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Abstract: Objective: The likelihood of timely treatment for cervical cancer increases with timely
detection of abnormal cervical cells. Automated methods of detecting abnormal cervical cells were
established because manual identification requires skilled pathologists and is time consuming and
prone to error. The purpose of this systematic review is to evaluate the diagnostic performance of
artificial intelligence (AI) technologies for the prediction, screening, and diagnosis of cervical cancer
and pre-cancerous lesions. Materials and Methods: Comprehensive searches were performed on
three databases: Medline, Web of Science Core Collection (Indexes = SCI-EXPANDED, SSCI, A & HCI
Timespan) and Scopus to find papers published until July 2022. Articles that applied any AI technique
for the prediction, screening, and diagnosis of cervical cancer were included in the review. No time
restriction was applied. Articles were searched, screened, incorporated, and analyzed in accordance
with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Results:
The primary search yielded 2538 articles. After screening and evaluation of eligibility, 117 studies
were incorporated in the review. AI techniques were found to play a significant role in screening
systems for pre-cancerous and cancerous cervical lesions. The accuracy of the algorithms in predicting
cervical cancer varied from 70% to 100%. AI techniques make a distinction between cancerous and
normal Pap smears with 80–100% accuracy. AI is expected to serve as a practical tool for doctors
in making accurate clinical diagnoses. The reported sensitivity and specificity of AI in colposcopy
for the detection of CIN2+ were 71.9–98.22% and 51.8–96.2%, respectively. Conclusion: The present
review highlights the acceptable performance of AI systems in the prediction, screening, or detection
of cervical cancer and pre-cancerous lesions, especially when faced with a paucity of specialized
centers or medical resources. In combination with human evaluation, AI could serve as a helpful tool
in the interpretation of cervical smears or images.
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1. Introduction

Cervical cancer is the fourth most frequently diagnosed cancer and the fourth lead-
ing cause of cancer death in women [1], which accounts for 570,000 incident cases and
310,000 deaths each year worldwide [2]. Cervical cancer is the most commonly diagnosed
cancer in 23 countries in the world and is the leading cause of cancer death in 36 countries,
with the vast majority of these countries found in sub-Saharan Africa, Melanesia, South
America, and South-Eastern Asia. The region with the highest incidence and mortality
rates is sub-Saharan Africa, with rates particularly high in Eastern Africa (Malawi has the
world’s highest incidence and mortality rate in the world), Southern Africa, and Middle
Africa. In Northern America, Australia/New Zealand, and Western Asia (Saudi Arabia
and Iraq), incidence rates are 7 to 10 times lower, while mortality rates can vary by up to
18 times [3].

Cervical cancer is almost fully preventable because of its long premalignant phase
and is curable if the signs are identified and treated in the earliest stage [4–6]. Effective
prevention strategies for cervical cancer include the use of screening tests for primary and
secondary prevention, human papillomavirus (HPV) vaccination, and early detection and
treatment of cervical intraepithelial neoplasia. [7–14]. The gold standard for the diagnosis
of cervical cancer is still colposcopy-guided biopsy, which is then staged on the basis of
the clinical examination and the outcome of imaging procedures [15,16]. Although this
is an effective strategy in high-income nations, its execution requires a well-organized
infrastructure, as well as skilled professionals, such as pathologists, cytopathologists, and
colposcopy specialists [17–19]. Many efficient screening programs have been developed in
recent times [20], but their implementation and maintenance are hindered by insufficient
numbers of professionals [21] and the absence of an adequate health infrastructure [22].
Furthermore, manual screening is not always accurate [23], and may cause some lesions to
escape detection for a certain period of time [16].

Artificial intelligence (AI) provides an automated diagnosis; its significant potential
in resolving this issue is proven [24]. AI has been used to an increasing extent for the
diagnosis of numerous diseases in recent years, including the classification of skin malig-
nancies [25], imaging diagnosis of tumors [26], the detection and classification of retinal
diseases [27], and gynecologic cancer [28]. With the use of sophisticated algorithms, AI
has the ability to recognize images, learn classifications, extract features, and process data
autonomously [16,29]. The research suggests that AI-assisted technology may be utilized
for segmentation of cytoplasm and identification of cervical epithelial dysplasia; however,
it is still unknown how well AI-assisted cytology will perform in population-based screen-
ing [30]. The application of AI in early screening and detection of cervical cancer has helped
address the issue of scarce human resources and enhances diagnostic precision [16]. While
most of the technologies supporting AI in pathology are either in the development stage
or are in the observational study stage, they are not frequently used in routine large-scale
screenings [31]. Considering the high demands and expectations of these tools in clinical
practice, evidence supporting AI-based diagnosis needs to be systematically reviewed. The
aim of the present review is to evaluate the diagnostic performance of AI technologies in
cervical cancer and pre-cancerous lesions.

2. Materials and Methods

Published articles that developed or validated AI techniques for the prediction, screen-
ing, and diagnosis of cervical cancer were searched for a systematic review (PROSPERO
registration ID: CRD42022352650).

2.1. Research Question

The review was based on the following research question: what do we know about AI,
and what is the accuracy of AI techniques in detecting cervical cancer or pre-cancerous lesions?
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2.2. Search Strategy and Information Sources

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
criteria were used to design the study [32]. We searched for relevant articles in the three
databases PubMed/MEDLINE, Scopus, and Web of Science. The following keywords
were used for the search in July 2022: “artificial intelligence”, combined with “cervical
cancer”, “cervical intraepithelial neoplasia (CIN)”, “uterine cervical neoplasms”, “cervical
neoplasm”, “atypical squamous cells of undetermined significance”, “high-grade squa-
mous intraepithelial lesion (HSIL)”, “low-grade squamous intraepithelial lesion (LSIL)”,
“atypical squamous cells of undetermined significance”, “Pap smear”, “Bethesda system”,
“screening”, “prediction”, “cytology”, “colposcopy”, “detection”, and “diagnosis”. MeSH
keywords and Boolean (AND, OR) operators were employed to enhance the selection
of entries.

2.3. Inclusion and Exclusion Criteria

We included all types of observational studies dealing with cervical cancer screen-
ing, diagnosis, and prediction programs for early and appropriate detection, performed
anywhere in the world and published exclusively in the English language.

Studies focused on animals, genomic and molecular studies, segmentation of nuclei,
genomic profiles, biomarkers, chromosomal alteration progression, gene expression profil-
ing, optoelectronic sensor, spectroscopy, mathematical model, and cervical cancer prognosis
were excluded. Furthermore, studies addressing the segmentation of cancerous lesions
on magnetic resonance imaging (MRI)/computed tomography (CT) images, non-full-text
articles, case reports, reviews, commentaries, letters to editors, conference presentations,
and reports were omitted. Two authors independently assessed the titles and/or abstracts
of articles that were retrieved using the search method and those from additional sources
to find studies that would fit the criteria of this systematic review. Discussion with a third
(external) collaborator was used to settle any differences they had on the eligibility of
specific articles.

2.4. Study Selection

Three authors reviewed, screened, and extracted the search results. The EndNote
software (EndNote X9, Thomson Reuters) was used to list the studies and screen them on
the basis of the inclusion criteria. The third expert author strategy was used for conflicts
in the screening step. The studies were initially chosen according to the relevance of their
titles and abstracts (LA and AMM). Then, the full texts were examined to validate their
eligibility (LA and IA). We included articles that addressed any diagnosis of cervical cancer
and pre-cancerous lesions.

2.5. Data Extraction and Synthesis

Details of all articles were extracted and reported from the studies using a pre-piloted
customized standard form in order to ensure the consistency of this step for all investiga-
tions. Data such as the authors, year of publication, sample size, methods, and datasets
were independently extracted by the two writers. Any disagreement was clarified through
discussion (with a third external collaborator if necessary). Due to the diverse modes of
reporting, we performed a narrative synthesis of the studies.

3. Results
3.1. Search Results

A total of 2538 publications, 327 of which were duplicate articles, were found in the
various databases. After reviewing the titles and abstracts of the remaining papers, 1100
were excluded. Of the remaining articles, 994 were omitted for the lack of alignment with
the objectives of the study. Finally, the systematic review comprised 117 studies (Figure 1).
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Figure 1. The process of screening and selecting relevant studies based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses.

