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Abstract: Three-dimensional (3-D) super-resolution microwave imaging of human brain is a typical
electromagnetic (EM) inverse scattering problem with high contrast. It is a challenge for the tradi-
tional schemes based on deterministic or stochastic inversion methods to obtain high contrast and
high resolution, and they require huge computational time. In this work, a dual-module 3-D EM
inversion scheme based on deep neural network is proposed. The proposed scheme can solve the
inverse scattering problems with high contrast and super-resolution in real time and reduce a huge
computational cost. In the EM inversion module, a 3-D full convolution EM reconstruction neural
network (3-D FCERNN) is proposed to nonlinearly map the measured scattered field to a preliminary
image of 3-D electrical parameter distribution of the human brain. The proposed 3-D FCERNN is
completely composed of convolution layers, which can greatly save training cost and improve model
generalization compared with fully connected networks. Then, the image enhancement module
employs a U-Net to further improve the imaging quality from the results of 3-D FCERNN. In addition,
a dataset generation strategy based on the human brain features is proposed, which can solve the
difficulty of human brain dataset collection and high training cost. The proposed scheme has been
confirmed to be effective and accurate in reconstructing the distribution of 3-D super-resolution
electrical parameters distribution of human brain through noise-free and noisy examples, while
the traditional EM inversion method is difficult to converge in the case of high contrast and strong
scatterers. Compared with our previous work, the training of FCERNN is faster and can significantly
decrease computational resources.

Keywords: human brain imaging; super-resolution; deep learning; high contrast; electromagnetic inversion

1. Introduction

Electromagnetic (EM) inversion is a nondestructive technique that, through analyzing
the scattering field under the given illumination in the domain of interest (DOI) [1], obtains
electromagnetic properties such as permittivity, conductivity and permeability of the
unknown scatterer located in the inaccessible region. It has a wide range of applications
in medical imaging [2,3], remote sensing [4], geophysical exploration [5,6], microwave
imaging [7,8] and so on.

In general, inverse scattering methods can be classified into noniterative and itera-
tive methods. In the circumstance of weak scattering, noniterative methods are usually
used [9–11], and the inverse problem can be expressed as a linearized equation to obtain an
approximate solution. Noniterative methods can provide fast reconstruction results with
guaranteed accuracy, especially in tasks with strong scattering and high contrast.
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The reconstruction of unknown scatterers by the iterative methods [12–17] for non-
linear problems is achieved through iteratively minimizing an objective function that
quantifies the mismatch between the calculated and measured scattering field data. How-
ever, iterative methods take a long time and high computational costs in their reconstruction
process, thus they are usually not suitable for real-time inversion.

In recent years, with the rapid development of machine learning, the method of solving
the electromagnetic inverse scattering problem based on machine learning has become a
research hotspot. Pixel-based machine learning EM inversion methods are proposed and
can achieve better results [18–21]. The semi-join extreme learning machine (SJ-ELM) [22]
proposed by our group in previous work can achieve super-resolution three-dimensional
(3-D) microwave imaging of objects with high contrasts. The 3-D objects are divided into
multiple 1-D data sequences, and each sequence corresponds to a sub-model, however, for
the scatterers with complex structures and large electrical dimension, it will be invalid.

As the most complex and important organ in the organisms, the human brain is sig-
nificant interest for imaging [23]. Up to now, many microwave imaging methods have
been proposed for human brain. In [24], Saeed et al. works on brain cancer and applies a
statistical model to test and discuss brain tumor images. In [25], three nonlinear iterative
reconstruction algorithms, i.e., contrast source inversion (CSI), subspace-based optimiza-
tion method (SOM) and distorted born iterative method (DBIM), are employed for brain
stroke imaging. In [26], the inversion of S-parameter data collected in a metallic chamber
is performed with a nonlinear inversion strategy in Lebesgue spaces with nonconstant
exponents. Coli et al. [27] employ massive parallel computation from domain decomposi-
tion method and regularization techniques for the early detection and monitoring of brain
strokes. In [28], a multistatic system prototype for brain stroke detection is proposed.

However, because of the high contrast of brain tissue electrical parameters, super-
resolution 3-D human brain imaging is a strong nonlinear electromagnetic inverse scattering
problem; it is not only difficult to reconstruct, but also requires a lot of computer memory
and operation time for these methods. In [29], AHCN-LNQ (adaptive histogram contrast
normalization with learning-based neural quantization) is proposed to initially perceive
a brain tumor in a person with early signs of brain tumor. A hybrid neural network
electromagnetic inversion scheme (HNNEMIS) [30] proposed by our group in previous
work can achieve super-resolution 3-D human brain imaging. In [30], the semi-join back
propagation neural network (SJ-BPNN) is proposed to map the relationship between
scattering fields and electrical parameters distribution of human brain, it discretized 3-D
objects into multiple 1-D data sequences, and each sequence corresponds to a BPNN; thus,
a huge number of models need to be trained. Therefore, it still requires a large memory
cost for imaging.

