to keep the model in the RAM or cache. Table 7 summarizes
the sizes of the trained models. It can be observed that the model sizes range from 7 to
69 MB, which should pose no problem to store and utilize even on a clinical infrastructure
with limited computing resources. Furthermore, the PAN model that achieved the highest
prediction performance occupies only 7.93 MB, which is practically the smallest size of all.



Diagnostics 2022, 12, 2849 14 of 18

Table 7. The sizes of the trained neural networks.

Model Model Size (MB)

U-Net 19.1
UNet++ 20.0
MA-Net 69.4
LinkNet 10.0
FPN 14.3
PAN 7.93
DeepLabv3 31.2
DeepLabv3+ 12.7

A summary of the evaluation results is displayed in Table 8.

Table 8. Summary of the evaluation results that measure the means of the per-pixel Dice score (%),
the per-image F-score (%), the prediction time (ms) and the model size (MB). In terms of overall
prediction performance, the PAN model proved to be the best.

Model Dice Score Malignant F-Score Prediction Time Model Size

U-Net 92.54 90.5569 7.1133 19.1
UNet++ 92.73 90.7767 8.0443 20.0
MA-Net 91.78 86.4078 8.7378 69.4
LinkNet 89.66 87.0192 6.9627 10.0
FPN 92.69 87.5318 7.3593 14.3
PAN 92.91 91.0000 7.4643 7.93
DeepLabv3 91.57 88.9976 6.7604 31.2
DeepLabv3+ 92.47 89.5522 6.7270 12.7

4. Discussion

The segmentation of cystoscopic images is challenging for several reasons. Firstly,
the images are often blurry and have low contrast due to difficult shooting conditions.
Secondly, the appearance of bladder lesions shows a large variance, even within a single
class. Thirdly, for CNNs that generally work with fixed receptive fields, the presence of
objects at multiple scales causes difficulties in classification [27,28]. This cannot be avoided
in cystoscopy, as lesions have different physical sizes and, in addition, their dimensions in
image space depend on the current position and orientation of the cystoscope.

Image quality can be improved with appropriate pre-processing, while the problem of
high variance within classes can be mitigated by providing a sufficiently large and varied
training dataset. However, the effective recognition of objects at multiple scales must be
achieved by the neural network architecture.

U-Net, UNet++, and LinkNet do not give a direct solution for multi-scale object
segmentation. Nevertheless, information about objects at different scales is implicitly
encoded at the different levels of the U-shaped architecture. Skip connections also help
deliver this information to the decoder where segmentation takes place.

U-Net/UNet++ and LinkNet differ in the way their decoder blocks combine the fea-
tures coming from the skip connection and the previous decoder block. In U-Net/UNet++,
these two feature maps are concatenated, while in LinkNet, they are summed to reduce
the number of parameters. Our results show that it is not always advantageous to save on
the parameters: both the per-image classification accuracy and the per-pixel localization
accuracy of LinkNet were significantly lower than that of the U-Net models. This may
indicate that semantic information can be lost during the summation of feature maps.

A technique widely used in segmentation models to achieve multi-scale object recogni-
tion is the feature pyramid method. Image features are extracted in a pyramidal fashion at
incremental scales, and different levels are used to predict masks at different scales. In gen-
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eral, the lower levels of the pyramid carry semantically less accurate, but spatially higher
resolution information, whereas the higher levels of the pyramid carry semantically more
accurate but spatially lower resolution information. In order to combine the advantages of
the two types, it is common to merge the features of different pyramid levels.

Among the neural networks we investigated, FPN, PAN, DeepLabv3, and DeepLabv3+
use feature pyramids to provide multi-scale object detection capability. However, their
methods of creating the feature pyramid differ.

DeepLabv3 and DeepLabv3+ use dilated convolutions with an increasing dilation
rate to generate the feature pyramid. MA-Net also uses dilated convolutions to obtain
multi-scale context. However, this type of convolution has the inherent problem that
when the dilation is large, the convolutional kernel becomes too sparse to cover any local
information [51]. This may impair the local consistency of feature maps [27].