3.1.1. Application of AI for Cervical Cancer and Its Cost-Effectiveness

From 1997—when cervical cancer screening was performed for the first time with
AI—until today, various machine learning algorithms have been applied for the detection
of cervical cancer [30,33–54]. Common machine learning (ML) models included deep learn-
ing (DL), k-nearest neighbors (KNN), artificial neural network (ANN), decision tree (DT),
random forest (RF), support vector machine (SVM), logistic regression (LR), synthetic mi-
nority oversampling technique (SMOTE), convolutional neural network (CNN), multilayer
perceptron (MLP), deep neural networks (DNN), the PAPNET test, and ResNet (residual
neural network or a combination of techniques) [36,39,45,46,55–75]. The time taken for
training and for the prediction of cervical cancer by each algorithm varied markedly. In
Kruczkowski et al.’s study, the time needed to train for the Naïve Bayes and CNN algo-
rithms varied from 7.54 ms to 5320 ms. The prediction time for cervical cancer by the Naïve
Bayes and RF algorithms varied from 1.81 ms to 15.5 ms, and the accuracies differed [76].
Elakkiya et al. reported an average of 0.2 s to classify the cervical lesion using a hybrid deep
learning technique that combined small-object detection generative adversarial networks
(SOD-GAN) and the fine-tuned stacked autoencoder (F-SAE). [77]. In recent years, the rapid
progress of AI technologies and the use of combined features have significantly reduced
costs, time, the cost of training, and the inference time [52,78,79]. These advancements have
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also improved the patient’s access to professional pathologists and the prompt delivery of
cytology results [78].

However, the cost effectiveness of AI was questioned in some studies because the cost
of AI techniques far exceeded that of manual screening. Additionally, commonly used
techniques require a considerable database for training the application of models and this
constitutes a barrier in the diagnosis of cervical cancer [80].

The following four groups were created from the 117 studies that were deemed suitable
for the investigation: AI application in cervical cancer prediction (n = 22), AI application
in cervical cancer screening (n = 25), AI application in cytology (n = 44), and colposcopy
(n = 26) for the detection of cervical cancer.

3.1.2. Application of AI in Predicting Cervical Cancer

Identifying predictors is essential for making precise and meaningful predictions [81].
Multivariate adjustment and multiple-regression techniques were introduced for predic-
tion (that is, for estimating the predicted value of a certain outcome as a function of
given values of independent variables) [82]. AI studies using machine learning principles
have focused on algorithms to predict cervical cancer [55–63,83–95]. The most important
predictors of cervical cancer were age, age at first sexual intercourse, number of sexual
partners, pregnancies, smoking, period of smoking (years), hormonal contraceptives, pe-
riod of use of hormonal contraceptives (years), IUD, period of use of IUD (years), STDs,
period of STDs (years), Schiller, Hinselmann, cytology, the presence of 15 high-risk HPV
genotypes [55–58,60,84], social status, marital status, personal health level, education level,
and the number of caesarean deliveries [63]. However, according to Mudawi et al., certain
characteristics of the patient samples, including the quantity of alcohol consumed and the
presence of HIV and HSV2, could not be regarded as reliable predictors [95]. Based on the
data shown in Table 1, the accuracy of the algorithms in predicting cervical cancer varied
from 70% to 100% [55–60,62,83–95]. The application of AI for the prediction of cervical
cancer is shown in Table 1.

Table 1. Characteristics of studies with AI for the prediction of cervical cancer.

First Author/Year Sample Size Methods Datasets Main Results Drawbacks of Studies

Kahng et al.,
2015 [55] 731 SVM

Patient records (PAP
smear report, age,

and the presence of
high-risk

HPV genotypes)

Four features (PAP, HPV16,
HPV52, and HPV35) were

found to be the most
effective in

predicting cancer.

Not reported

Al-Wesabi et al.,
2018 [56] 858 DT and KNN

858 samples and
32 features, as well as

four classes

When factors including age,
first sexual intercourse,
pregnancies, smoking,

hormonal contraceptives,
and genital herpes were
taken into account, the

accuracy of cancer
prediction was 97%.

Not reported

Dillak et al.,
2018 [83] 400 RPNN and COA

Subjects (of which
250 were used for

training and 150 were
used for testing)

The accuracy of the
suggested method

was 96%.
Not reported
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Table 1. Cont.

First Author/Year Sample Size Methods Datasets Main Results Drawbacks of Studies

Ahmed et al.,
2019 [57] 858 RFE and RF

Patient record (age,
age at first sexual

intercourse, number
of sexual partners,

pregnancies, Schiller,
Hinselmann,

cytology) smoking,
smoking in years,
IUD, IUD use in

years, STDs, years of
STDs, and hormonal

contraceptives
(years).

With an accuracy of 91.04%,
this model successfully

identified six risk variables
for cervical cancer: Schiller,
Hinselmann, cytology, first

sexual experience (age),
number of pregnancies,

and age.

Not reported

Alam et al.,
2019 [58] 858 patients DMT and SMOTE

Patient records (age,
pregnancies, smoking

patterns,
chronological records

of STDs, and
contraceptive usage)

A very high prediction was
noted for Boosted DT,
which had an AUROC

of 0.978.

Not reported

Chen et al.,
2019 [59] 365 patients Boruta algorithm

and RF

The age of the
patient, uterine cervix

images, ThinPrep
Pap test, and

HPV test

The proposed multi-modal
diagnostic approach

provides the final diagnosis
with 83.1% accuracy

The main limitations of
this study were the small

sample size and the
unbalanced distribution
of the patient population

Garg et al.,
2019 [84] - REPTree

32 essential clinical
characteristics,

including age, the
use of hormonal

contraceptives, the
number of sexual

partners, pregnancies,
smoking, etc., as well
as four classifications
(Hinselmann, Schiller,
cytology, and biopsy)

Age, the use of hormonal
contraceptives, age at the

first sexual encounter,
genital herpes. STDs,

number of pregnancies, and
smoking are the main
predictive factors that

improve classification in
comparison with

other factors.

Not reported

Geetha et al.,
2019 [60] 858 cases RF, SMOTE and PCA

Patient data with
32 risk factors and

four objective
variables:

Hinselmann, Schiller,
cytology, and biopsy

When factors including age,
first sexual encounter,
pregnancy, smoking,

hormonal contraceptives,
and STDs such as genital
herpes were taken into

account, the accuracy of
cancer prediction was 97%.

SMOTE was only applied
to two-dimensional data.

SMOTE loses
effectiveness as

dimensions increase since
adjacent nodes are not

taken into account,
leading to overlapping
and inaccurate results.

Kar et al., 2019 [85] 15 samples NFS Patients’ records

The application of NFS for
early-stage detection of

cervical cancer produced
satisfactory results with

100% accuracy.

Not reported

Kumar Suman and
Hooda, 2019 [96] 858 patients

RF, Neural Network,
SVM, AdaBoost,
Bayes Net, DT

Patient
demographics, habits
and medical records

The accuracy and AUC of
the Bayes Net algorithm

were 96.38% and
0.95, respectively.

Not reported

Nithya et al.,
2019 [61] 858 patients C5.0, RF, Rpart, KNN

and SVM

Patient data with
36 attributes

(32 input features
and 4 target variables:
Hinselmann, Schiller,

cytology, biopsy)

Overall, C5.0 and RF
classifiers identified women
presenting clinical signs of

cervical cancer fairly
accurately and thoroughly.

Not reported

Tian et al., 2019 [86] 34 paired
samples MLA (RF)

Adjacent cervical
tissues of 14 CIN2+,

10 HPV+ and 10
CIN1 patients.

The probability of accuracy
was 0.814 for CIN2+, and
0.922 for HPV+ and CIN1.

The sample size
was small.
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Table 1. Cont.

First Author/Year Sample Size Methods Datasets Main Results Drawbacks of Studies

Alsmariy et al.,
2020 [62] 858 cases SMOTE

32 risk factors
(demographic, habits,

and historical
medical records) with
four target variables

(Hinselmann, Schiller,
cytology, and biopsy)

The accuracy, sensitivity,
and PPA ratios of all target
variables were increased in
the SMOTE voting model
by 0.93%, 5.13%, 39.26%,

and 29%, respectively.Using
the PCA technique

shortened the time taken to
execute computations and

also improved the
effectiveness of the model.

Not reported

Asadi et al.,
2020 [63] 145 patients SVM, QUEST, C&R

tree, MLP and RBF
Patient data with

23 attributes

The percentages of MLP’s
accuracy, sensitivity,

specificity, and AUC are
90.90, 90.00, 91.67, and

91.50. The level of personal
health, marital status,

socioeconomic standing,
dose of contraceptives used,

education level, and the
number of caesarean

deliveries were all found to
be significant predictors in

all algorithms.

Not reported

Ijaz et al., 2020 [88] 858 patients DBSCAN, SMOTET,
RF, iForest

Sexual partners, first
sexual encounter,

pregnancies,
smoking, hormonal
contraception, IUDs,
STDs, CIN, HPV, and

four objective
variables:

Hinselmann, Schiller,
cytology, and biopsy.

DBSCAN with SMOTE and
DBSCAN with

SMOTETomek were
outperformed by

combinations of iForest
with SMOTE and iForest

with SMOTETomek.

Algorithm (which was a
combination of outlier
technique and became
balancing with RF) ran

more slowly and required
more memory.