Thus, how to achieve 3-D super-resolution human brain imaging with less computa-
tional cost is still a challenging task. This work proposes a new EM inversion scheme based
on deep neural network for super-resolution 3-D microwave imaging of human brain. The
scheme can be divided into EM reconstruction module and image optimization module.
For the EM reconstruction module, a 3-D full convolution electromagnetic reconstruction
neural network (3-D FCERNN) is proposed to reconstruct 3-D permittivity and conductiv-
ity distribution of human brain from the measured scattered electric field data. Then, for
the image optimization module, U-Net is further employed to enhance the image quality
and anti-noise ability of the whole scheme for human brain imaging. In order to make
the training cost low, a training strategy based on the human brain characteristics is also
introduced to create training dataset.

The main contributions of this work can be summarized as follows: (a) This work
proposes a 3-D FCERNN, which consists entirely of convolutional layers, to improve the
accuracy and reduce the huge computation cost for super resolution 3-D inversion. The
training parameters is far less than the network which used fully connected layers. The
FCERNN can reduce the computation burden, and can effectively alleviate the phenomenon
of over fitting, and improve the convergence performance of the network. (b) For the super-
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resolution imaging problems of 3-D scatterers, how to minimize the training cost and
training time has always been a challenging task. Our proposed inversion network can
directly reconstruct 3-D objects, which greatly reduces the number of training models, and
effectively shortens the training time and minimizes the training cost. Compared with
HNNEMIS, the training time of our scheme is greatly reduced, based on the conduction
of 3-D numerical example with 512 × 512 × 512 voxels. (c) A dual module inversion
scheme is proposed for 3-D super resolution inversion of human brain, where the first
module, FCERNN, has strong nonlinear mapping capability to map the scattered field to
3-D electrical parameters. The second module, U-Net, is used to enhance the inversion
quality of the output of the previous module. The second module has not only strong
nonlinear mapping ability, but also has strong edge information analysis ability, which can
calibrate the details of the results to make the inversion results more accurate.

This work is organized as follows. In Section 2, the formulation of mixed FEM is
briefly reviewed, and the proposed 3-D FCERNN and inversion scheme are discussed in
detail. In Section 3, normal human brain and human brain with an abnormal scatterer are
tested to illustrate the feasibility of the proposed method. In Section 4, some traditional
inversion schemes and machine learning based brain reconstruction schemes are discussed
and analyzed. Finally, we summarize this work in Section 5.

2. Materials and Methods
2.1. Mixed FEM for Forward Simulation

In this work, the mixed finite element method (mixed FEM) [31] is used to generate
training and test samples. The mixed FEM can stably and accurately perform biological
electromagnetic human brain simulations in the microwave frequency band by applying
Gauss’ law as the constraint condition.

Since the magnetic susceptibility of human brain and air is weak, the permeability is
assumed as a constant µ0. Using the implied time convention ejωt, the Helmholtz equation
of the scattered magnetic field Hs can be obtained as follows:
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µrb are the relative complex permittivity tensor and relative complex perme-

ability tensor of the background medium, respectively,
=
ε r and

=
µr are the complex relative

permittivity and complex relative permeability of the materials, respectively, Ei and Hi are
the incident electric and magnetic fields in a homogeneous background medium (air or a
matching fluid) which can be computed directly by analytical solutions, k0 and ε0 are the
wavenumber and permittivity of vacuum, and ω is the angular frequency. ε̃r can also be
further represented by the relative permittivity and conductivity:

ε̃r = εr + σ/(jωε0) (3)

where εr is the relative permittivity and σ is the conductivity. Ref. [31] presents more
detailed description of the mixed FEM in solving bio-electromagnetic problems including
brain electromagnetic simulations.