FPN uses simple convolutions and spatial upscaling to generate the feature pyramid,
which has a total of four levels. The final segmentation map is then obtained as the sum of
all pyramid level predictions, which are weighted by 1/4, 1/8, 1/16, and 1/32, respectively.
However, FPN did not perform well in our evaluations compared to the other models. We
argue that this is due to the fixed weights assigned to the pyramid levels. Depending on
how close the cystoscopic camera is to the examined lesions, different object scales, i.e.,
different pyramid levels may provide the most important semantic information.

PAN uses a pre-trained ResNet-101 to create the feature pyramid and then applies a
Feature Pyramid Attention (FPA) module to fuse the features of different levels. FPA has a
U-shaped structure that integrates attention-inspired information from different scales step-
by-step in a precise and efficient way. In addition, PAN uses global context information to
guide segmentation via Global Attention Upsampling modules. This increases the receptive
field of the model and enhances the consistency of pixel-wise classification.

We believe that PAN was able to achieve the best accuracy in cystoscopic image
segmentation because it efficiently combines the feature pyramid method, the attention
mechanism, and also makes use of global context information. However, these operations
entail a significant computational cost, making PAN one of our slowest networks. In
contrast, the dilated convolutions used by the DeepLabv3 models are very fast to compute.

The 92.91% Dice score achieved by our PAN model indicates better tumor localization
ability than reported in previous studies. As listed in Section 1, the attention mechanism-
based U-Net of Zhang et al. [19] achieved a Dice score of 82.5%, the mask region-based CNN
of Yoo et al. [6] obtained a score of 74.7%, while the CystoNet of Shkolyar et al. [4] did not
report the Dice score result, but their per-frame sensitivity of 90.9% is lower than the 94.79%
of our PAN model. This improvement in accuracy may be the result of more appropriate
pre-processing of the input image, a better choice of neural network architecture, or a
difference in the dataset.

In contrast to previous studies, we distinguish several types of lesions in addition to
bladder cancer. Results show that the neural network can detect and localize them all with
good accuracy. This can not only reduce the chance of any abnormalities going unnoticed
but may also help urologists differentiate between benign and malignant lesions.

We also observed that the proposed pre-processing techniques (noise reduction, con-
trast enhancement) improved the accuracy of the subsequent segmentation step compared
to the case when the raw input image is fed into the neural network. In the future, we
hope to investigate more image enhancement algorithms to see if further improvements
can be made. Moreover, with the rapid development of segmentation neural networks,
we believe that architectures more efficient than the current ones may appear within a few
years, which should be examined for cystoscopy.

We consider the greatest advantages of our solution to be the advanced and config-
urable image enhancement framework as well as the possibility of segmenting multiple
types of bladder lesions. Disadvantages include the scaling of the input images to a fixed
size of 160 × 160 pixels as well as the fact that it is not possible to know in advance what



Diagnostics 2022, 12, 2849 16 of 18

settings should be used for the pre-processing of the individual image frames in order to
achieve the best possible segmentation accuracy.

5. Conclusions

In this paper, we examined a deep learning-based solution for the automatic segmenta-
tion of cystoscopy images. As a pre-processing, noise was reduced by guided filtering, and
contrast enhancement was performed by unsharp masking. Then, the image was fed into a
CNN that predicted a high-accuracy segmentation map, marking bladder cancer, two types
of non-cancerous lesions, and four types of healthy tissue. This map was post-processed
to find the boundary polygons and overlay the input image with their outlines, assisting
doctors in cancer diagnosis and treatment. We examined eight popular neural network
architectures for the task at hand, and we found that the PAN model achieves the best
results with a mean Dice score of 92.91% and a malignant F-score of 91%. The small model
size and the few millisecond prediction time of the neural network allow the solution to be
applied in real time on video streams during the transurethral resection of bladder tumors.
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