Weegar, 2020 [89]
1321 patients
with cervical

cancer

LSTM neural
network

Clinical codes, lab
findings, and free

text notes on patients,
taken from electronic

health records.

FR achieved the best results
with an AUC of 0.70. Not reported

Asaduzzaman
et al., 2021 [90] 161 patients ML models

Risk factors for
cervical cancer

included children,
age at first sexual

encounter, husband’s
age, Pap tests,

and age.

The best scores were noted
for LR (84.8%) and

Sklearn (79.3%).
Not reported

Ilyas et al.,
2021 [91] 858 subjects

DT, SVM, RF, KNN,
NB, MP, J48 Trees,

and LR

Three target variables
and cervical cancer

risk factors:
Hinselmann, Schiller,

and cytology

The study shows a high
prediction accuracy to 94%,

which is significantly
higher than the prediction

accuracies of individual
classification methods

tested on the same
benchmarked datasets.

Not reported

Jahan et al.,
2021 [92]

858 patients’
cases for

32 features

MLP, RF, KNN, DT,
LR, SVC, GB,

and AdaBoost

Demographics,
behaviors, and

medical records, as
well as four target

variables:
Hinselmann, Schiller,
cytology, and biopsy

Classification models claim
the highest accuracy for

specific top features such as
multilayer perceptrons. The

highest accuracy was
98.10% for 30 features.

Not reported
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Table 1. Cont.

First Author/Year Sample Size Methods Datasets Main Results Drawbacks of Studies

Khan et al.,
2021 [93] 858 records XGBoost, AdaBoost,

and RF

Data on 32 risk
variables for cervical
cancer, including age,

cancer, CIN, HPV,
and characteristics

with no missing
values and four

targets (Hinselmann,
Schiller, cytology,

and biopsy)

When compared to
30 features, the

performance of the
Hinselmann test with the
chosen feature produced
better results and can be
used to diagnose cervical

cancer. The accuracy,
sensitivity, specificity, PPA,
and NPA values for the +e
model were 98.83, 97.5, 99.2,

99.17, and 97.63,
respectively.

The dataset suffers from
huge imbalance, and
augmented data was

generated using SMOTE.

Mehmood et al.,
2021 [94] 858 instances RF and shallow

neural network

Demographic data,
patient behaviors,

and medical history

CervDetect predicted
cervical cancer with an

accuracy of 93.6%,
false-positive and negative

rates of 6.4% and
100%, respectively.

Not reported

Mudawi et al.,
2022 [95] 585 persons MLA

Demographics,
medical background,
and risk factors such

as age, IUD use,
smoking, STDs,

and others.

The RF, DT, adaptive
boosting, and gradient

boosting algorithms
yielded the maximum

classification score of 100%
for the prediction of

cervical cancer. SVM, on
the other hand, achieved an

accuracy of 99%.

Since the DT method is
extremely unstable, even
a small change in the data
will significantly change

the layout of the best
decision tree. It is

insufficiently
reliable SMOTE.

Abbreviations: AUC: area under the ROC curve, CCPM: cervical cancer prediction model, CIN: cervical intraep-
ithelial neoplasia, C&R tree: classification and regression, COA: chaos optimization algorithm, DL: deep learning,
DMT: data mining techniques, DT: decision tree, XGBoost: gradient boosting, HPV: human papillomavirus,
IUDs: intrauterine devices, KNN: k-nearest neighbors, LSTM: long short-term memory, LR: logistic regression,
ML: machine learning, MLA: machine learning algorithm, MLP: multilayer perceptron, NFS: neuro-fuzzy system,
NB: naive Bayes, PAP smear: Papanicolaou test, PCA: principle component analysis, QUEST: quick unbiased
efficient statistical tree, RF: random forest, RFE: recursive feature elimination, RPNN: ridge polynomial neural
network, SMOTE: synthetic minority oversampling technique, STDs: sexually transmitted diseases, SVM: support
vector machine.

3.1.3. Application of AI in Cervical Cancer Screening

Screening is a way of identifying apparently healthy people who may have an in-
creased risk of a particular condition [97]. The screening test needs to be sensitive and
precise. A screening test must have sensitivity exceeding 95% if the specificity is less than
or equal to 95% and vice versa (specificity must be >95% if the sensitivity is 95%) in order to
detect more true-positive cases than false-positive cases when the prevalence of the disease
is less than or equal to 5% (which covers the majority of screening populations). Most
screening tests do not meet this high standard, which means that the screening program
must absorb the costs of many false-positive results [98].

The use of AI in screening for cervical cancer has produced contradictory results. In
some studies, the use of artificial intelligence reduced false-negative outcomes compared to
traditional methods [33]. Other studies reported an increase in false-negative outcomes [35].
Yet other investigations registered no difference between AI and conventional methods [37].
Michelow and coworkers [34] reported no significant difference between manual detection
and PAPNET for invasive carcinoma and HSIL. Interestingly, these contradictions were
observed in older studies as well [33,35,37]. In recent times, the performance of AI in cervi-
cal cancer screening was better than that of conventional and manual methods [38,42,53].
With equal sensitivity and much higher specificity compared to both Pap and manual DS,
AI-based dual staining (DS) yielded lower positivity than cytology and manual DS [53].
The better performance of AI in recent studies may be attributed to the hybrid ensemble
approach, combined algorithms and techniques, and the grade of squamous intraepithelial
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lesions [38,39,46]. Sarwar et al. [38] reported that the hybrid ensemble technique out-
performed all other algorithms and demonstrated a screening efficiency of nearly 98%.
According to Bao et al. [30], the overall agreement rate between manual reading and AI
in CIN detection was 94.7% (95% confidence interval 94.5–94.8%), and the kappa coeffi-
cient was 0.92 (0.91–0.92). Furthermore, the performance of AI in the detection of CIN2+
increased with the severity of detected abnormalities on cytology. The accuracy of AI in
screening for CIN 1–3 and adenocarcinoma in situ varies between 67% and 98.27% [39–41].
The application of AI in cervical cancer screening is shown in Table 2.

Table 2. Characteristics of studies on the use of AI in screening for cervical cancer.

First Author/Year Sample Size Methods Datasets Main Results

Jenny et al., 1997 [33] 516 PAPNET scan

Women’s cervical smears
with abnormal

histopathological
diagnoses

In conventional screening, the
false negative rate fell from

5.7% to 0.8%.

Mango et al., 1998 [35] Over 10,000 PAPNET vs. conventional
microscopic rescreening Cervical smear

The false negative yield was
6.2% (142/2293) when

applying NNA analysis, as
opposed to 0.6% (82/13761)

when using
conventional rescreening.

Michelow et al., 1997 [34] 3106 PAPNET system vs.
manual screening

Consecutive normal and
abnormal cervical smears

In low-grade lesions, the
PAPNET significantly

outperformed traditional
screening (89.6% vs. 63.8%,
respectively). There was no

significant difference between
PAPNET and manual

detection for more serious
abnormalities, such as HSIL or

invasive cancer
(87.5% vs. 94.6%).

Sherman et al., 1998 [36] 7323
PAPNET system vs.

conventional
microscopic screening

ThinPrep slides of women
participating in a

population-based study

In the hypothetical scenario,
4.3% and 6.5% of women

would have been referred for
colposcopy by

PAPNET-assisted and manual
screening, respectively. Smears

taken from women with
high-grade SIL or carcinoma
were correctly identified by

PAPNET-assisted
cytological screening.

Nieminen et al., 2003 [37] 108,686 PAPNET system vs.
conventional method Cervical smears

Papnet was able to recognize
92.5% of normal cytologies,

while conventional smears had
a specificity of 92.9%.

Sarwar et al., 2016 [38] 8091 Novel hybrid ensemble
technique Cervical smears

Algorithms developed using a
digital database demonstrated
efficiencies in the range of 93%

to 95%, whereas multi-class
problem algorithms showed

efficiencies in the range of 69%
to 78%. The hybrid ensemble
approach outperformed all

other algorithms and achieved
an efficiency of approximately
98% for 2-class problems and

approximately 86% for
7-class problems.
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Table 2. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Kudva et al., 2018 [39] 102 SVM and DT Digitized cervical images
from screening

This algorithm had a
sensitivity of 99.05%,

specificity of 97.16%, and
accuracy of 97.94%.

Hu et al., 2019 [40] 9406 DL-based visual
evaluation algorithm

Digitized cervical images
from screening

AI identified cumulative
precancerous/cancer cases
with greater accuracy than

conventional cytology ((AUC
1/4 0.91) vs. (AUC 1/4 0.71)).

Sompawong et al.,
2019 [41] 1024 Mask Regional CNN

(Mask R-CNN)
Pap smear

histological slides

The obtained results had a
sensitivity, specificity, and

accuracy of 72.5%, 94.3%, and
89.8%, respectively.