2.2. Proposed Deep Learning Inversion Scheme

This section introduces the proposed human brain training dataset generation strategy,
then describes the proposed 3-D FCERNN in detail, followed by the U-Net for the image
optimization module. The proposed scheme can be divided into electromagnetic reconstruc-
tion module and image optimization module. The algorithm flow of the scheme is shown in
Figure 1, where the 3-D FCERNN is proposed to reconstruct the measured scattered electric
field or magnetic field into 3-D human brain electrical characteristic data. Then, in the
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image optimization module, the 3-D human brain images generated by the reconstruction
module are cut into 2-D images by XY slices and input into U-Net for optimization.
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2.2.1. Training Dataset Building Strategy

For the inversion method based on deep neural network, whether the training dataset
can be constructed scientifically and effectively directly determines the training perfor-
mance of the machine learning model. How to make the training dataset close to the
real brain and require only a small number of samples is a big challenge for 3-D super-
resolution brain imaging. Obviously, the traditional training dataset generation strategy,
where the structure, size, location, and electrical properties of scatterers are randomly set
in the imaging domain, is not economic for the human brain problem, because millions
of training samples will be needed. To address this point, a new training set building
strategy based on the changes of brain characteristics is proposed to generate dataset. First,
a basic brain model provided by NEVA electromagnetics [32] is constructed, and then the
corresponding electrical characteristics of each tissue at 300 MHz are obtained through [33].
Secondly, for different training cases, the human brain model and internal structure are
obtained by scaling the basic model randomly within the range of 0.8 to 1.2 (with the step
of 0.1) according to the value in [30]. Thirdly, since there are individual differences among
different brain tissues. The boundary of each tissue needs to be deformed. In this operation,
each point on each tissue boundary is displaced by a normal distribution in the x, y and z
directions, respectively. To ensure the universality of the case, all brain tissues are deformed
with a random order.

Considering the task of detecting abnormal conditions such as lesions, bleeding or
tumors in human brain, abnormal scatterers of different sizes and electrical properties are
randomly added into human brain. In this work, a spherical anomalous scatterer is added
to the training samples. The relative permittivity of the anomalously scatterer is randomly
selected from 90, 120 and 150, while the conductivity is randomly selected from 1.038 S/m,
1.3840 S/m and 1.73 S/m, and the radius is randomly selected from 4 mm, 7 mm and
10 mm. Meanwhile, to evaluate the performance for solving the high contrast inversion
problem. The abnormal scatterer with high contrast is selected. To easily demonstrate this
process, a regular sphere is taken as an example (Figure 2). Step 1: A generic human brain is
selected as the basic model; Step 2: Scale the basic model within a ratio, which is randomly
in the range from 0.8 to 1.2, including the size and the electrical properties, to ensure the
validity and universality of the training dataset; Step 3: Deform each tissue to guarantee
the individual differences in different human brains, and the degree of deformation follows
the normal distribution; Step 4: Randomly add abnormal scatterers with different sizes and
electrical properties in the human brain as abnormal conditions such as lesions, bleeding
or tumors.
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2.2.2. 3-D FCERNN

In order to quickly and accurately image the electrical properties of human brain
from the measured scattered fields, a full-convolutional deep neural network, i.e., 3-D
FCERNN (Figure 3), is proposed in this work. The network takes the scattered electrical
field data as input and outputs the relative permittivity and conductivity distribution of
imaging domain.
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Compared with the SJ-BPNN used in the previous work [30], 3-D FCERNN structure
is more complex, and can solve a task with higher nonlinearity. Moreover, the training
parameters are far less than the network with fully connected layers. FCERNN can reduce
the computation burden, effectively alleviate the phenomenon of over-fitting and reduce
the training time.

The 3-D FCERNN consists of three modules, namely an encoder module, a decoder
module and a reconstruction module. The encoder module is used to receive the scattered
field data and extract its internal information to obtain the corresponding 3-D feature map;
the decoder module is used to restore the obtained feature map to a certain size of the initial
reconstruction data information; and the reconstruction module is used to reconstruct the
initial electrical properties into the final reconstruction data of the required size.

For the jth training sample, the input is a 2-channel column vector
xj = [

[
r1j, r2j, · · · rMj]

T,[ i1j, i2j, · · · iMj]
T
]T ∈ R2×M, representing the real (rMj) and imag-

inary (iMj) parts of the scattered field obtained by the combination of all transmitters and
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receivers, respectively, where M is the dimension of each channel of data input during each
training. Meanwhile, the corresponding output of the jth training sample is discretized into
N1 × N2 × N3 voxels. Therefore, the output of the jth training sample can be expressed as a
3-D matrix Pj ∈ RN1×N2×N3 .

For the super-resolution imaging tasks such as human brain imaging, N1 × N2 × N3
is an extremely large number, requiring a large amount of computer memory. Therefore,
in the inversion scheme proposed in this work, the complete 3-D output data is evenly
divided into N subset blocks, and each output of 3-D FCERNN model corresponds to a
subset block. Thus, the complete data can be expressed as Pj = p1

j ∪ · · · pn
j · · · ∪ pN

j , where

pn
j ∈ R

N1
N ×

N2
N ×

N3
N .