Bao et al., 2020 [30] 98,549 AI-assisted cytology
system vs. manual reading

Pap smear
histological slides

Overall, 94.7% of manual
readings and AI results
concurred. The CIN2+

detection rate increased with
the severity of cytological

abnormalities, based on both
manual reading and AI.

AI-assisted cytology was 5.8%
more sensitive for CIN2+

detection than manual reading
and had a slightly lower
specificity than the latter.

Hussain et al., 2020 [87] 1670 images DL A hospital-based dataset
of Pap smear samples

The suggested method is
assessed using three datasets:
the Herlev, conventional, and
liquid-based cytology datasets.

The ensemble classifier
produced the best results with

0.989 accuracy, 0.978
sensitivity, and
0.979 specificity.

Hu et al., 2020 [42] 7334 AVE Cervigram images

By refactoring to a new deep
learning-based detection
framework, the core AVE

algorithm can be operated in
approximately 30 s with

equivalent accuracy on a basic
smartphone. On a low-end

smartphone, an image quality
algorithm can identify the
cervix and evaluate image

quality in about one second
with an AUC of 0.95 on the

ROC curve.

Sahoo et al., 2020 [43] 256 2D MFDFA Low-coherence images

The specificities and
sensitivities between normal
and CIN1, CIN1 and CINII,
and normal and CIN2 were
found to be 94%, 88%, and

93%; and 96%, 98%, and
100% respectively.

Saini et al., 2020 [44] 800 ColpoNet Colposcopy images

ColpoNet achieved an
accuracy of 81.353%.

ColpoNet outperformed
AlexNet, VGG16, ResNet50,

LeNet, and GoogleNet.
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Table 2. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Sanyal et al., 2020 [45] 1838 CNN Microphotographs from
cervical smears

The accuracy, sensitivity,
specificity, PPV, and NPV by
CNN were 95.46%, 94.28%,

96.01%, 91.66%, and
97.30%, respectively.

False positives were reported
when the CNN failed to

recognize overlapping cells
(2.7% microphotographs).

Win et al., 2020 [46] 917 Herlev datasets
and 966 SIPaKMeD

RF, LD, SVM, KNN,
boosted trees, and

bagged trees
Pap smear images

Using the SIPaKMeD dataset,
the two-class classification

accuracy was 98.27%, while
the five-class classification

accuracy was 94.09%.

Xiang et al., 2020 [47] 1014 YOLOv3 Annotated cervical
cell images

On cervical cell image-level
screening, the model yielded a

sensitivity of 97.5% and a
specificity of 67.8%.

Produced a cervical cell-level
diagnosis with a best mean
average precision of 63.4%.

Xue et al., 2020 [48] 3221 women AVE 7587 filtered images
fromMobileODT

For all ROC curves, the AUC
values for discrimination of
the most likely precancerous

cases from the least likely
cases were above 0.90.

AVE is able to classify images
of the cervix with confidence

scores that are strongly related
to expert evaluations of

severity for the same images.

Cheng et al., 2021 [49] 1170 patient-wise WSI Cervical smear slides

Achieved 95.1% sensitivity
and 93.5% specificity for
classifying slides, which

compares favorably with the
average performance of three
independent cytopathologists.

Additionally, it was able to
identify the top 10 lesion cells
on 447 positive slides with an

88.5% true positive rate.

Holmstrom et al., 2021 [31] 740 DLS Smears of
HIV-positive women

For the detection of cervical
cellular atypia, sensitivities

were 95.7% compared with the
pathologist’s assessment of

digital slides, and 100%
compared with the

pathologist’s assessment of
physical slides. Specificities

were 84.7% compared with the
pathologist’s assessment of

digital slides, and 78.4%
compared with the pathologist
assessment of physical slides.

The corresponding AUCs were
0.94 and 0.96.

Accuracy and NPV were both
high, especially for the

detection of high-grade lesions.
Compared to the pathologist’s

evaluation of digital slides,
there was a significant level of

interrater agreement.
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Table 2. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Tan et al., 2021 [50] 13,775 Robust DCNN model ThinPrep cytology test

With an AUC of 0.67, the
proposed cervical cancer
screening system had a

sensitivity and specificity of
99.4% and 34.8%, respectively.

Tang et al., 2021 [51] 10,601 cases Manual reading compared
with AI assistance

Abnormal cervical
epithelial cells

Sensitivity for the detection of
LSIL and HSIL increased

remarkably from 0.837 to 0.923
and 0.830 to 0.917, respectively.

Wang et al., 2021 [52] 143 images DL-based cervical lesions
diagnosis system

De-identified, digitized
whole-slide images of

conventional Pap
smear samples

A high precision (0.93), recall
(0.90), F-measure (0.88), and

Jaccard index (0.84) were
achieved with the

DL-based technique.
According to the run-time

analysis, the
suggested technique processes
a WSI in only 210 s, which is

20 times faster than U-Net and
19 times faster than SegNet.

Wentzensen et al.,
2021 [53] 4253 patients

Cloud-based whole-slide
imaging platform with a
deep-learning classifier

compared with
conventional Pap and

manual DS

Cervical images

AI-based DS had a lower
positive rate than cytology and
manual DS, equal sensitivity,
and much higher specificity
when compared to both Pap

and manual DS. When
compared to Pap, AI-based DS

reduced referrals to
colposcopy by 31%
(41.9% vs. 60.1%).

Fu et al., 2022 [54] 2160 women DL Cervical images
With an AUC of 0.921, the

cross-modal integrated model
achieved the best performance.

Abbreviations: AI: artificial intelligence, ASCUS: atypical squamous cells of undetermined significance,
AUC-ROC: area under the curve—a receiver operating characteristic curve, AVE: automated visual evalua-
tion, CIN: cervical intra-epithelial neoplasia, CNN: convolutional neural network, DCNN: deep convolutional
neural network, DL: deep learning, DLS: deep learning system, DS: dual-stained, DT: decision tree, HSIL: high
grade squamous intra-epithelial lesion, LSIL: low-grade squamous intraepithelial lesion, KNN: k-nearest neighbor,
LD: linear discriminant, Mask-RCNN: mask region based convolutional neural network, MFDFA: multifractal
detrended fluctuation analysis, NNA: neural network accelerator, NPV: negative predictive values, PPV: positive
predictive values, RF: random Forest, ROC: receiver operating characteristic curve, SIL: squamous intraepithelial
lesions, SVM: support vector machine, VIA: visual inspection of the cervix with acetic acid, WSI: network-based
whole slide image, YOLOv3: You Only Look Once.

3.1.4. Application of AI in Cytology for the Detection of Cervical Cancer

Cervical cytology image analysis is a very time-consuming, challenging, and labo-
rious task [99]. Computer-assisted diagnosis is believed to ease this situation because
it can potentially lower the misdiagnosis rate and also reduce the workload of cytolo-
gists [100]. Therefore, several studies have addressed the subject of automatic cervical
cancer diagnosis [64–68,74,75,80,101–136]. The investigations showed that AI-assisted
methods were promising, and achieved a high sensitivity and specificity in clinical cer-
vical cytological screening [66,126]. In a multicenter, clinical-based observational study
by Bao et al., AI-assisted reading identified considerably more CIN 2 (92.6%) and CIN
3+ (96.1%) lesions than, or at a similar rate as, manual reading. Compared to expert
cytologists, AI-assisted reading showed a similar sensitivity (relative sensitivity of 1.01)
and greater specificity (relative specificity of 1.26) [66]. Cao and co-workers [130] com-
pared the performance of AI-assisted reading with that of four pathologists. The first
two pathologists had 4 years of work experience, and the third and fourth pathologist
had 7 and 10 years of work experience, respectively. The proposed model achieved an
area under the receiver operating characteristics (AUROC) of 0.99, and an accuracy of
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98.0%, which was comparable to a pathologist with a decade of expertise (accuracy, 93.7%).
Additionally, pathologists needed on average 14.83 s to diagnose each image, compared to
the 0.04 s needed by the AI-assisted method. In fact, reading with AI assistance was
approximately 380 times faster than reading by a typical pathologist. AI algorithms
were able to distinguish between normal and cancerous Pap smears with an accuracy
of 80–100% [68,110,111,113,115,116,119,120,125,127,130,131,135,137]. The application of AI
in cytology for the detection of cervical cancer is shown in Table 3.

Table 3. Characteristics of studies on the use AI in cytology to detect cervical cancer.

First Author/Year Sample Size Methods Datasets Main Results

Sherman et al., 1994 [101] 20
PAPNET system vs.

conventional
microscopy screening

Cervical smears

Each PAPNET analysis
(conducted by pathologists)

identified SILs in
10 individuals who were

missed in the initial screening
and selected smears for

rescreening in 19 (95%) of
20 patients.

Kok and Boon, 1996 [102]
25,767 conventional

and 65,527
PAPNET smears

PAPNET system vs.
conventional screening Cervical smears

The consistency of screening
was much higher for PAPNET
than for traditional screening
with regard to invasive cancer

and high-grade SIL smears.
A higher screening sensitivity

was demonstrated by the
higher positive results for
invasive and in situ cancer

on histology.