The encoder module of 3-D FCERNN is all composed of convolution layers. The input
scattered field dataset is a double-channel column vector of 2 ×M; the convolution kernel
sizes of the eight convolution layers in Figure 3. are 2, 2, 2, 2, 2, 4 and 1, respectively, and the
number of kernels is 32, 32, 64, 64, 128, 128, 256 and 256. In the first, third, fifth and seventh
convolution layers, we use convolution stride 2, 4, 2 and 4 to replace the pooling layer,
because stridden convolution can be fully differentiable and allow the network to learn its
own down-sampling while keeping more details. In addition, we carry out Batch Norm
(BN) [34] operation on the output of each convolution layer, and BN layer can normalize the
feature map of batches to avoid the instability of network performance caused by excessive
data. The calculation formula of BN layer is as follows:

ŷi = BNγ,β(yi) = γ
yi − µβ√

σ2
β + χ

+ β (4)

where yi and ŷi are the input and output of BN layer, respectively; µβ is the mean value of
yi, σβ is the standard deviation of yi, γ is the scaling factor, β is the translation bias, χ is a
constant (0.001 by default). The encoder module eventually processes the scattered field
data into a 256-channel column vector of ( M

64 × 1) × 256, which is then transformed by the

Reshape layer into a 4-D feature map of size
3√M
4 ×

3√M
4 ×

3√M
4 × 256.

The decoder module is composed of three deconvolution layers, and the number of
convolution kernels is 128, 64 and 32, respectively. Because deconvolution can inversely
map the eigenvalue back to the input data space, a deeper relationship between the feature
graph and the input graph can be obtained. Compared with the combination of up-
sampling layer and convolution layer, the deconvolution layer can better consider the
details of reconstructed data under the condition of a smaller number of parameters, and
reduce the training time and memory consumption.

The final reconstruction module is composed of a 3-D deconvolution layer with a
convolution kernel number of 2. The initial reconstruction data information generated by
the decoder module is reconstructed into the required size of the 2-channel final reconstruc-
tion data, namely the relative dielectric constant and conductivity distribution in DOI. The
ReLU activation function is expressed below

fReLU(x) = max(0, x) (5)

Meanwhile, it should be noted that each sub-model is independent of each other, so
there is no information exchange between the sub-models. For fully connected neural
networks such as BP and ELM, with the increase in their output layer, the nonlinearity of
tasks will be enhanced. In order for the results to converge, the number of nodes in the
hidden layer will be greatly increased, and all nodes of each layer need to be connected
to all nodes of the two layers before and after, resulting in a sharp increase in the weight
parameters that need to be trained, which means expensive computational cost and hard
neural network convergence. At the same time, the generalization of the model will
become worse.
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Therefore, compared with the fully connected network strategy, 3-D FCERNN based
on full convolution is more economical, has better generalization ability and shorter training
time for super-resolution 3-D inversion problems.

2.2.3. U-Net

In order to further improve the imaging performance of FCERNN, this work employs
U-Net as the imaging optimization module. Its input is the 2-D slices of the results from
3-D FCERNN and the corresponding output is the improved inversion results. U-Net was
first proposed for biomedical image segmentation [35]. A deep network with a U-shaped
symmetrical structure, it is composed of a down-sampling part and an up-sampling part
(Figure 4). The down-sampling part is the classical convolutional neural network structure.
It contains four conv-pool layers, and each conv-pool layer is composed of two 3 × 3
convolution layers, two rectifying linear unit (ReLU) and a 2 × 2 maximum pooling layer,
which can obtain segment maps at pixel level. The up-sampling part consists of four
up-sampling layers. Each up-sampling layer is similar to a conv-pool layer. In other words,
3 × 3 up-convolution is used to replace the 2 × 2 maximum pooling in conv-pool layer so
that the feature map can maintain uniform color difference. Global feature information
and local feature details are extracted from the input image through the down-sampling
part, and then the segment map is restored to the input size from the up-sampling part.
In addition, the feature maps obtained by each convolution layer of U-Net will be added
to the corresponding up-sampling layer through skip-concatenate, so the feature maps of
each layer will be effectively used in subsequent calculations to improve the accuracy of
the model results.

Diagnostics 2022, 12, 2786 7 of 16 
 

 

parameters that need to be trained, which means expensive computational cost and hard 
neural network convergence. At the same time, the generalization of the model will be-
come worse. 

Therefore, compared with the fully connected network strategy, 3-D FCERNN based 
on full convolution is more economical, has better generalization ability and shorter train-
ing time for super-resolution 3-D inversion problems. 