Cenci et al., 1997 [103] 3000 PAPNET system Conventional
cervical smears

PAPNET detects false negative
cytological errors rapidly

and accurately.

Doornewaard et al.,
1997 [64]

46 cases, 920
control smears PAPNET system Histologically confirmed

CIN3 or carcinoma

Twenty percent of negative
smears were positive. Two

were reclassified as high-grade
and seven as low-grade

squamous intraepithelial
lesions. In the 920 smears that
constituted the control group,

1 of the 31 initially positive
smears was misidentified.

Fourteen newly discovered
positive cases (1.6%) were

found in the control group of
889 negative smears; all of
these were low-grade SIL.

Kemp et al., 1997 [104]

344 slides for
cell-by-cell

classification,
395 slides for
slide-by-slide
classification

Linear discriminant
functions, feed-forward

neural networks,
Quickprop algorithm

Conventional
spatula-collected cervical

cell smears

For the test data, a linear
discriminant function had an
accurate classification rate of

61.6%, whereas neural
networks had a cell-by-cell

score of up to 72.5%.
Neural networks achieved a

high rate of 76.2% valid
classifications, and the
discriminant function

achieved a mere 67.6%.
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Koss et al., 1997 [105] 487 negative smears PAPNET testing system

Archival negative smears
(index smears) from

228 women with
biopsy-proven high-grade

precancerous lesions or
invasive cervical

carcinoma

PAPNET enhanced the
detection rate of SILs in

control smears by 25% and
raised the yield of quality

control rescreening by
5.1 times when compared to
historical performance data

from various
participating laboratories.

Keenan et al., 2000 [106] 230 ML Smears
62.3% of the CIN cases had the

proper category assigned
to them.

Dickman et al., 2001 [107] 8 training images,
8 test images GTV system

Cervigrams, 35-mm
colpophotographs and

direct computer-captured
colposcopy images

GTV achieved 100% sensitivity
and 98% specificity in

detecting CIN3 after being
trained on one set of photos
and tested on another set of

images. Following training on
one set of digitized cervical

colposcopy pictures and
testing on another set of

images, GTV also achieved a
sensitivity of 88% and a
specificity of 93% for the

detection of cervical cancer.

Giovagnoli et al., 2002 [65] 12 FNs PAPNET Cervical smears

When used in cervical
screening, Nnbt can assist the
diagnosis of misread smears in

addition to allowing the
detection of FNs due to

screening errors.

Parker et al., 2002 [108] 17 women Neural net Abnormal
Papanicolaou smears

Average correct classification
rates for the intrapatient and
interpatient nets were 96.5%
and 97.5%, respectively. For

grade I cervical intraepithelial
neoplasia, the sensitivity,

specificity, positive predictive
value, and negative predictive

value were 98.2%, 98.9%,
71.4%, and 99.9%, respectively.

Boon et al., 2005 [109] 1010 Neural network
scanner: PAPNET

Cervical cell samples
suspended in the

coagulant fixative BoonFix
in liquid-based
PapSpin slides

A change in the diagnostic
parameter was noticed on the

PapSpin slide for 151 of
151 exceptional cases, or 85%.

In 94% of the cases, it was
simpler to determine whether

inflammatory cells were
adherent to epithelial cells,
whereas the adhesion of

microbes varied between 43%
and 100%.
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Dounias et al., 2006 [110] 500

Hard C-means/fuzzy C-
means/Gustafson–Kessel

clustering/feature
selection/ANFIS

neuro-fuzzy
classification/nearest

neighbor
classification/entropy

information-based
inductive machine
learning/genetic

programming-derived
crisp rule-based sys-

tem/(LMAM/OLMAM)
type second order
neural networks

Pap-smear images
collected automatically
with the aid of software
especially designed to
recognize, under the

electronic microscope, the
regions of nucleus-

cytoplasm-background.

In the 2-class problem, the vast
majority of the techniques

performed exceptionally well,
frequently achieving a test

accuracy of 90%. However, in
the 7-class problem, most of
the techniques only achieved
an average testing accuracy of
approximately 75%. Genetic
programming demonstrated

the best average generalization
capabilities in both types of
issues considered, achieving

89% and 81% accuracy for the
2- and 7-class problems,

respectively. Second-order
neural networks scored

highest in the 2-class problem,
with an accuracy of 99%.

Mat-Isa et al., 2008 [111] 550

A new artificial neural
network architecture

known as hierarchical
hybrid multilayered

perceptron

Pap smears

The proposed network
achieved 96.67% sensitivity,
100% specificity, and 97.50%
accuracy. False positives and

negatives were 1.33% and
3.00%, respectively.

Wang et al., 2009 [112] 31
available digital slides SVMs Cytology images

Initial findings point to the
system’s potential as a training

and diagnostic tool for
pathologists.

Al-Batah et al., 2014 [113] 500 Moving k-mean, SBRG,
ANFIS

Single cell images
captured from the slides

by using the AutoCapture
system

Based on the five-fold analysis
method, MANFIS produced a
training accuracy rate of 96.3%

and a testing accuracy rate
of 94.2%.

Sokouti et al., 2014 [114] 100 patients LMFFNN Cervical cell images

Using the suggested strategy,
cervical cell images were
successfully classified at a

100% correct classification rate.
Additionally, using the

LMFFNN technique, the rates
of sensitivity and specificity

were 100%. Good concurrence
was noted between the values
obtained from the ANN model

and the expert decision.

Kim et al., 2015 [115] 30
Image processing by the

Hough transform
extraction algorithm

Cell images

Using a liquid-based cytology
software, the accuracy was

91.5%. The software’s Hough
transform extraction algorithm
evaluation yielded a success

rate of 95%. The Hough
transform extraction technique

was found to have potential
advantages over extraction

algorithms for imaging.

Kyrgiou, et al., 2016 [116] 3561 patients ANN implemented by a
MLP

Detailed patient
characteristics and the

colposcopic impression.

The sensitivity for predicting
CIN2 or worse was 93.0%, the
specificity was 99.2%, and the

positive and negative
predictive values were also

high (93.3% and 99.2%,
respectively).

Hyeon et al., 2017 [117] 71,344
CNN as feature

extractor/classifiers: LR,
RF, AadaBoost, SVM

Pap smear microscopic
images from Seegene
Medical Foundation

SVM performed the best,
achieving an F1 score of 78%.
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Abdoh et al., 2018 [118] 858
RF, feature reduction,

recursive feature
elimination, PCA

Historical medical records,
habits, and demographic

information

With regard to all features, the
SMOTE-RF model had the best
accuracy, sensitivity, PPA, and
NPA. The SMOTE method is

able to increase sensitivity and
PPA ratios. For all target

variables, sensitivity increased
from 86% to 96% and PPA

increased from 30% to 98%.

Arya et al., 2018 [119] 330 and 917
Texture-based feature
extraction/classifiers:

ANN, SVM

Generated dataset MNITJ
(330), DTU/Herlev Pap

smear benchmark
dataset (917)

With the help of ANN, the
suggested texture features
technique achieved 99.50%
accuracy, 99.90% sensitivity,

and 99.90% specificity. For the
categorization of single cell
images, an accuracy of 99%

was achieved using the SVM
quadratic classifier, with a

sensitivity and specificity of
98.04% and 98.00%,

respectively.

Aljakouch et al., 2019 [120] - DCCN Pap-smears

The distinction between
healthy and malignant Pap

smears was made with 100%
accuracy by DCNNs based on

CARS, SHG/TPF, or
Raman images.

Bhuvaneshwari and
Poornima, 2019 [121] 20 Pap smear images

Fuzzy c means
segmentation, k-
k-NN classifier

The single cell microscopic
image data were collected

from cancer
registry hospitals.

On multi-cell and overlapped
cells, the approach works quite

well. For the KNN classifier
this technique achieved a

precision of 95%.

Lasyk, et al., 2019 [122] 2058 U-NET and CNN Liquid-based
cytology samples

Normal and abnormal
samples could be

distinguished with 100%
sensitivity and specificity.

Ma et al., 2019 [123] 92 patients, 141,
467 images CNN and SVM Gray-scale cervical

tissue images

The classification accuracy for
five groups of cervical

tissue-normal, ectropion, LSIL
and HSIL, and cancer-was

88.3%. The approach yielded
an area-under-the-curve value

of 0.959 in the binary
classification [low-risk

(normal, ectropion, and LSIL)
against HSIL and cancer] with
a sensitivity and specificity of
86.7% and 93.5%, respectively.

Moscon et al., 2019 [124] 15 Machine-based
learning image Samples of cervix cells

A high sensitivity (99%, 99%)
and specificity (98%, 97%) was

noted for distinguishing
normal cells and HSIL.