2.2.3. U-Net 
In order to further improve the imaging performance of FCERNN, this work employs 

U-Net as the imaging optimization module. Its input is the 2-D slices of the results from 
3-D FCERNN and the corresponding output is the improved inversion results. U-Net was 
first proposed for biomedical image segmentation [35]. A deep network with a U-shaped 
symmetrical structure, it is composed of a down-sampling part and an up-sampling part 
(Figure 4). The down-sampling part is the classical convolutional neural network struc-
ture. It contains four conv-pool layers, and each conv-pool layer is composed of two 3 × 3 
convolution layers, two rectifying linear unit (ReLU) and a 2 × 2 maximum pooling layer, 
which can obtain segment maps at pixel level. The up-sampling part consists of four up-
sampling layers. Each up-sampling layer is similar to a conv-pool layer. In other words, 3 
× 3 up-convolution is used to replace the 2 × 2 maximum pooling in conv-pool layer so 
that the feature map can maintain uniform color difference. Global feature information 
and local feature details are extracted from the input image through the down-sampling 
part, and then the segment map is restored to the input size from the up-sampling part. 
In addition, the feature maps obtained by each convolution layer of U-Net will be added 
to the corresponding up-sampling layer through skip-concatenate, so the feature maps of 
each layer will be effectively used in subsequent calculations to improve the accuracy of 
the model results. 

64 64

128 128

256 256

512 512

1024 1024

512 512

256 256

128 128

64 64
8 1

 (Number of Channels)

Output from 
proposed network

Final result

Conv 3×3+ReLU Max pool 2×2 Up-Conv 2×2 Skip Connection Conv 1×1+ReLU Copy and Crop

512 512

256 256

128 128

64 64

N×N N×N

8 8

N N


4 4

N N


2 2

N N


4 4

N N


8 8

N N


2 2

N N


 
Figure 4. The structure of U-Net. 

3. Results 
In this section, two numerical cases are presented to demonstrate the effectiveness of 

the deep neural network-based inversion scheme for the super-resolution 3-D human 
brain imaging. The first numerical case is used to evaluate the performance of the pro-
posed model for the normal brain. The second case is used to evaluate the performance of 
the model in the detection of the anomalous scattering in the human brain. White Gauss-
ian noise pollution with different signal-to-noise ratio (SNR) is added to the data in two 
cases to test the anti-noise ability of the proposed model. 

  

Figure 4. The structure of U-Net.

3. Results

In this section, two numerical cases are presented to demonstrate the effectiveness
of the deep neural network-based inversion scheme for the super-resolution 3-D human
brain imaging. The first numerical case is used to evaluate the performance of the proposed
model for the normal brain. The second case is used to evaluate the performance of the
model in the detection of the anomalous scattering in the human brain. White Gaussian
noise pollution with different signal-to-noise ratio (SNR) is added to the data in two cases
to test the anti-noise ability of the proposed model.

3.1. Electromagnetic Inversion Simulation Experiment Settings

Since it is difficult to obtain a large amount of real human brain scattered field data,
EM simulation is used to obtain human brain scattered field data as the training data in
this work. The operating frequency of the two numerical cases is set at 300 MHz, and the
corresponding wavelength in air is λ0 = 1 m. DOI is a cube with a side length of 0.24 m,
and the center of DOI is the origin of the coordinate axis. The transmitters and receivers
(modeled as point electric dipoles) surround the DOI’s human brain model in four layers:
the first layer has 32 transmitters/receivers placed in a 0.12 m radius circle with a step of
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11.25◦ at z = −0.06 plane; the second layer has 16 transmitters/receivers placed in a 0.115 m
radius circle with a step of 22.5◦ at z = 0 plane; the third layer has 8 transmitters/receivers
placed in a 0.1 m radius circle with a step of 45◦ at z = 0.06 plane; and the fourth layer
has 4 transmitters/receivers placed in a 0.06 m radius circle with a step of 90◦ at z = 0.1
plane. There are 60 transmitters/receivers in this setup so that each receiver will receive
signals from 59 other transmitters. That is, a total of 3 × 60 × 59 = 10,620 measured
scattered electric field data with x, y and z components are received. In order to reduce the
number of training parameters and the dependence of scattered field data and improve the
generalization of the model, this work sums the signals of 59 other transmitters received by
60 receivers, respectively, and obtains 60 × 3 = 180 measured values, and then take it as
input to 3-D FCERNN, that is, the input size is equal to 2 ×M = 360. The virtual human
brain simulation model was constructed by NEVA Electromagnetism. All the forward and
inverse computations are performed on a workstation with 20-cores CPU, 256 GB RAM
and the NVIDIA Geforce RTX 3090 GPU.

3.2. Setups of Training Sample and Network

The imaging domain is represented as a cube box of 0.24 × 0.24 × 0.24 m3 (Figure 5).
In the first case, the reconstructed subjects were normal human brains. The imaging
domain is discretized into 256 × 256 × 256 voxels, and the size of each voxel was
0.94 × 0.94 × 0.94 mm3 (or 9.4 × 10−4 λ × 9.4 × 10−4 λ × 9.4 × 10−4 λ). In this ex-
ample, 190 groups of samples are used to train the 3-D FCERNN model. In the second case,
the brains with abnormalities such as tumors are performed. To test the performance of the
proposed scheme in the super-resolution reconstruction task, we discretized the imaging
domain into 512 × 512 × 512 voxels to challenge the higher resolution. The size of each
voxel was 0.47 × 0.47 × 0.47 mm3 (or 4.7 × 10−4 λ × 4.7 × 10−4 λ × 4.7 × 10−4 λ). In
this example, 250 groups of samples are used to train the 3-D FCERNN model. Due to
the large number of discrete voxels in the two examples, direct reconstruction of all the
voxels will require huge computing resources and increase the training time. Therefore, the
whole imaging domain voxels are divided into several cube boxes, and each cube box is
reconstructed by an FCERNN.
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In order to evaluate the imaging performance of the method, the model misfit and
data misfit under L2 norm are defined as follows:

Misfitmodel =
‖ MpR −MpT ‖2
‖ MpT ‖2

(6)

Misfitdata =
‖ DpR −DpT ‖2
‖ DpT ‖2

(7)
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where MpT and MpR are the true electrical parameters of the model and their reconstructed
values for all voxels, respectively. DpT and DpR are the measured scattered field received
by all receivers and the scattered field vector obtained from the reconstructed result, respec-
tively.

In this work, the constructed human brain model contains 16 different tissues, and the
corresponding electrical characteristics of each tissue at 300 MHz are listed in [30]. It is not
difficult to find that the electrical characteristics of brain tissues at this frequency are much
greater than that of air, and there are great differences among tissues, so super-resolution
imaging of human brain is a high-contrast EM inverse problem. The training samples are
obtained by the proposed training set construction strategy based on the changes of human
brain characteristics. Based on the basic human brain parameters, the electrical properties
of each human brain tissue are multiplied by a random multiplier between 0.8 and 1.2.
For the second example, anomalous scatterers with radii of 4 mm, 7 mm, and 10 mm are
randomly distributed in the human brain. Their relative permittivity is randomly set to 90,
120, and 150, and the conductivity is randomly set to 1.038 S/m, 1.384 S/m, and 1.73 S/m.

In addition, in order to make 3-D FCERNN converge rapidly, this work adopts the
mean square error (MSE) as the loss function of the model, and the expression of MSE loss
function is as follows

MSEloss =
1
m

m

∑
i=1

(yi − ŷi)
2 (8)

where, m is the number of samples, yi is the model reconstruction electrical parameter, ŷi is
the real electrical parameter, it should be noted that both yi and ŷi are normalized.

3.3. Case I: Normal Human Brain

In order to evaluate the imaging performance of the proposed deep neural network-
based electromagnetic inversion method for normal human brain, a normal human brain
model never appeared in the training data set is selected for testing. The differences
between the test set and the averaged training mode are shown in Table 1. In this case,
both 3-D FCERNN and U-Net are GPU accelerated. During the training process, the 3-
D FCERNN required approximately 3 h of training on a computer with 24 GB of video
memory, and the run time is reduced to 1 min in testing process. Meanwhile, the whole
human brain reconstructed by 3-D FCERNN is sliced into U-Net for optimization, and the
training time and test time of U-Net is about 80 min and 1 min, respectively.

Table 1. Differences between the test set and the averaged training mode.