However, sensitivity (78%)
and specificity (79%) were

lower for LSIL cells.

Wang et al., 2019 [125] 917 Deep network model Cervical cytology images

The experimental results
demonstrated that the

lightweight deep model
performs better than the

previous compared models
and is able to obtain a model

accuracy of 94.1% when
applied to a cervical cell

dataset with fewer parameters.
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Zhang et al., 2019 [126] 62 R-FCN Cervical cell images

According to experimental
findings, detecting abnormal

regions in cervical smear
images is accomplished with
an average precision of 93.2%.

The suggested approach
shows promise for the creation

of computer-aided cervical
cytological screening systems.

Bao et al., 2020 [66] 188,542 CNN
Digital cytological images

from database of
routine screening

Compared to manual reading,
AI-assisted reading recognized

92.6% of CIN 2 and 96.1% of
CIN 3+. AI-assisted reading

showed higher specificity
(relative specificity 1.36) and

equal sensitivity (relative
specificity 1.01) compared to
expert cytologists, but higher

specificity (1.12) and
sensitivity (1.12) compared to

cytology doctors.

Guruvare et al., 2020 [127] 66

PNN classifier, the
exhaustive search feature

selection method, the
leave-one-out and the
bootstrap validation

methods

Microscopy images of
H&E-stained biopsy
material from two

different medical centers

The accuracy of the pattern
recognition system was 93%
and 88.6% when using the

leave-one-out and bootstrap
validation methods,

respectively.

Ma et al., 2020 [128] 4107
Cervical cancer detection

booster based on FPN
and Retinanet

Slide images of
cervical smears

The sensitivity of the
suggested technique at four

false positives per image and
the average precision were
both increased compared to

baseline (Retinanet) by 2.79%
and 7.2%, respectively.

Xia et al., 2020 [129] 4036 SPFNet Cervical cytology images

The experimental findings
demonstrated that the

framework outperformed
more traditional detection
methods by 78.4% AP in

cervical cancer cell
identification tests.

Ali et al., 2021 [80] - RF, IBK/feature
selection techniques

Kaggle data repository for
cervical cancer

The best results were achieved
by RF and IBk for Hinselmann

(99.16%) and Schiller
(98.58%), respectively.

Cao et al., 2021 [130] 325 CNN, vs. Faster R-CNN ThinPrep Pap test
slide datasets

An independent testing
dataset with 3970 cervical

cytology images achieved an
overall sensitivity, specificity,
accuracy, and AUC of 95.83%,

94.81%, 95.08%, and 0.991,
respectively, which is

comparable to a pathologist
with 10 years of expertise. The

feature pyramid network
model is almost 380 times

faster than an
average pathologist.

Diniz et al., 2021 [75] 45 training imagesand
900 test images

DT, Nearest Centroid,
and k-NN Cervical cytology images

The suggested ensemble
method maintained high

precision while achieving the
highest results in terms of F1

(0.993) and recall
values (0.999).
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Jia et al., 2021 [131] 1462 SSD Benchmarked cervical
cells dataset

The accuracy and mAP of the
suggested optimized SSD
network were 90.8% and

81.53%, respectively, which is
7.54% and 4.92% higher than

YOLO and conventional
SSD, respectively.

Li et al., 2021 [132] 800 Novel framework based
on Faster RCNN-FPN Cervical image dataset

With a mAP of 0.505 and an
AUC of 0.670, the proposed

model is superior to all other
state-of-the-art models. When

integrated with traditional
computer vision approaches

for tagging the negative
picture samples, the mAP

increased by 6–9%.

Liang. et al., 2021 [133]

12,909 cervical images
with 58,995 ground

truth boxes
corresponding to

10 categories objects

A global context-aware
network based on

YOLOv3 algorithm
Cervical cell dataset

With the sacrifice of a 2.6%
delay in inference time, the

suggested approaches
ultimately achieve increases a
mAP of 5.7% and specificity

of 18.5%.

Liang et al., 2021 [134]

7410 and a small-sized
dataset of

762 randomly
selected images

Faster R-CNN with FPN Cervical
microscopic images

With a mAP of 26.3%, the
suggested comparison

detector improved on the
small dataset. Using the

medium-sized dataset for
training, the comparison

detector improved its mAP
by 48.8%.

Lin et al., 2021 [67] 19,303 CNN with
dual-path encoder

Cervical slide images from
multiple medical centers

The technique performed
effectively, with a high

sensitivity of 0.907 and a
specificity of 0.80.

Meng et al., 2021 [74] 100 slides from
71 patients

MobileNet-v2, VGG,
GoogLeNet, Inception-v3,

DenseNet, and
ResNet/segmentation

networks including FCN,
SegNet, DeepLab v3+,

U-Net, HookNet

Cervical histopathology
image dataset

The dice coefficient
approaches 0.7833, showing
that the suggested weakly

supervised ensemble
technique is effective.

Pal et al., 2021 [135] 1331 images Multiple instance learning Cervical histopathology
images

A framework for multiple
instance learning with sparse
attention that can provide a

classification accuracy of up to
84.55% on the test set.

Sheela Shiney et al., 2021
[68] - AMBSS algorithm and

SVM Pap images

The achieved accuracy was
85.4%. AMBSS with
quasi-Newton-based

feedforward neural network
classification was employed to

increase accuracy, and a
classification accuracy of 96.0%

was achieved. Additionally,
The AMBSS classification

using a deep auto
encoder-based extreme

learning machine achieved an
accuracy rate of 99.1%.
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Table 3. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Jia et al., 2022 [136]

YOLO algorithm,
improved algorithm
k-means++ is used to
replace the clustering

algorithm k-means in the
original yolov3,
NMS algorithm

Experimental verification
showed that the network

achieved a mAP of 78.87%
which is 8.02%, 8.22%, and

4.83% higher than that of SSD,
YOLOv3, and

ResNet50, respectively.

Abbreviations: AMBSS: advance map-based superpixel segmentation, ANN: artificial neural network,
ANFIS: adaptive neuro-fuzzy inference system, ASCUS: atypical squamous cells of undetermined significance,
CIN: cervical intraepithelial neoplasia, CNN: convolutional neural network, DCNN: deep convolutional neural
networks, DT: decision tree, FCN: convolutional network, FPN: feature pyramid network, FNs: false negatives,
GTV: Georgia tech vision, HSIL: high-grade squamous intraepithelial lesion, IBK: instance-based learning with
parameter k, KNN: k-nearest neighbor, LSIL: low-grade squamous intraepithelial lesion, LMAM: Levenberg–
Marquardt with adaptive momentum, LR: LMFFNN: Levenberg–Marquardt feedforward MLP neural network,
H&E: hematoxylin and eosin, MANFIS: multiple adaptive neuro-fuzzy inference system, ML: machine learn-
ing, mAP: mean average precision, MLP: multilayer perceptron, NC: normal cell, NPA: negative predicted
accuracy, nnbt: neural network–based technology. NMS: non-maximum suppression, OLMAM: optimized
Levenberg–Marquardt with adaptive momentum, PCA: principal component analysis, PNN: probabilistic neural
network, PPA: positive predicted accuracy, RF: random forest, R-CNN: region-based convolutional neural net-
works, RFCN: region-based fully convolutional network, SIL: squamous intraepithelial lesion, SSD: single-shot
multibox detector, SMOTE: synthetic minority oversampling technique, SPFNet: series-parallel fusion network,
SVMs: support vector machines, SBRG: seed-based region growing, YOLOv3: You Only Look Once.

3.1.5. Application of AI in Colposcopy for the Detection of Cervical Cancer

AI-assisted tools appear to be very suitable for the cervical cancer diagnostic protocol,
which recommends colposcopy in cases of an abnormal PAP smear and/or high-risk HPV
and the collection of diagnostic tissue samples before initiating any potentially invasive
treatment [138]. In response to this demand, a few notable studies were published on the use
of AI in colposcopy for the detection of cervical cancer [69–73,77,79,137–156]. According to
several investigations, the AI diagnostic approach could support or even potentially replace
conventional colposcopy, permit more objective tissue specimen sampling, and reduce the
number of cervical cancer cases in developing nations by offering an economical screening
option in low-resource settings [137,141]. Some research suggests that AI could help less
skilled clinicians to decide whether to perform a cervical biopsy [70,144,145,156]. In addi-
tion, AI helped gynecologists to accurately establish the presence of invasive cancer on cer-
vical pathological images diagnosed by AI [156]. According to a large study (over 19,000 pa-
tients) performed in China by Xue et al., the agreement between pathology findings and
colposcopic impressions graded by the Colposcopic Artificial Intelligence Auxiliary Diag-
nostic System (CAIADS) was higher than that of colposcopies interpreted by colposcopists
(82.2% vs. 65.9%). Additionally, the CAIADS proved to be more accurate in predicting
biopsy sites [147]. In published studies, the sensitivity and specificity of AI in colposcopy for
the detection of CIN 2 or more severe lesions were reported at 71.9–98.22% and 51.8–96.2%,
respectively [70,72,73,137–140,143,147,148,150–152,154]. The accuracy of AI in colposcopy
for CIN 2+ detection varied from 40.5% to 98.3% [70,72,77,137,143,146–148,150–152,154,156].
The use of AI in colposcopy for the detection of cervical cancer is summarized in Table 4.

Table 4. Characteristics of studies on the use of AI in colposcopy for the detection of cervical cancer.

First Author/Year Sample Size Methods Datasets Main Results

Park et al., 2008 [139] 29 patients K-means clustering
algorithm

Digital images of
the cervix

Diagnostic performance: 88%
specificity and 79% sensitivity.

Li et al., 2009 [140] 99 human subjects Automated image analysis Images captured with a
digital colposcope

The proposed opacity index
demonstrated 94% and 87%
sensitivity and specificity,

respectively.
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Table 4. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Park et al., 2011 [141] 48 patients CRFs Clinical data

The suggested automated
diagnostic approach can

supplement or even replace
conventional colposcopy,

permit more objective tissue
specimen sampling, and
reduce the incidence of

cervical cancer in low-income
nations by offering an

economical screening option.

Ramapraba et al.,
2017 [143] 400 images DWT and KNN Cervical images

The cervical acetowhite lesion
can be found with 94%

sensitivity in less than 40 s.

Asiedu et al., 2019 [137] 134 ML Pocket colposcope
patients

The suggested framework
successfully distinguished

cervical intraepithelial
neoplasia (CIN+) from benign

and normal tissue with
sensitivity, specificity, and

accuracy rates of 81.3%, 78.6%,
and 80.0%, respectively.

This is better than the average
values obtained by three

expert doctors on the same
dataset (77% sensitivity, 51%
specificity, and 63% accuracy)

for differentiating
normal/benign cases

from CIN+.

Bai et al., 2020 [69] 817 CLDNet
6536 Colposcopy images

from attendees of
cancer screening

The average precision of the
model extraction lesion region

is 92.53%, and the average
recall rate is 85.56%.

Cho et al., 2020 [144] 6000 cases Pre-trained CNN
Photographs,

colposcopy-directed
biopsy and conization

The AUC of the CIN system
for differentiating high-risk

lesions from low-risk lesions
by Resnet-152 was 0.781 and
the AUC of the LAST system

was 0.708.

Li et al., 2020 [145] 7668 GCNs Colposcopy images

Similar to an in-service
colposcopist, the suggested
deep learning framework
achieves a classification

accuracy of 78.33%.

Luo et al., 2020 [146]
Positive samples of
494 cases, negative

samples of 615 cases
Multi-CNN

Colposcopy images
obtained through a lighted

magnifying glass and
clinical diagnosis reports

Results with two data splits
were compared as follows:

single-class split: AUC = 0.756;
multi-class split: AUC = 0.764.
The suggested multi-decision
feature fusion technique can

produce computer-aided
diagnosis outcomes that are

more in line with clinical
diagnosis requirements.
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Table 4. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Miyagi et al., 2020 [70] 330 patients DL Colposcopy images

For diagnosing HSI, the AI
classifier and oncologists
performed with accuracy,

sensitivity, specificity rates,
and a Youden’s J index of 0.823

and 0.797, 0.800 and 0.831,
0.882 and 0.773, and 0.682 and

0.604, respectively. The 95%
confidence interval for the area
under the receiver-operating

characteristic curve was
0.721–0.928. The best cutoff

value was 0.692.

Xue et al., 2020 [147] 19,435 patients CAIADS
Colposcopy images,

clinical information, and
pathological results

While the specificities were
comparable (low-grade or

worse 51.8% vs. 52.0%;
high-grade or worse 93.9% vs.
94.9%), CAIADS demonstrated
higher sensitivity for detecting

pathological HSIL+ than
colposcopies interpreted by

colposcopists at either biopsy
threshold (low-grade or worse
90.5% vs. 83.5%; high-grade or

worse 71.9% vs. 60.4%).

Yuan et al., 2020 [148] 5384 ResNet

Colposcopy images of
three subsets: the training

set, the test set and the
validation set, in a ratio of

8:1:1

With an AUC of 0.93, the
classification model’s

sensitivity, specificity, and
accuracy in differentiating

between negative and positive
cases were 85.38%, 82.62%,
and 84.10%, respectively.

Yue et al., 2020 [149] 4753 C-RCNN Cervigram images

Achieved a test accuracy of
96.13%, specificity of 98.22%,

and sensitivity of 95.09%.
The AUC was more than 0.94.

Adweb et al., 2021 [150] 4000 pre-cancerous,
800 healthy samples

ReLU-ResNet,
PReLU-ResNet and

Leaky-ReLU

Cervical images from
colposcopy

The accuracy of designed
residual networks with leaky

and parametric rectified linear
unit (Leaky-RELU and

PRELU) activation functions
(accuracies of 90.2% and 100%,

respectively) was similar.

Chandran et al., 2021 [151] 5679 CYENET and VGG19 (TL) Colposcopy photographs

For VGG19, the classification
accuracy was 73.3%.

High sensitivity, specificity,
and kappa scores of 92.4%,

96.2%, and 88% were achieved
by the proposed CYENET.

Hunt et al., 2021 [152] 1486 Multi-task CNN High-resolution
microendoscopy images

For the detection of CIN3+,
HRME with morphologic
image analysis was just as

sensitive (95.6% vs. 96.2%) and
specific (56.6% vs. 58.7%) as

colposcopy. Compared to
colposcopy, HRME with

morphologic image analysis
had a slightly lower sensitivity

(91.7% vs. 95.6%) and
specificity (59.7% vs. 63.4%,

p = 0.02) for the identification
of CIN2+.
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Table 4. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Li et al., 2021 [153] 8604 CAD systems
Colposcopy images from

grading cervical
intraepithelial neoplasia

The grading accuracy of CIN
increased by more than 10%

with TAE and ABV.

Nikookar et al., 2021 [71] 287
NavieBayes, AdaBoost, RF,
R tree, SVM, Decision tree,

Logit boost

Cervigrams from digital
colposcopy dataset

Random tree is the best
performing classifier on the

dataset acquired by applying
the Fmvs aggregation function.

Peng et al., 2021 [72] 960 CNN Original colposcopy image

In 60 tests, the suggested
technique achieved a

classification accuracy of
86.3%, sensitivity of 84.1%,

and specificity of 89.8%.

Viñals et al., 2021 [73]
21,851 positive pixels
and 93,725 negative

pixels
ANN VIA videos

The sensitivity and specificity
of the suggested solution were

0.9 and 0.87, respectively.

Yan et al., 2021 [154] 1400 BF-CNN vs. ResNet18 Cervicograms

Similar sensitivity (74.6%) and
the best accuracy (85.5%),

specificity (95.7%), and AUC
(0.909) were achieved

with F-CNN.

Yue et al., 2021 [155] 609 CICN Clinical cervigram
DenseNet-121 achieved the
highest accuracy (0.906) and

AUC (0.973)

Kim et al., 2022 [79] 234 patients ML Cervical images

Compared to each clinician’s
colposcopic impressions, AI
was associated with greater

sensitivity, equivalent
specificity, and equivalent
positive predictive value.

Elakkiya et al., 2022 [77] 858 SOD-GAN Cervical samples and
colposcopy images

The suggested method
demonstrated good accuracy

through all stages, achieving a
sensitivity of approximately

97% with a loss of less
than 1%.

Ito et al., 2022 [156] 463 AISD Colposcopy images

The accuracy of AI was 57.8%
for normal, 35.4% for cervical

intraepithelial neoplasia
(CIN)1, 40.5% for CIN2–3, and

44.2% for invasive cancer.
Before learning about the AI

image diagnosis, the accuracy
of gynecologists’ diagnoses
based on cervical pathology

images was 54.4% for CIN2–3
and 38.9% for invasive cancer.

Their accuracy increased to
58.0% for CIN2–3 and 48.5%
for invasive cancer after they

learned about the AISD.
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Table 4. Cont.

First Author/Year Sample Size Methods Datasets Main Results

Zimmer-Stelmach et al.,
2022 [138] 48 AI colposcopy assessment Colposcopy examinations

With a significantly lower
sensitivity (66.7% vs. 100%)

but a higher specificity (46.7%
vs. 16.7%), AI-assisted

colposcopy was able to detect
diseases with a similar PPV as

that of a skilled physician
(42.9% vs. 41.8%).