Testing Model
Normal Model Abnormal Model

Test #1 Test #2 Test #3 Test #4

Model misfit

Max model misfit (%) 84.27 104.61 95.60 73.57
Min model misfit (%) 13.98 12.02 9.42 11.04
Average model misfit (%) 56.34 66.42 57.24 58.04

The first row of Figure 6 shows the true electrical parameters distribution. The second
row shows the 3-D slices of human brain reconstructed by 3-D FCERNN and the corre-
sponding 2-D slice at z = 0.02 m plane, where the first two columns are relative permittivity
distributions and the last two columns are conductivity distributions. It can be seen that
the initial reconstruction results obtained by 3-D FCERNN can accurately reconstruct the
position, shape and size of each human brain tissues, but there are some noises and inaccu-
racies at the boundaries of tissues, and the electrical parameters of tissues are not accurate
enough. Fortunately, the second module, U-Net, can eliminate the edge noise and make
the electrical parameters of the brain tissues more accurate. As shown by the second row of
Figure 6, although the structure of the human brain is complex and the contrast is high, the
final imaging results are in good agreement with the real information. The model misfits
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and corresponding data misfits between the reconstructed results of proposed model and
ground truth are shown in Table 2. It can be seen that the image enhancement module
composed of U-Net can effectively reduce model misfits and data misfits of FCERNN
reconstructed data.
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Figure 6. The reconstructed result obtained from FCERNN and U-Net optimization. 
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Table 2. Model misfits and data misfits of the proposed method for normal human brain case at
different noise levels.

Noise Level
3-D FCERNN 3-D FCERNN-U-Net

Model Misfit (%) Data Misfit (%) Model Misfit (%) Data Misfit (%)

Noise Free 20.16 16.96 19.54 15.53
−10 dB 71.72 67.47 26.78 25.84
−20 dB 48.92 37.14 21.34 18.64
−30 dB 31.25 26.28 19.76 15.48
−40 dB 22.38 18.80 19.36 15.37

However, the measurement of scattered field will be interfered by noise in a real
environment. To further evaluate the anti-noise performance of the proposed scheme in
the noisy environment, different levels of white Gaussian noise are added to the measured
scattered electric field. Figure 7. shows the relative permittivity and conductivity distri-
bution of human brain reconstructed by 3D FCERNN and U-Net optimization at relative
noise levels of −10 dB, −20 dB, −30 dB and −40 dB.

The results obtained from 3-D FCERNN showed that with the increasing noise level,
the boundary between brain and tissues becomes more and more blurred, and more noisy
blocks appear. Nevertheless, even when the relative noise level is−10 dB, the reconstructed
brain tissues are almost indistinguishable. Then, after the optimization by the second
module, it is not hard to see that the final imaging results are improved, and the influence
of noise is improved to a certain extent.
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Figure 7. The reconstructed results obtained from the scheme under noise: (a) relative permittivity 
distribution; (b) conductivity distribution.  
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The model misfits and data misfits of the final reconstruction results obtained by 3-D
FCERNN and U-Net are listed in Table 2. It can be seen that the proposed method has some
anti-noise performance in the noisy environment.

3.4. Case II: Detection of Anomalies

In order to evaluate the detection performance of the proposed method for anomalous
scatterers, three different anomalous cases are provided which contain anomalous scatterers
with random position, size and electrical parameters.

The imaging domain of this case is discretized into 512 × 512 × 512 voxels, which
is with higher imaging resolution than Case I. Hence, the number of unknowns of this
case is eight times that of Case I. This is not only a great challenge for traditional inversion
methods, but also difficult for machine learning-based inversion methods to handle such a
high-resolution imaging task. The differences of the three abnormal scatterers test sets and
the averaged training model are shown in Table 1. Three-dimensional FCERNN required
approximately 18 h for training on a computer with 24 GB of video memory, and the trained
model will cost 5 min during testing. U-Net cost 80 min for training and one minute for test.

First, Tests #2–4 are performed in an ideal noiseless environment. As shown in Figure 8,
the reconstructed results of Tests #2–4 slices at z =−0.01, 0.006 and 0.016 planes obtained by
3-D FCERNN can approximately reconstruct the contour of abnormal scatterer and brain
tissues, but the imaging accuracy is not satisfactory. Then, with the optimization by the
second module, the contour, shape and electrical parameters of human brain tissues can be
well imaged. Meanwhile, the position, shape, size, relative permittivity, and conductivity
of each anomalous scatterer can also be imaged, even for the tiny anomalous scatterers
in Test #3. The model misfits and data misfits of Tests #2–4 are listed in Table 3. It can
be seen that although this numerical example is with anomalous scatterers and higher
resolution, both the model misfit and data misfit are still in a satisfactory level in the
noise-free environment. Moreover, the anomalous scatterers in the three cases can be
reconstructed accurately, including their position, shape, size and electrical parameters.
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Table 3. Model misfits and data misfits of the proposed method for human brain abnormal scatterer
cases at different noise levels.