Abbreviations: AISD: AI-image-assisted diagnosis, AUC: area under the receiver operating characteristic curve,
BF-CNN: bilinear fuse convolutional neural network, CAD: computer aided diagnosis, CAIADS: colposcopy
artificial intelligence auxiliary diagnostic system, CICN: computational intelligence and communication networks,
CIN: cervical intraepithelial neoplasia, CLDNet: cervical lesion detection net, CNN: convolutional neural network,
C-RCNN: cervigram-based recurrent convolutional neural network, CRFs: conditional random fields, DL: deep
learning, DWT: discrete wavelet transform: GCNs: graph convolutional network, HSIL, high-grade squamous
intraepithelial lesion, KNN: k-nearest neighbor, ML: machine learning, ResNet: residual neural network, Rtree,
random tree, RF: random forest, SOD-GAN: small-object detection generative adversarial networks, VIA: visual
inspection with acetic acid.

4. Discussion

Despite tremendous progress in the treatment of cancer, cervical cancer cells are occa-
sionally detected at a time when the disease has already caused distant metastasis [157].
This is a major problem in third-world countries with inferior health systems [5,8]. Fur-
thermore, monetary and personal limitations increase the need for alternative tools as the
number of people to be treated by professionals increases [158]. Thus, we need better
diagnostic tools for cancer [157]. The application of AI not only in medicine but also
other majors has grown significantly over the past ten years, particularly in the last five
years [28,159,160] at three levels: for patients, by enabling them to process their own
data to promote health; for health systems, by improving workflow and the potential
for reducing medical errors; and for clinicians, predominantly via rapid, accurate image
interpretation [161].

The aim of this systematic review is to evaluate the diagnostic performance of AI
technologies in cervical cancer and pre-cancerous lesions. Estimating the prognosis of
cervical cancer is one of the most difficult tasks because its management requires a variety
of cancer treatment approaches [162,163], which may even impair quality of life to a
significant extent [164,165].

The studies included in this systematic review employed models to identify a variety
of predictors, including age, numbers of sexual partners, age at the first sexual inter-
course, deliveries, smoking, hormonal and barrier contraceptives, STDs, marital status,
personal health level, education level, social status, number of caesarean deliveries, and
the presence of 15 high-risk HPV genotypes. The accuracy of different AI algorithms
in predicting cervical cancer varies from 70% to 100%. More reliable predictions are
achieved when the prediction models for cervical cancer are combined with the hybrid
ensemble approach. Compared to studies focused on AI techniques, in a cohort study,
Schulte-Frohlinde et al. [166] noted that cervical cancer could be predicted among high-risk
HPV-positive women. Age at sexual debut was a significant modifier of the incidence of
cervical cancer.

The prediction of cervical cancer on the basis of AI techniques has produced promis-
ing results. The findings of a study by Nsugbe showed how prediction machines can
contribute towards early detection and prioritize the care of patients with cervical cancer,
while also allowing for cost-saving benefits when compared with routine cervical cancer
screening [167].

Cytology-based cervical cancer screening has poor accuracy [168]. In addition to the
fact that the procedure needs clinical consultants who have undergone significant training,
it is time consuming and susceptible to human interpretation and error [81,169]. The use
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of computer technologies may reduce the likelihood of misdiagnoses, analysis time, and
assist in early diagnosis [169].

In the present systematic review, we reviewed studies investigating the performance
of AI in screening and cytology for the detection of cervical cancer. The accuracy of AI in
the detection of CIN 1–3 and adenocarcinoma in situ varied from 67% to 98.27%. However,
we registered contradictory results regarding the performance of AI in cervical cancer
screening, in terms of poor as well as better performance compared to traditional methods.
The poor performance of AI appears to be limited to old methods of AI. Conversely,
applying the hybrid ensemble approach and combined applied algorithms of new AI
techniques performed better than traditional and manual approaches. We observed that AI
techniques are able to distinguish between normal and cancerous Pap smears with 80–100%
accuracy, and were 380 times faster than the typical pathologist. Pap smear testing is a
fundamental procedure in protecting women from cervical cancer. However, the effort of
a cytologist to detect morphologic changes in lesions with 20,000–50,000 cells on a single
slide is tedious, arduous, and dependent on experience [67]. In a cross-sectional study by
Wergeland Sørbye et al. [168], four pathologists at three hospitals in Norway evaluated
one hundred Pap smears (20 cases normal, 20 cases LSIL, 20 cases HSIL, 20 cases atypical
squamous cells of undetermined significance (ASC-US), and 20 high grade squamous intra-
epithelial lesion (ASC-H)). The accuracy for CIN2+ varied from 74.1% to 83.8%. Therefore,
the claim that AI improves the effectiveness of diagnosis, reduces the clinician’s workload,
and even enhances the impact of treatment and prognosis would seem plausible [53,138].
Furthermore, AI was shown to be more adept than the human brain in recognizing specific
patterns [138].

Currently, the two most common techniques used to diagnose precancerous cervical
lesions are colposcopy and guided biopsy. However, numerous investigations have shown
that even practitioners who are skilled in colposcopy struggle to make the right diagno-
sis [170]. Consequently, the standardized and less volatile diagnostic tools of AI might
be useful [79]. Many studies included in the present review concluded that, in cervical
cancer diagnosis, AI may be able to supplement or perhaps even replace current colposcopy
procedures. The sensitivity and specificity of AI for the detection of CIN2+ were reported
to be 71.9–98.22% and 51.8–96.2% respectively [70,72,73,137–140,143,147,148,150–152,154].
The accuracy of AI for the detection of CIN 2+ varied from 40.5% to 98.3%. These data
demonstrate the potential of AI in reading colposcopic images. According to a meta-
analysis by Mitchell et al. [171], the sensitivity of colposcopists in diagnosing CIN varies
greatly compared to the performance of AI: the average weighted sensitivity of colposcopy
in differentiating between normal and all cervix abnormalities (atypia, low-grade SIL,
high-grade SIL, cancer) was 96%, and the average weighted specificity was 48%.

The threshold normal cervix has an area under the ROC curve of 0.80 when compared
to other abnormalities. A gynecologist with little experience might overlook high-grade
lesions [172]. AI technologies may serve as a practical aid for the inexperienced gynecologist
or general physician in making a precise clinic diagnosis or a wise choice in terms of
diagnostic intervention, such as whether to perform a punch biopsy or transfer the patient
to a specialized center [79,144,171]. According to Kim et al. [79], the clinical interpretation
of colposcopic images by AI had a higher AUC in identifying low- and high-risk lesions
than the clinical interpretation of colposcopic images by humans. These findings imply
that AI interpretations may be used in the clinical setting. A recent study that evaluated
deep learning algorithms for automatic categorization of colposcopic images supports this
notion [144]. Automated visual evaluation of cervical images had a higher AUC than the
original interpretation of cervical images by human or conventional cytology [40].

Limitations and Recommendations

The limitations of the studies investigated for this systematic review are worthy of
mention. First of all, the majority of the investigations were underpowered in regard of
the primary outcome because of their small sample sizes. Some algorithms used in the



Diagnostics 2022, 12, 2771 25 of 32

studies are very unstable, which means that a slight change in the data will significantly
change the layout of the best decision. Furthermore, some algorithms are slow and needed
more memory to run, In fact, millions of observations may be needed for AI techniques to
perform acceptably [173]. Second, AI-based models are not widely used in experimental
and clinical settings on real datasets. The experimental results on some (small, intermediate
and big) machine learning datasets can show the efficiency of the proposed methods, in
terms of space, speed, and accuracy [174].

Experimental tests or prospective clinical trials are urgently needed to better highlight
the differences between the investigated studies and validate the findings discussed in the
present study. Considering the use of different techniques and algorithms in the published
studies, it would be meaningful to design a review comparing each technique with others
in order to obtain an accurate estimate of the effectiveness of the techniques and establish
the potential superiority of the respective methods. According to several studies, the
cost-effectiveness of the automated systems is limited, because they are not suitable for use
in poorly and moderately developed nations [175]. Some researchers are still working to
improve the use of artificial intelligence in cervical cytology. Since a reliable prediction of
the clinical outcome would serve as a guide for treatment and the prediction of cervical
cancer is most challenging [176], it would be appropriate to specifically address the role of
AI in predicting cervical cancer outcomes.

5. Conclusions

Our systematic review highlights the acceptable performance of AI systems in the
prediction, screening or detection of cervical cancer and pre-cancerous lesions. AI could
aid clinicians in making decisions, reducing their workload as well as the likelihood
of misdiagnoses. Indeed, AI interpretation of cervical smears or images could serve
as an aid when combined with human evaluation. Further studies on prediction and
detection are needed for making appropriate decisions about the treatment of cervical
cancer. Eventually, this will help to devise programs for the eradication of cervical cancer
on a worldwide basis. However, further work will be needed to make AI feasible, reliable,
and less expensive for clinical use. The development of novel techniques and algorithms to
reduce the impact of data scarcity in the evaluation and prediction of clinical outcomes,
as well as the independent validation of machine learning algorithms, may be included in
future studies.
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