Noise Level Test
3-D FCERNN 3-D FCERNN-U-Net

Model Misfit (%) Data Misfit (%) Model Misfit (%) Data Misfit (%)

Noise Free
Test #2 16.03 26.53 9.03 7.78
Test #3 14.98 11.57 9.09 4.38
Test #4 16.60 12.39 10.64 6.97

−10 dB
Test #2 47.70 71.13 16.92 33.68
Test #3 53.40 83.56 17.24 14.91
Test #4 60.59 136.91 19.45 16.29

−20 dB
Test #2 28.33 42.94 13.16 16.22
Test #3 36.14 39.49 15.05 9.63
Test #4 45.41 84.91 17.90 25.28

−30 dB
Test #2 17.94 27.65 10.36 10.10
Test #3 21.32 23.24 11.39 7.89
Test #4 29.87 34.07 14.64 10.19

−40 dB
Test #2 16.15 26.56 9.91 10.07
Test #3 15.61 15.72 9.95 8.17
Test #4 18.94 17.18 11.81 8.91

In order to evaluate the performance of the proposed scheme in a noisy environment,
white Gaussian noises with relative noise levels of −10 dB, −20 dB, −30 dB and −40 dB
were added to the measured scattered electric field. The reconstructed results under those
noises are shown in Figure 9. It can be seen that the proposed scheme can well reconstruct
the position, size and contour of anomalous scatterers under various noises. However, at
−10 dB noise level, the electrical parameters of abnormal scatterers are not accurate enough,
and some noise blocks appear in brain. With the reduction in the relative noise level, this
problem is improved and the imaging results becomes better and better. Both model misfits
and data misfits of the reconstructed results are listed in Table 3. It can be seen that the
proposed scheme can still reconstruct high-quality super-resolution human brain model in
a high-noise environment, and abnormal scatterers in brain tissue can also be reconstructed
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accurately. Therefore, the scheme still has a good ability to detect anomalous scatterers in
high noise environment.
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Figure 9. The reconstructed 2-D slices of relative permittivity and conductivity distributions obtained
from the scheme with abnormal scatterer under noise.

4. Discussion

Three-dimensional super-resolution brain microwave imaging has great application
value in clinical diagnosis and biomedical research. However, achieving super-resolution
3-D brain imaging is a very difficult task. For the existing traditional EM inversion methods,
such as VBIM, the inversion performance is highly correlated with the initial values ob-
tained by linear approximation. For the strong scatterers such as human brain, it will bring
strong nonlinearity, so the linear approximation cannot provide good initial values for the
traditional inversion method. In this way, in the case of strong scatterers, it is difficult to
converge in the forward simulation at each iteration.

For the machine learning based-EM inversion method, such as HNNEMIS proposed
by our group, it maps the relationship between human brain scattered field and electrical
parameter distribution by SJ-BPNN. SJ-BPNN discretizes 3-D objects into multiple 1-D data
sequences, and each sequence is inverted by a BPNN. Thus, a large number of models are
needed to train, and the imaging speed is slow and requires a large amount of computing
resources. For a human brain case, HNNEMIS needs 8 h and 89 Gb for training, and 30 min
and 19 Gb for testing, respectively. For this work, it needs 3 h and 24 Gb for training and 1
min and 4 Gb for testing, respectively. Thus, compared with the HNNEMIS, FCERNN can
greatly reduce the training time and computing consumption.

5. Conclusions

The EM inverse scattering for 3-D super-resolution human brain imaging is a typical
high contrast inversion task. The implementation of super-resolution introduces a huge
number of unknowns, which leads to unbearable computational cost. To solve this inverse
problem, this work proposes a dual-module EM inversion scheme based on a deep neural
network, which includes an EM inversion module and an image enhancement module.
In the EM inversion module, a 3-D FCERNN is proposed to map the measured scattered
electric field to 3-D electrical properties of scatterers, such as relative permittivity and
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conductivity. This network has low computational cost, high accuracy and fast training
speed in super-resolution 3-D imaging tasks. For the image enhancement module, U-Net is
adopted to further improve the imaging quality. Moreover, to solve the collection of real
human brain data, a dataset generation method based on human brain features deformation
is proposed to accelerate the convergence speed of the network.

Two numerical cases are employed to verify the reliability of the proposed super-
resolution 3-D brain reconstruction scheme. The first case uses a normal human brain with
256 × 256 × 256 voxels to validate the proposed scheme. The second case is employed
to validate the proposed scheme for abnormal scatterer detection in human brain with
512 × 512 × 512 voxels. The inversion results of these examples in noise-free and noisy
environments show that the proposed method can efficiently reconstruct the 3-D super-
resolution distribution of human brain electrical properties, and has superior detection
ability for human brain abnormal scatterers. Meanwhile, one should note, in this work,
only one basic model is selected due to the data restriction. More basic models will make
the EM inversion scheme more generalizable for human brain imaging.
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